
Advances in Delivery Mechanisms of
CRISPR Gene-Editing Reagents in
Plants
Larissa C. Laforest1 and Satya Swathi Nadakuduti 1,2*

1Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States, 2Department of Environmental
Horticulture, University of Florida, Gainesville, FL, United States

Gene-editing by CRISPR/Cas systems has revolutionized plant biology by serving as a
functional genomics tool. It has tremendously advanced plant breeding and crop
improvement by accelerating the development of improved cultivars, creating genetic
variability, and aiding in domestication of wild and orphan crops. Gene-editing is a rapidly
evolving field. Several advancements include development of different Cas effectors with
increased target range, efficacy, and enhanced capacity for precise DNA modifications
with base editing and prime editing. The existing toolbox of various CRISPR reagents
facilitate gene knockouts, targeted gene insertions, precise base substitutions, and
multiplexing. However, the major challenge in plant genome-editing remains the
efficient delivery of these reagents into plant cells. Plants have larger and more
complex genome structures compared to other living systems due to the common
occurrence of polyploidy and other genome re-arrangements. Further, rigid cell walls
surrounding plant cells deter the entry of any foreign biomolecules. Unfortunately, genetic
transformation to deliver gene-editing reagents has been established only in a limited
number of plant species. Recently, there has been significant progress in CRISPR reagents
delivery in plants. This review focuses on exploring these delivery mechanisms categorized
into Agrobacterium-mediated delivery and breakthroughs, particle bombardment-based
delivery of biomolecules and recent improvements, and protoplasts, a versatile system for
gene-editing and regeneration in plants. The ultimate goal in plant gene-editing is to
establish highly efficient and genotype-independent reagent delivery mechanisms for
editing multiple targets simultaneously and achieve DNA-free gene-edited plants at scale.
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INTRODUCTION

CRISPR/Cas9 derived from Streptococcus pyogenes (SpCas9) is the most used gene-editing reagent in
plants. Unlike its predecessors, zinc finger nucleases (Gao et al., 2010; Osakabe et al., 2010; Zhang
et al., 2010) and Transcription Activator-like Effector Nucleases (TALENs) (Cermak et al., 2011; Li
et al., 2012), which rely on protein-based DNA recognition mechanisms, CRISPR/Cas systems are
RNA-guided endonucleases. The resulting versatility, simplicity, and cost-effectiveness brought
about by CRISPR led to significant advances in plant genome engineering. In the CRISPR/Cas9
system, a chimeric single guide RNA (sgRNA), formed by fusion of CRISPR RNA (crRNA) and a
trans-activating crRNA (tracrRNA), directs the SpCas9 nuclease to generate blunt double-strand
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breaks (DSBs) at the genomic DNA target site three bases
upstream of Protospacer Adjacent Motif (PAM) sequence of
‘NGG’ (Jinek et al., 2012). The DSBs are repaired either by
error-prone non-homologous end joining (NHEJ) resulting in
insertion-deletion mutations (InDels) leading to gene knock-out
or by precise, albeit inefficient, homology-directed repair (HDR)
through which DNA insertions are achieved by providing an
external donor repair template (DRT) (Atkins and Voytas, 2020;
Dong and Ronald, 2021). In addition to Cas9, multiple other Cas
variants with alternative PAM requirements have been identified
and successfully utilized in plants expanding the range of DNA
recognition (Kaya et al., 2016; Jia et al., 2017; Steinert et al., 2017;
Zhang Y. et al., 2019; Veillet et al., 2020). Furthermore, base
editors (BEs), including cytosine, adenine, and glycosylase BEs
can precisely convert one target DNA base to another without a
DSB. BEs rely on base excision repair, facilitating both transition
and transversion mutations, and are increasingly being used in
plant systems (Shimatani et al., 2017; Zong et al., 2017; Shan and
Voytas, 2018; Zhang R. et al., 2019; Li et al., 2020; Zhao et al.,
2020). In addition, prime editing (PE), a versatile “search-and-
replace” strategy, was also developed (Anzalone et al., 2019) and
optimized in plants (Butt et al., 2020; Lin et al., 2020; Tang et al.,
2020; Xu et al., 2020). PEs copy desired edits incorporated into the
PE gRNA (PegRNA) directly into the genomic DNA by target
primed reverse transcription. With this existing toolbox of
various CRISPR reagents, the biggest challenge in plant
genome-editing remains to be the efficient delivery of these
reagents into plant cells.

Several plant species have larger and more complex genome
structures compared to other living systems. Polyploidy and
genomic rearrangements are common in plants, and rigid cell
walls surrounding the plant cells deter the entry of any foreign
biomolecules. Furthermore, genetic transformation to deliver
transgenes has only been established in a limited number of
plant species and genotypes within each species. This is
currently considered the biggest bottleneck in plant genome
engineering. Gene-editing reagents are delivered into plants,
most commonly as plasmid DNA constructs and predominantly
by Agrobacterium-mediated transformation or particle
bombardment are summarized in tables recently (Sandhya
et al., 2020; Ghogare et al., 2021). In both methods, the plasmid
DNA with CRISPR/Cas expression cassette is likely to get
integrated into a random genomic site(s), leading to continued
expression in host genomes. With the revision of the regulatory
landscape of gene-edited lines in the US (USDA press release1) and
across the world (Nadakuduti et al., 2018; Lassoued et al., 2021),
developing gene-edited lines without integrating foreign genomic
DNA into the host plant is gaining prominence. DNA-free delivery
of in vitro transcripts (IVTs), pre-assembled ribonucleoprotein
complexes (RNPs), or transient expression of plasmid DNA
constructs delivered into protoplasts, and subsequent
regeneration of gene-edited plants have been successful in
several plant species (Liang et al., 2017; Andersson et al., 2018;

González et al., 2020, 2021; Sidorov et al., 2021; Zhang et al., 2021).
This review will focus on various advances in CRISPR delivery
mechanisms in plants categorized into Agrobacterium-mediated
delivery and breakthroughs for efficient and heritable mutagenesis
and gene targeting (GT) in plants; particle bombardment mediated
delivery of DNA, RNA, and protein biomolecules for plant gene-
editing, and protoplast transfection and regeneration of transgene-
free gene-edited plants. The ultimate goal in plant gene-editing is to
establish highly efficient and species non-specific reagent delivery
mechanisms for editing multiple targets simultaneously and
achieve DNA-free gene-edited plants at scale.

Breakthroughs in Agrobacterium-Mediated
Delivery of CRISPR Reagents for Efficient
and Heritable Mutagenesis and Gene
Targeting
Agrobacterium-mediated genetic transformation remains the
principal means of delivering gene-editing reagents including
CRISPR/Cas variants, base editing and prime editing reagents,
into plants (Lin et al., 2020). This method typically involves
inoculating the explants with Agrobacterium expressing gene-
editing cassettes integrated into its T-DNA (Figure 1A). Upon
infection of plant cells, the T-DNA containing the CRISPR
cassette likely gets integrated into the host plant genome
leading to stable genetic transformation. Transgene-free gene-
editing has been achieved by transient expression of CRISPR
reagents by regenerating events without employing selection
(Chen et al., 2018). This is important for generating edited
plants with no foreign DNA to avoid regulatory oversight and
for vegetatively propagated plants, where segregating out the
integrated transgene by making crosses is not feasible.
Agrobacterium has a limited host range, and several plant
species are recalcitrant to Agrobacterium-mediated
transformation. Furthermore, the regeneration process
involving tissue culture leads to undesirable somaclonal
variations in edited lines. Floral dip method of transformation,
only amenable to Arabidopsis thaliana and some related species
(Clough and Bent, 1998; Lu and Kang, 2008) can generate
transformed seeds, bypassing the need for regeneration. Other
means of avoiding regeneration process include, the use of A.
rhizogenes, which can drastically reduce time between reagent
delivery and mutation evaluation, as well as widening the range of
species transformed (Yoshida et al., 2015; Triozzi et al., 2021).

Co-delivery of Developmental Regulators
with CRISPR Reagents via Agrobacterium
to Expedite and Improve Gene-editing
Efficiency in Plants
Developmental regulators (DRs) are genes involved in dictating
meristem identity in plants. Ectopic expression of DRs in plants
has resulted in somatic embryogenesis, formation of embryos
from somatic tissues (Lowe et al., 2016). Overexpression of DRs
such as Baby Boom (Bbm) and Wuschel2 (Wus2) enhanced
regeneration and transformation frequency in both dicot and
monocot plants (Srinivasan et al., 2007; Deng et al., 2009; Lowe

1https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-
usda-statement-plant-breeding-innovation.
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FIGURE 1 | Agrobacterium mediated delivery of CRISPR gene-editing reagents in plants. (A) Conventional Agrobacterium-mediated transformation consisting of
T-DNA carrying expression cassette for Streptococcus pyogenes Cas9 and kanamycin resistance gene NptII, both driven by cauliflower mosaic virus 35S promoter
(CaMV 35S), and a single guide RNA (sgRNA) driven by the U6 promoter targeting the phytoene desaturase (PDS) gene. Explants are infected and co-cultivated with
agrobacterium cultures, then placed on selective media for callus induction and regeneration. The resulting gene-edited lines are transgenic and have
photobleaching phenotype. (B) A. tumefaciens T-DNA harboring sgRNA targeting PDS along with plant developmental regulators (DRs) Wuschel2 (Wus2) driven by
nopaline synthase (nos) promoter, and isopentenyl synthase (ipt) driven by 35S promoter are injected in Cas9 expressing soil grown plants after meristem removal. DRs
induce new meristems at the wounded site and pds phenotype is visible in edited meristems. Offspring from seeds produced on de novomeristems show segregation
for photobleaching phenotype. Maher et al. (2020) found that de novomeristems with bi-allelic mutations did not set viable seeds, and edited offspring are only recovered
from meristems exhibiting mosaicism. (C) Tobacco rattle virus (TRV) is a bipartite RNA virus: TRV1 encodes replicases RNA-dependent RNA polymerase (RDRP), a
movement protein (MP), a 16 KDa cysteine rich protein, and a ribozyme (RZ) and can independently replicate itself and move within the plant during infection. TRV2,
encodes a coat protein (CP) and, a sgRNA targeting PDS fused to Flowering locus T (FT) driven by a pea early browning virus promoter (PeBv). FT is a mobile RNA which
increases infection spread by reaching the shoot apical meristem (SAM). TRV1 and TRV2 are introduced into T-DNA regions of agrobacterium and infiltrated into 35S:
Cas9 transgenic plants. Systemic infection of the plant leads to editing of somatic and germline cells thereby increasing heritability. Infected plants exhibit photobleaching
and pds phenotype segregates in progeny. (D) Sonchus yellow net rhabdovirus (SYNV) is a negative-strand RNA virus encoding the core structural proteins
nucleoprotein (N), phosphoprotein (P), and the large RNA polymerase (L), and Sc4 protein, matrix protein (M), glycoprotein (G) which are involved in cell-to-cell

(Continued )
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et al., 2016). This phenomenon was leveraged to induce de novo
meristems in somatic tissues by injecting Agrobacterium cultures
co-delivering DRs and gene-editing cassettes directly into soil-
grown plants (Figure 1B).Wus2 and Isopentenyl transferase (Ipt),
when co-delivered with gene-editing reagents by Agrobacterium
injections into dicot plants generated meristems in somatic
tissues with edits, enabling tissue culture free gene-editing
(Maher et al., 2020). This can potentially be a high throughput
and less tedious approach when Cas9 expressing plants are
generated. Alternatively, Growth Regulating Factor (GRF) and
GRF-interacting Factor (GIF) cofactor when expressed as GRF4-
GIF chimera increased the speed and efficiency of regeneration
(Debernardi et al., 2020). Co-delivery of GRF4-GIF chimera and
CRISPR-Cas9 on the same T-DNA increased the regeneration
efficiency in both monocots and dicots and produced fertile
edited plants (Debernardi et al., 2020). The expression of DRs
is extremely beneficial in plant species that are recalcitrant to
regeneration or ones with long regeneration periods to reduce the
time and cost of plant gene-editing.

Viral Vectors and Mobile RNAs for Systemic
Delivery of CRISPR Reagents for Heritable
Gene-Editing
Recently, viral vectors showed promise for efficient delivery of
CRISPR reagents into germline cells to achieve heritable andDNA-
free gene-editing (Ali Z. et al., 2015; Ellison et al., 2020; Ma et al.,
2020; Kujur et al., 2021; Li et al., 2021). Traditionally, heritable
modifications are accomplished by stable expression of the CRISPR
cassettes and generating transgenic lines through regeneration.
Autonomously replicating viral vectors delivered into plants via
Agrobacterium offer an alternative for heritable gene-editing in
plants. RNA viruses don’t integrate into the plant genome but have
lower cargo capacity impeding their use for Cas9 delivery. Tobacco
rattle virus (TRV), a bipartite positive-strand RNA virus is widely
used in plants. TRV mediated sgRNA delivery into Cas9
overexpressing lines by agroinfiltration has been optimized in
dicots, albeit with low heritability of edits (Ali et al., 2015; Cody
et al., 2017). To improve heritability, the endogenous mobile RNA
Flowering Locus T (FT) has been fused to sgRNA to enhance
mobility and facilitate systemic distribution within plant to reach
germline cells (Figure 1C) (Ellison et al., 2020). Barley stripe
mosaic virus (BMSV) has been engineered to deliver sgRNAs
into wheat to achieve heritable genome editing. Furthermore, by
co-infiltration of a pool of BMSV vectors harboring different
sgRNAs resulted in multiplexed mutagenesis in the progeny (Li
et al., 2021). Sonchus yellow net rhabdovirus (SYNV), a negative-
strand RNA virus with higher cargo capacity, has been engineered
to carry both Cas9 and sgRNA for DNA-free in planta editing
(Figure 1D) (Ma et al., 2020).

Enhancing Gene Targeting by
Agrobacterium-Mediated Delivery of
CRISPR Reagents
GT includes precise DNA modifications based on HDR using a
DRT with homology to the host target DNA on both ends. DSBs
generated by CRISPR/Cas reagents initiate the cell repair
process. However, NHEJ is the predominant repair
mechanism in plants cells to repair these DSBs as HDR is
not active throughout the cell cycle. This, in combination
with inefficient delivery of DRT to facilitate HDR, make GT
very inefficient in plants. To increase GT frequencies, viral
replicons including Bean Yellow Dwarf Virus (BeYDV)
(Baltes et al., 2014; Butler et al., 2015; Čermák et al., 2015;
Cermak et al., 2017; Wang et al., 2017; Vu et al., 2020) or wheat
Dwarf virus (WDV) (Gil-Humanes et al., 2017) have been
successfully used in several dicot and monocot plants. These
viral replicons carrying the CRISPR expression cassette and
DRT undergo rolling-circle replication in the host cells thereby
increasing the abundance of nuclease and availability of DRT for
HDR (Baltes et al., 2014). The GT event is not heritable if it
doesn’t occur in the germline cells. To increase the heritability of
GT, germline-specific promoters including the egg-cell, early
embryo-specific promoter and pollen-specific promoters or
promoters active in the shoot apical meristems (SAM) have
been employed to drive Cas9 expression (Wang et al., 2015; Yan
et al., 2015; Mao et al., 2016). Furthermore, to improve the
efficiency of heritable in-frame gene insertions and amino acid
substitutions by HDR, plants expressing Cas9 from germline-
specific promoters are used for sequential transformation with
HDR constructs containing DRT and sgRNA targeting the gene
of interest. This led to an increase in GT efficiency of up to 9%
(Miki et al., 2018). Since GT is a rare phenomenon, even with all
the advances to improve efficiency, selection must still be
employed to detect positive GT events. A piggyBac
transposition system from T-DNA has been used to
eliminate the GT selection marker from host plant genome.
In this method, a transposon integrates into the host genome at
TTAA element and excises without a footprint (Nishizawa-
Yokoi et al., 2015). Recently, a novel marker elimination system
was developed wherein the excision is based on I-SceI
recognition site. By overlapping this recognition site on 5′
and 3′ homology arms of the DRT, seamless marker
elimination and precise GT have been achieved (Endo et al.,
2021). To this end, the same research group also developed a
piggyBac-mediated transgenesis system to temporarily express
CRISPR and selection marker cassettes from T-DNA with
subsequent excision of piggyBac via transposase after
successful editing and selection had occurred (Nishizawa-
Yokoi and Toki, 2021).

FIGURE 1 | movement. The viral cassette is manipulated to express a Cas9 nuclease and a tRNA-gRNA-tRNA (tgtRNA) which is processed to release the sgRNA
targeting the PDS gene by tRNA processing enzymes. Soil grown plants are infiltrated with agrobacterium harboring the SYNV plasmid. Explants from systemically
infected leaves are prepared and placed on non-selective regeneration medium. Regenerants are then transferred to soil. Since Cas9 is delivered virally and SYNV does
not integrate into the host genome nor have a DNA-phase, the resulting plants are non-transgenic.
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FIGURE 2 | Biomolecules delivered via biolistics and protoplast transfections for regenerating gene-edited plants. (A) Biomolecules used for gene-editing are
delivered into plants cells in a variety of forms including plasmid DNA, ssDNA, mRNA or ssRNA, prepared via in vitro transcription (IVT), and preassembled ribonucleic
proteins (RNPs) using IVTs and recombinant proteins. Targeted mutagenesis and gene targeting (GT) can be enhanced by various mechanisms. For example, fusion of
Cas9 to VirD2, one component of the agrobacterium relaxosome complex integral to the cleavage of T-DNA from the Ti plasmid, as well as its localization and
integration in the plant genome, has been shown to increase homology-directed repair (HDR) mediated GT using a donor repair template (DRT). DRT in this case is a
single stranded DNA (ssDNA) harboring the desired edits (red) and the canonical 25 bp right border (RB) sequence (green), and is delivered to the plant cell along with the
Cas-VirD2 fusion protein. VirD2 will covalently bind the template, thus bringing it in close proximity to the DSB induced by Cas9. Delivering Trex2 exonuclease has also
been shown to increase HDR as well as the efficiency of multiplex editing when sgRNA are co-delivered and processed by t-RNA system, illustrated by green boxes
between sgRNA. p = phosphorylation. (B) Particle bombardment or biolistics, rely on the physical disruption of plant cell walls by metal particles, often gold, coated with
ssDNA or dsDNA, IVTs or RNPs, which are introduced to the cell. Bombarded explants can be regenerated in tissue culture with or without selection to recover gene

(Continued )
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Biolistics for Delivery of CRISPR Reagents
Into Plants as DNA, RNA, or Proteins
Biolistics or particle-bombardment, is a common alternative for
transforming plants recalcitrant to Agrobacterium-infection. It
relies on physically breaching the plant cell wall and membrane
with gold or tungsten microprojectiles coated with biomolecules
accelerated to very high velocities. Biolistics offers the possibility of
delivering a variety of cargo including plasmid DNA, ssDNA, RNA,
or ribonucleic proteins (RNPs) assembled from IVTs and
recombinant proteins (Figure 2A). Major drawbacks of biolistic
delivery include random integration of cargo at multiple genomic
sites when delivered as DNA and labor-intensive preparation of
explants such as calli or immature embryos with the capability to
regenerate.

Advances in Biolistic Delivery for DNA-free
Gene-Editing and Chromosome
Engineering
Instead of plasmid DNA, bombarding RNPs was successfully
demonstrated to produce transgene-free gene-edited lines in
cereal crops (Svitashev et al., 2016; Liang et al., 2017; Banakar
et al., 2019, 2020; Zhang et al., 2021) (Figure 2B). In addition,
when a single base pair mismatch was present in the protospacer of
sgRNA targeting homeologs, a dramatic decrease in off-target
editing was observed with RNPs as compared to plasmid DNA
delivery indicating high specificity of RNPs (Liang et al., 2017).
Furthermore, RNPs also facilitated large heritable inversion of
75.5Mb in maize chromosome 2, when assembled with guide
RNAs flanking the junctions of the desired inversion (Schwartz
et al., 2020). Such precise chromosomal engineering in invaluable to
crop breeding. To avoid labor-intensive preparation of explants, in
planta biolistic delivery using SAM as a target tissue (Hamada et al.,
2017) for germline transmission was employed as an alternative
(Hamada et al., 2018; Imai et al., 2020). Embryonic SAM exposed
mature wheat seeds were bombarded with plasmid DNA expressing
CRISPR cassettes to generate gene-edited lines (Hamada et al., 2018;
Imai et al., 2020). Alternatively, when pollen was used as a target
tissue to bombard plasmid DNA for gene-editing in Nicotiana
benthamiana, the bombarded pollen retained fertility and
delivered the cargo into the ovules (Nagahara et al., 2021).
Furthermore, technical improvements have also been made to
overcome variability between bombardments. A double-barreled
gene gun in combination with cell counting software was
developed to scale bombardment experiments with an internal
standard, thereby reducing standard deviation between
bombardments by half (Miller et al., 2021).

Gene Insertion or Replacement by Intron
Targeting and Determining Genomic Safe
Harbors
To leverage the relatively more efficient NHEJ compared to
HDR for targeted insertions, DNA fragments were inserted in
selected introns such that any mutations by NHEJ would not
affect protein-coding sequences of either endogenous or
inserted genes. By bombarding calli with plasmids
expressing pairs of sgRNA targeting adjacent introns of
target genes and DRT harboring desired mutations flanked
by the same intronic sgRNA sites, replacement of endogenous
gene has been achieved at 2% frequency. Additionally, the
gene replacement events were heritable (Li et al., 2016).
Enhancers and promoters up to 2 Kb were introduced into
the target site using these modified DRTs (Lu et al., 2020).
Another strategy for targeted insertion by NHEJ is to
determine the genomic safe harbors (GSH) in the host
plant genome, within which integrations of transgenes do
not cause any genic disruptions or adverse morphological
effects. A 5.2 Kb carotenoid biosynthesis cassette was inserted
at targeted GSH to generate marker-free rice with high
carotenoid containing seeds and no-off target mutations
observed (Dong et al., 2020).

Enhancing HDR by Delivery of
Transcript-Donor Templates or by
VirD2 Relaxase-Cas9 Fusion
Recent advances in HDR by particle bombardment include
delivery of ssDNA, including a canonical 25 bp right border
(RB) sequence of T-DNA, as DRT co-delivered with a plasmid
expressing Cas9-VirD2 fusion protein (Ali et al., 2020)
(Figure 2A). Achieving a 20.8% HDR efficiency, this method
relies on the ability of the VirD2 protein, an Agrobacterium
virulence factor, to covalently bind the RB of DRT, thus
bringing it in close proximity to the DSB induced by Cas9
(Figure 2A) (Ali et al., 2020). Other attempts to improve
HDR include the delivery of DRT as transcripts. RNA-DRT
was shown to result in higher HDR efficiency than DNA-DRT
when delivered to rice calli, possibly due to the high stability of
RNA:DNA complexes, resulting in edited rice with two desired
point mutations in the ALS gene conferring herbicide tolerance
(Li et al., 2019). This transcript-templated HDR (TT-HDR),
approach improves not only HDR efficiency but also creates a
DNA-free path to HDR-mediated gene-editing, which may avoid
regulatory hurdles.

FIGURE 2 | edited plants. Au = gold particles. (C) Protoplast transfection and regeneration is shown. polyethylene glycol (PEG) mediated transfection is the most
common way to deliver biomolecules for gene-editing to protoplasts. Post transfection, protoplasts are immobilized on culture media where protoplasts undergo cell
divisions to formmicrocalli, followed by shoot and root formation and finally resulting in regeneration of entire gene-edited plants. Editing at the target site is confirmed by
sequencing represented in the chromatogram * = deletions.
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Protoplasts Provide a Versatile System for
DNA-free Genome Editing in Plants
Protoplasts are plant cells devoid of cell walls, which offer a
versatile platform for DNA-free GE and a good transient system
to evaluate the activity of gene-editing reagents before moving
into a more-labor intensive transformation pipeline
(Nadakuduti et al., 2019; Lin et al., 2020). Polyethylene glycol
(PEG)-mediated transfection and electro-transfection are two
common methods to deliver plasmid DNA, IVTs, or RNPs into
protoplasts for transient expression of CRISPR cassettes.
Subsequently, edited plants can be regenerated from
transfected protoplasts by tissue culture procedures
(Figure 2C). Plasmid DNA may integrate into the host
genome randomly as filler DNA during protoplast
transfection (Gorbunova and Levy, 1997; Kim and Kim,
2016). However, IVTs or RNPs offer DNA-free gene-editing
by immediately editing the target site, bypassing transcription
and translational machinery respectively in the cell and rapidly
degrade (Liang et al., 2017, 2018; Andersson et al., 2018;
González et al., 2020, 2020, 2020; Lee et al., 2020; Sidorov
et al., 2021; Zhang et al., 2021). However, plant regeneration
from protoplast remains unestablished in many plant species. In
addition, somaclonal variations and genome instability is
reported in regenerated lines (Fossi et al., 2019). Once
efficient protoplast isolation, transfection, and regeneration
have been established in a plant species, it could be a high
throughput platform by combining with flow cytometry and
omic analyses for optimizing gene-editing. Furthermore,
multiplexing, editing multiple genes at a time has been
achieved using protoplasts (Klimek-Chodacka et al., 2021;
Nicolia et al., 2021; Yu et al., 2021; Zhang et al., 2021). By
co-delivering Three Prime Repair exonuclease 2 (TREX2) and
CRISPR/Cas9 into protoplasts, targeted mutagenesis using a
multiplexing strategy was further improved (Weiss et al., 2020)
(Figure 2A).

Nanocarrier-Mediated Delivery of CRISPR/
Cas Reagents in Plants
Nanotechnology has evolved in the past decade in the field of
plant genetic engineering. Nanomaterials including carbon
nanotubes (CNTs), carbondots, mesosporous silicon
nanoparticles (MSNs) etc have been used to deliver
biomolecules such as DNA, RNA, RNPs and proteins etc.,
discussed in recent reviews (Kumari and Singh, 2021; Mujtaba
et al., 2021). Nanoparticle-mediated delivery of DNA and
proteins into both nuclear and chloroplast genomes has been
achieved in plants (Demirer et al., 2019, 2020; Kwak et al., 2019).
Furthermore, Cre protein was previously delivered via MSNs for
maize GE via loxP site demonstrating the feasibility of gene-
editing (Martin-Ortigosa et al., 2014). Gene-editing using RNPs
delivered by nanoparticles has been achieved in human cells
(Wang et al., 2016; Lee et al., 2017; Mout et al., 2017). However, it
has yet to be achieved in plants mainly due to high delivery
efficiencies required for GE.

Future Aspects of Delivering Plant-Gene
Editing Reagents
Relying on tissue culture-based plant genetic transformationmethods
and inefficient reagent delivery mechanisms are the major bottle
necks to overcome before we realize the full potential of gene-editing
in plants. Current advancements in delivery mechanisms, including
de novo meristem induction or use of viral vectors to circumvent
tissue culture, rely on Agrobacterium for delivery and have been
demonstrated only in dicots and need to be expanded to monocots.
Delivering repair templates for HDR through these innovative
methods is also a future possibility. Furthermore, smaller sized
Cas9 alternatives would overcome the cargo capacity of some of
these viral vectors. Agrobacterium, however, has a narrow host range
for infection and several species are recalcitrant to Agrobacterium
transformation. Particle bombardment has been shown to be better
equipped for co-delivery of cargo for simultaneous editing than
Agrobacterium and is universally applicable to all plant species
and cell types (Kuang et al., 2020). Chromosomal inversions
achieved via bombardment could revolutionize breeding by
unlocking regions for chromosomal cross overs, creating novel
linkage groups and facilitating targeted recombination to
maximize genetic gain in crops. However, complex segregation
patterns of DNA integrated in bombarded plant genomes might
complicate downstream uses of transformed plants. Agrobacterium
and biolistic transformation of pollen also bypasses regeneration but
often results in pollen with lower viability (Wang et al., 2008; Zhao
et al., 2017). In addition, pollen-tube transformations may result in
chimerism (Ali A. et al., 2015). While pollen magnetofection has
improved on these drawbacks (Zhao et al., 2017), its application
remains constrained to dicots (Vejlupkova et al., 2020). The prospects
of nanoparticles as delivery engines for plant genome editing are also
encouraging (Demirer et al., 2021) and further advances are essential
to facilitate plant gene-editing.
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