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Cluster-type analogue memristor by engineering
redox dynamics for high-performance
neuromorphic computing
Jaehyun Kang 1,2, Taeyoon Kim 1, Suman Hu1, Jaewook Kim1, Joon Young Kwak 1, Jongkil Park1,

Jong Keuk Park1, Inho Kim1, Suyoun Lee 1, Sangbum Kim 2 & YeonJoo Jeong 1✉

Memristors, or memristive devices, have attracted tremendous interest in neuromorphic

hardware implementation. However, the high electric-field dependence in conventional fila-

mentary memristors results in either digital-like conductance updates or gradual switching

only in a limited dynamic range. Here, we address the switching parameter, the reduction

probability of Ag cations in the switching medium, and ultimately demonstrate a cluster-type

analogue memristor. Ti nanoclusters are embedded into densified amorphous Si for the

following reasons: low standard reduction potential, thermodynamic miscibility with Si, and

alloy formation with Ag. These Ti clusters effectively induce the electrochemical reduction

activity of Ag cations and allow linear potentiation/depression in tandem with a large con-

ductance range (~244) and long data retention (~99% at 1 hour). Moreover, according to the

reduction potentials of incorporated metals (Pt, Ta, W, and Ti), the extent of linearity

improvement is selectively tuneable. Image processing simulation proves that the Ti4.8%:a-Si

device can fully function with high accuracy as an ideal synaptic model.
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After the experimental demonstration of the two-terminal
metal-insulator-metal (MIM) structure memristive system
in 20081, extensive research on nanoscale resistive switching

devices has been conducted in diverse fields of application, from
digital-based logic and memory2–5 to analogue-based artificial
synaptic elements for neuromorphic computing6–10. The crossbar-
structured memristors or memristive devices (throughout the paper,
we use the term “memristor” to refer to a memristive device in short)
in Fig. 1a exhibited prospective capabilities in computing tasks, such
as signal processing and image recognition with experimental
demonstrations4,11,12. Conductive-bridge random access memory
(CBRAM) is a type of memristor which utilises the redox and ion
migration process of active metals to form or rupture conductive
filaments (CFs), resulting in resistance changes2,8,13. The engineering
of various materials and structures of CBRAMhas been attempted to

improve its characteristics after the early demonstration of analogue
synaptic behaviours10; switching performance variation was mini-
mised by the one-dimensional CF confinement effect9, sub-
femtojoule power consumption was achieved by the formation of
atomically thin CF14, and retention time was improved through
filament interfacial energy stabilisation15. However, limited
improvements have been made for analogue linearity and dynamic
range, only showing on/off ratios typically less than 10 in the ana-
logue switching region16. Few studies achieved high on/off ratios in
analogue CBRAM by applying large voltage pulses, yet the linearity
significantly deteriorated to almost digital-like switching9,17–19. This
trade-off between linearity and on/off ratio strongly originates from
the positive feedback effect in an electric field during the filament
growth process, where the electric field induces exponential ionic
migration toward the depleted filament region2,13,20–22. Amemristor
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Fig. 1 The effect of cluster-type switching dynamics in analogue linearity. a Microscopic image of an a-Si synaptic memristor (left inset: scanning
electron microscopy (SEM) image of crossbar structure, right inset: illustrated biological synapse). Device schematics with operation mechanism
illustration for each memristor situation, b high cation mobility (μ) case for a-Si (pristine) device, c low μ case for a-Si (densified) device, and d low μ and
high Ag reduction probability (ΓredAg) case for Ti4.8%:a-Si device. Grey, blue, green, and red spheres represent Ag atoms, Ag ions, Ti atoms, and electrons,
respectively. EφAg and EφTi represent standard reduction potentials of Ag and Ti. Analogue conductance updates under three different pulse conditions
(blue: 0.6/−0.6 V, green: 0.8/−0.8 V, red: 1/−1 V with 1 μs duration for potentiation/depression) in e a-Si (pristine), f a-Si (densified), g Ti4.8%:a-Si
devices. The conductance was measured with a read pulse (0.1 V, 1 μs) after each programming pulse. h Average potentiation and i depression nonlinearity
factors of a-Si (pristine), a-Si (densified), and Ti4.8%:a-Si memristors for ten-cycle at each pulse condition.
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with a linear conductance update and a large on/off ratio is highly
challenging to realise and yet to be developed but is desired for
superior performance in neuromorphic computing4,6,16.

In this work, we propose a cluster-type analogue CBRAM in
which the switching is dependent on the amount of Ag-clusters
instead of filament formation, expecting a significant reduction of
feedback effect in an electric field. The essence of the study is to
control the redox dynamics of active metals, rendering Ag cations
to be reduced inside the amorphous Si (a-Si) switching medium
rather than in the a-Si/counter electrode interface. We first densely
packed a-Si to limit the ionic diffusion pathways and further con-
ceived a unique reducing agent concept to enlarge the Ag reduction
probability in the a-Si layer. This goal was achieved without addi-
tional structural complexity by incorporating transition-metal (TM)
nanoclusters inside the Si medium. Ti was chosen for satisfying the
following three requirements: lower standard reduction potential
(Eφ) than Ag to favourably give away its electrons to Ag cations, the
presence of TM-silicide to prevent TM-based resistive switching,
and alloy formation with Ag. The densified Ti4.8%:a-Si CBRAM
exhibited near-ideal linearity, increased on/off ratio, and long data
retention. The nucleated Ag particles in the Ti4.8%:a-Si layer were
visualised through field-emission transmission electron microscopy
(TEM). The proposed mechanism was further verified by exam-
ining various metals having different Eφ, such as Pt, W, and Ta.
Finally, we simulated two image processing tasks based on our
Ti4.8%:a-Si device characteristics to demonstrate comparable data
processing ability to the ideal case.

Results
Cluster-type memristor by engineering reduction probability.
It is widely known that packing densities of amorphous switching
matrix critically influence the cationic transport process of
CBRAM2,5,23; low-density amorphous films demonstrate high
cation mobility (μ), where the injected cations reach the counter
electrode in a short time and reduce at the surface of the counter
electrode2,3,5,23,24. This typical filament formationmechanism can be
modulated in densely packed amorphous materials with lower μ23,25.
Cations can recombine inside the dielectric at a higher probability by
capturing the free electrons from the cathode, building metal clusters
rather than filaments. The cluster-type may improve the analogue
linearity due to its smaller feedback effect in electric-field than in the
filament-based CBRAM. Based on these postulations, we fabricated
two different microstructures of a-Si CBRAM with Ag as an active
metal (Fig. 1b, c) to verify the hypothesis. Considering the wide
amorphous density range of a-Si (1.75–2.2 g cm−3)26,27, we fabri-
cated pristine and densified 7-nm-thick a-Si CBRAM. First, the a-Si
(pristine) device showed 16.3% less density (1.95 g cm−3, Supple-
mentary Fig. 3) than crystal silicon density (2.33 g cm−3)26,27 due to
disordered micro-voids and grain boundaries which can offer fast
ion migration pathways with high μ. Hence, the conventional fila-
ment growth dynamics apply to the a-Si (pristine) device as depicted
in Fig. 1b, where the CF grows from the counter electrode and
inherently possesses strong positive feedback in the local electric
field13,20,21, resulting in abrupt resistive switching. We speculate that
this filament-based switching process critically deteriorates linear
switching properties. To characterise the analogue switching of the
a-Si (pristine) device, we applied three different sets of 200 poten-
tiation/depression (P/D) identical programming pulse trains (0.6/
−0.6, 0.8/−0.8, and 1/−1 V, 1 μs) to the top electrode (VTE). As
expected, the analogue performance of the a-Si (pristine) device
displayed a highly nonlinear conductance update even at the lowest
pulse bias condition (Fig. 1e), and the trade-off relationship between
linearity and on/off ratio was clearly marked. As pulse amplitude
changed from 0.6/−0.6 to 1/−1 V, the dynamic range was enhanced,
whereas the linearity indicator (ν) for each P (νP) and D (νD)

averaging from the ten-cycle measurement degraded, as summarised
in Fig. 1h, i (see Methods for the ν calculation and Supplementary
Fig. 4 for ten-P/D-cycle). Therefore, through simple pulse engi-
neering, it is difficult to achieve both the linear analogue update and a
large dynamic range simultaneously in a filament-based memristor.
In contrast, the a-Si (densified) memristor was fabricated with only
3.0% less density (2.26 g cm−3, Supplementary Fig. 3) than c-Si. We
speculate that the densely packed Si clusters with slow ion migration
ensure Ag cations to possess a more temporal margin to capture
incoming free electrons from the cathode, and accordingly, the a-Si
(densified) device acts for a low μ (Fig. 1c) situation, which creates
Ag-clusters in the a-Si layer. At the same pulse condition, the a-Si
(densified) device showed considerably linear switching (Fig. 1f),
with a 65.7% decreased average νP than a-Si (pristine) device at 1/
−1 V pulse (Fig. 1h, i). The limited ionic transport channel in the
a-Si (densified) device effectively lessened the accumulation of Ag in
the counter electrode through its recombination inside the Si med-
ium. This partially relieved the positive feedback effect that influ-
enced the nonlinear analogue switching.

Despite the enhanced analogue linearity performance, the a-Si
(densified) device still suffered from nonlinear conductance update
issues at high pulse amplitude, which is essential to achieving a high
dynamic range. To further control and enlarge the Ag cation
reduction capability inside the Si matrix, we suggest an approach
that regulates the reduction probability of cations during the
switching process. We examined TM elements that possess low
(negative) Eφ to enable the transfer of electrons from TM-clusters to
Ag cations. Ag cations can be possibly reduced through interfacial
charge-transfer processes mediated by the TM reducing agents28,29.
Here, we integrated Ti atoms in a densified a-Si layer for its much
lower Eφ value (EφTi=−1.63 V) than Ag (EφAg=+0.8 V), which
can capture and reducemigrating Ag cations to Ag-clusters (The Eφ

values used in this paper were taken from ref. 30). This large
reduction potential difference—ΔEφAg-Ti value of 2.43 V—effec-
tively increases the reduction probability of Ag cations in a-Si
medium, and accordingly, the Ti4.8%:a-Si device in Fig. 1d
represents a low μ and high Ag reduction probability (ΓredAg)
situation. We finely tuned the Ti amount in a densified a-Si layer so
as not to affect the initial resistance state of the device (see Methods
for details), and the Ti ratio of 4.8% in a-Si film was measured by
X-ray photoelectron spectroscopy (XPS) measurements. As shown
in Fig. 1g, the Ti4.8%:a-Si device exhibited an almost ideally linear
switching with 0.89 average νP at 0.6/−0.6 V pulse condition
(Fig. 1h, i). To confirm that the resistive switching was solely driven
by Ag ion migration, not by the incorporated Ti elements, Ti4.8%:a-
Si device without an Ag layer in the top electrode was tested by
multiple quasi-static current-voltage (I-V) sweeps, where the
resistive switching was not observed (Supplementary Fig. 5). We
believe that due to the thermodynamically stable Ti-Si cluster31,32,
the formation of silicide solely assures Ag-based analogue switch-
ing. It is notable that in the aforementioned a-Si (densified) device,
we utilised less controllable free electrons injected from the cathode
for the Ag cation reduction. In contrast, the new approach uses
electrons of Ti, and the recombination probability can be
modulated with higher flexibility by changing the amount of Ti
or other TMs possessing different Eφ. These mechanisms of cluster-
type analogue switching certainly lessened the positive feedback
effect of an electric field and resolved the chronic trade-off problem
(linearity and on/off ratio) of most filament-based CBRAMs, as
shown in Supplementary Fig. 6, maintaining an exceptionally low
nonlinearity factor at all pulse amplitudes.

Advanced analogue characteristics and direct microstructure
analysis of the Ti4.8%:a-Si memristor. Accomplishing a high
on/off ratio is another important factor to enable as many
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distinguishable conductance levels as with a practical sensing circuit
and, at the same time, to secure improved noise margin of a neu-
romorphic system4,6,16. In Fig. 1e–g, all the analogue measurements
were done by fixing the minimum conductance levels (Gmin) to
0.1mS to ensure a fair comparison in different devices, and there-
fore, the Ti4.8%:a-Si device only showed a part of its available ana-
logue dynamic range. As shown in Fig. 2a, the Ti4.8%:a-Si device
realised a tremendously high analogue on/off ratio of 244 (1.1/
−1.1 V, 1 μs), along with a linear conductance update (νP= 2.28
and νD= 2.46). Therefore, the conductance can be gradually
updated by more than two orders of magnitude, and the cluster-type
switching dynamics are believed to be maintained throughout the
wide conductance range in the Ti4.8%:a-Si device. The resistive
switching characteristic of the Ti4.8%:a-Si device was also observed in
the quasi-static I-V curve after the forming process (Fig. 2b).
Interestingly, the I-V set/reset processes in the Ti4.8%:a-Si device
contrasted with much more abrupt I-V set/reset processes occurring
in the a-Si (pristine) device (Supplementary Fig. 1a). To our best
knowledge, the two main features of analogue devices—the linear
switching performance and the large dynamic range of Ti4.8%:a-Si
device—display a clear deviation from the previously reported
Ag9,10,15,17,18,33–43- and Cu44,45-based analogue CBRAM (Fig. 2c).
These outstanding analogue properties prove the remarkable effec-
tiveness of the proposed cluster-type analogue switching.

Endurance, variation, and retention are the key measurements for
the reliability of a synaptic device that have been studied in various
analogue resistive switching devices4,6,16,46. As shown in Fig. 2d, the
Ti4.8%:a-Si device was tested through a total of 6000 programming
pulses of repeated 200 P/D. We also present ten-cycle P/D switching
as a box plot, extracting intermediate conductance states at specific
pulse numbers (Fig. 2e) and device-to-device variation along with
standard deviation (s.d.) at each P/D pulse number (Supplementary
Fig. 7). In terms of retention performance, our Ti-assisted device

demonstrated substantially long-term data stability at a maximum
conductance state (Gmax) after potentiation (Fig. 2f). Owing to
thermodynamic immiscibility between Ag and Si47, Ag filament
stochastically dissolved in a-Si (pristine) matrix, and after an hour of
retention test, the device showed 69.3% conductance decay from its
initial state. Given the situation of the a-Si (densified) device, the
improved data retention of a 42.86% decay was attributed to the
lower μ that slowed down the Ag filament dissolution process.
Regarding the Ag-Ti phase diagram48, we anticipated Ti-clusters to
easily form an Ag-Ti alloy and stabilise the high interfacial energy of
Ag in the Si matrix. Indeed, as shown in Fig. 2f, Ti4.8%:a-Si device
outstood in the data retention performance with only 1.1%
conductance decay after an hour at room temperature. More
importantly, the Ti4.8%:a-Si device sustained considerably low
conductance decay percentage at multi-conductance levels at room
temperature and demonstrated stable retention performance with
elevated temperatures (100 °C, 150 °C, and 200 °C) at low-, mid-,
and high-conductance levels (Supplementary Fig. 8). We conclude
that exploiting the thermodynamic miscibility between active metal
and incorporated reducing agent is desirable to extend the stability
of stored analogue data15. Therefore, we have devised a cluster-type
CBRAM that exhibits superior analogue performance in linearity,
dynamic range, and data retention. Our findings can guide the way
for the further development of analogue synaptic memristors.

To directly observe the Ag nucleation inside the a-Si layer, we
performed a bright-field TEM imaging before/after programming
the Ti4.8%:a-Si devices. The TEM specimens were prepared by
focused-ion-beam (FIB) lift-out and thinning processes. As
shown in Fig. 3a, TEM images taken after programming
successfully revealed our hypothesis on the Ag-cluster nucleation
inside the dielectric layer in the Ti4.8%:a-Si device. The lattice
fringes in the fast Fourier transform, which results from the high-
resolution TEM image of Ag-cluster in the a-Si layer could be
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resolved to Ag (200) crystal planes (Supplementary Fig. 11).
These images demonstrate that the active electrode has been
oxidised and inserted into a switching medium to increase the
device conductance, facilitated by electrical pulses. Unlike
conventional CBRAMs, the Ag-clusters are not accumulated on
a counter electrode interface but rather nucleated within the Si
matrix due to the electrochemical reduction of migrating Ag
cations promoted by Ti nanoparticles. The same bright-field TEM
imaging of the a-Si (pristine) device was also performed, and the
visible filament protrusion was created at the inert electrode
interface, shortening the effective distance between the two
electrodes (Supplementary Fig. 10). We additionally certified the
conditions for Ti to reliably operate as a reducing agent for Ag
cations. First, the presence of Ti silicide in the Ti4.8%:a-Si device
was confirmed by XPS measurements (Fig. 3b). We deposited a
Ti4.8%:a-Si film that was deposited in the same condition as the
device fabrication procedure and compared the Ti 2p3/2 spectrum
with the metallic Ti film. The Ti 2p3/2 maximum of Ti4.8%:a-Si
sample certainly shifted by 0.3–0.4 eV from metallic Ti 2p3/2
maximum, a general chemical shift observed between Ti silicide
and metallic Ti32,49. The XPS characterisation technique has been
used in subsequent studies for the electron transfer process from
Ti to Ag. As shown in Fig. 3c, Ti0+ clusters (red area) were found
to be successfully oxidised to Tin+ states, as the Ag/Ti ratio
increased from 0 to 6.8 in Ag-Ti-Si co-sputtered films that have
been deposited in the same condition as the device fabrication
procedure. Without the incorporation of Ag, almost 50.1% of the
Ti silicide clusters existed in the Ti0+ state; however, none of the
Ti0+ counts was discovered in the Ag/Ti= 6.8 ratio sample
(Fig. 3d). These XPS results denote the capability of Ti as a
reducing agent for Ag, owing to its low Eφ.

Correlation between the reduction activity and the extent of
analogue linearity improvement. In Fig. 4, we tested different
metals incorporated into the a-Si (densified) CBRAM to reinforce

our theory about analogue performance improvement by effi-
ciently reducing Ag cations. We investigated Pt, W, and Ta binary
compound metals of silicon with moderately different Eφ values
(Fig. 4a)30 in order to identify the tendency between Eφ and
analogue linearity performance experimentally. After setting
equivalent initial conductance, we characterised the analogue
switching properties (1/−1 V, 1 μs). As shown in Fig. 4b, we
referenced the previous data of a-Si (densified) and Ti4.8%:a-Si at
1/−1 V pulse condition and observed a direct contrast in
switching linearity through M:a-Si (M= Pt, W, Ta, and Ti)
devices. First, the Pt has a very high (positive) Eφ value (EφPt=
1.18 V) than Ag, prohibiting the electron transfer from Pt-
clusters to Ag. This is completely opposite to our postulation,
where the inserted metal clusters must act as a reducing agent for
Ag cations. Thus, as shown in Fig. 4c, d, the average ν of the Pt:a-
Si device was similar to or even worse than that of the a-Si
(densified) device for both P/D. On the other hand, W and Ta
show lower Eφ values than Ag (EφW= 0.1 V and EφTa=−0.6 V),
e.g. ΔEφ values of 0.7 V (ΔEφAg-W) and 1.4 V (ΔEφAg-Ta),
respectively. Hence, such metals can serve as effective reducing
agents, transferring electrons from metal clusters to Ag cations as
in the Ti4.8%:a-Si device, where they demonstrated better linearity
than a-Si (densified) device. Interestingly, from the results using
various metal elements, the average ν from the ten-cycle showed a
clear relationship with ΔEφ, where the larger ΔEφ (Pt <W <
Ta < Ti) produced much-improved linearity (Fig. 4c, d and
Supplementary Fig. 14 for ten-P/D-cycle). The trend again con-
firms the validity of our idea, and more importantly, it implies
that the linearity is now an adjustable parameter—from a more
abrupt switching to a more gradual update depending on the Eφ

of inserted metals. In terms of analogue data retention of M:a-Si
(M= Pt, W, and Ta) devices, Pt, W, and Ta metals exhibit a large
degree of thermodynamic instability with Ag50–52, which resulted
in poor retention compared to Ti4.8%:a-Si device (Fig. 4e). The
increased data stability through reduced interfacial energy
between Si and Ag-Ti alloy could not be found in M:a-Si (M= Pt,
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W, and Ta) devices. Furthermore, M:a-Si (M= Pt, W, and Ta)
devices without an Ag electrode layer do not exhibit resistive
switching in multiple I-V sweeps (Supplementary Fig. 15), which
again guarantees that Ag is the only mobile element in the Si
matrix when applying around 1/−1 V. Following our design
criteria, Ti was the ideal element to drive cluster-based analogue
switching regarding low Eφ, fully miscible with Si and Ag.

Feature extraction task using sparse coding with the experi-
mentally measured analogue characteristics of memristor
device. Based on the experimental nonlinearity values extracted
by the nonlinearity value calculation process (see Methods for
details) of our memristor devices, we simulated a feature
extraction task that consists of two stages: training features in
receptive fields by stochastic gradient descent (SGD) algorithm
and identifying a sparse representation of trained features using
the locally competitive algorithm (LCA) (see Methods for simu-
lation details)53. Sparse coding is a powerful algorithm reducing
data dimension by extracting principal features. The algorithm
underlies higher-level cognitive functions of biological neural
systems54 and is highly compatible with the crossbar array11. In
Fig. 5a, the images used for training the receptive fields, the
trained receptive fields with the ideal (ν= 0) case, and the
Ti4.8%:a-Si device case are presented. Throughout the receptive
field learning by SGD, a learning rate parameter (β) value of
0.0004 is used. A feature extraction task is then performed using
these receptive fields, and after separating the natural colour

image using a red-green-blue (RGB) filter, the LCA is applied
(Fig. 5b). During this task, the 140 × 140 resolution natural image
is broken into 20 × 20 pixel patches each. The time constant
parameter (τ) value of 0.008 is used during the feature extraction
task by LCA. With these parameter settings, we compared the
sparsity (L0-norm, number of active neurons) and mean squared
error (MSE) results for various threshold (λ) values. Here, the
optimal result of the sparse coding application is conditioned by
high sparsity (low L0-norm) and low MSE. At the beginning of
the iteration, membrane potentials of the neurons oscillated due
to the competition of similar features; however, in the end, only a
few features became winners and stabilised the final sparsity
(Fig. 5c). MSE results are summarised in Fig. 5d, where the
Ti4.8%:a-Si device case successfully demonstrated much higher
reconstruction accuracy than that of the a-Si (pristine) device
case, which is close to an ideal case. The reconstructed input
images using the sparse codes and feature matrix are shown in
Fig. 5e, where the Ti4.8%:a-Si device case can reproduce com-
parable L0-norm and MSE images to the ideal case at the identical
λ value. We further verified the excellence of our Ti4.8%:a-Si
device by a classification simulation using the Modified National
Institute of Standards and Technology (MNIST) dataset (Sup-
plementary Fig. 18).

Discussion
In this study, we suggest a cluster-type CBRAM with highly
enhanced synapse characteristics. The maximised reduction
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probability of Ag cations inside the a-Si enables the formation of
clusters instead of conducting filament and helps relieve the lin-
earity and on/off ratio trade-off issue, allowing linear potentiation/
depression and a large conductance range (~244). In addition, the
intermetallic compound formation with the Ag filament further
accomplishes long-term data stability (~99% at 1 h). The degree of
electrochemical interactivity between Ag cation and silicide metals
was well controlled through the manageable physical parameter—
Eφ values of inserted metals (Pt, W, Ta, and Ti)—which paves the
way to tailoring the desirable linearity for various applications.
With these analogue performances, the Ti4.8%:a-Si device func-
tioned well in memristor-based image processing algorithms. We
conclude by noting that the extent of reduction activity is closely
related to the analogue linearity performance. We believe our
results further broaden our fundamental understanding of the
resistive switching mechanism in CBRAM. In addition, our
engineering strategy is capable of being applied to other

memristors with different material systems to achieve high-
performance in neuromorphic computing applications.

Methods
Device fabrication. The two-terminal metal-insulator-metal crossbar memristor
devices were fabricated on a p-type (100) Si wafer with 200 nm SiO2. All layers
were crossbar patterned with the double-layered photoresist (LOR 2 A+AZ 5214
E) by photolithography with 4 × 4 μm2 in cell size. The bottom electrode, com-
posed of 3 nm Ti adhesion layer and 27 nm Au layer, was deposited by electron-
beam evaporation on Si/SiO2 substrate, followed by a lift-off process with acetone
and developer (AZ 300 MIF). After switching layer patterning, the 7 nm thick
pristine a-Si film was deposited by radio frequency (RF) sputtering a Si target at
20W and room substrate temperature. The densified a-Si film was deposited by RF
sputtering an identical Si target at 70W and 350 °C substrate temperature with a
post rapid thermal annealing (RTA) process at 350 °C for 5 min in the Ar atmo-
sphere. The M:a-Si (M= Pt, W, Ta, and Ti) layers were deposited by RF co-
sputtering a-Si with M targets at 70W of Si and 15W of M, keeping the 350 °C
deposition temperature. The identical post RTA process was also performed in
M:a-Si layers. In all devices, the switching layers of the memristors were observed
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to keep the 7 nm thickness, and the post RTA process was performed after the lift-
off process with Microresist, mr-REM 700 solution. Without breaking the vacuum,
the top electrode of 10 nm of Ag and 40 nm of the protective layer of Pt were
deposited with RF sputtering the Ag and Pt targets at 30W, with a subsequent lift-
off process in mr-REM 700. All the RF sputtering processes were done after
reaching a base pressure of 2 × 10−7 Torr or less and under a working pressure of 3
mTorr in the Ar atmosphere.

Electrical measurement. Quasi-static current-voltage (I-V) measurements were
performed by Keithley 4200A-SCS with a source measure unit (SMU). The repe-
titive voltage bias was applied to the crossbar patterned top electrode while the
bottom electrode was grounded. The compliance current was set to 1 mA during
the forming and set I-V sweeps. Analogue retention characteristics were carried out
by a read voltage of 0.1 V after applying potentiation pulses. Analogue switching
characteristics of memristors were executed in Keithley 4200A-SCS with a pulse
measure unit (PMU). The devices were pre-formed before the analogue mea-
surement. All programming and read pulse widths were 1 μs, and potentiation and
depression pulse amplitudes were set identically with opposite polarity, ranging
from 0.6/−0.6 to 1.1/−1.1 V. The read voltage pulse of 0.1 V was directly applied
after programming pulses to measure the conductance update without affecting the
conductance state of the memristor.

Nonlinearity value calculation. The ideal linearity is defined as a state where the
change in conductance update due to potentiation/depression pulse does not
depend on the current conductance state of the device. To quantify such linear
characteristics in potentiation and depression, the nonlinearity values (ν) were
extracted using the following equations55:

GP ¼ G1 1� e�νPN
� �þ Gmin ð1Þ

GD ¼ Gmax � G1 1� e�νD Nmax�Nð Þh i
ð2Þ

G1 ¼
Gmax � Gmin

1� e�νNmax
ð3Þ

Here, GP and GD are the conductance for each potentiation and depression given
by the above equations. Gmax and Gmin are the maximum and minimum con-
ductance states, respectively. N and Nmax are the normalised pulse number and
maximum normalised pulse number, respectively, the latter of which is 1. G1 is the
function of ν in order to fit (normalise) the GP and GD functions within the range
of Gmax, Gmin, and Nmax. The nonlinearity factors for potentiation (νP) and
depression (νD) are calculated by fitting the above equations through minimising
the absolute difference between the fitting curve and the experimental results at
every pulse. At ν= 0, the conductance update is ideally linear. As the ν increases,
the conductance rapidly saturates to Gmax even at a small number of potentiation
pulses, and the opposite situation occurs for depression pulses.

Device characterisation. To adjust the film thickness, Alpha-step IQ surface
profiler was used to measure the step height during the deposition, and the final
device thickness was determined by transmission electron microscopy (TEM)
measurements. The density of a-Si (pristine) and a-Si (densified) films were
characterised by X-ray reflectometry measurement (ATX-G, Rigaku, operated at
40 kV, 250 mA), and the spectra were collected using Cu Kα x-ray source (λ= 1.54
Å) with a scan range of 0–6 degrees in 2θ. X-ray photoelectron spectra (Nexsa,
ThermoFisher Scientific) on Ti, Ti-Si, and Ag-Ti-Si films were measured using a
micro-focus monochromatic Al Kα X-ray source (hν= 1486.6 eV). The Ti-Si and
Ag-Ti-Si films were deposited in the same procedure with the device fabrication,
including the post RTA process at 350 °C for 5 min in the Ar atmosphere. The
amorphous phase of a-Si (densified) and Ti4.8%:a-Si films were characterised by
X-ray diffraction measurement (Dmax2500-PC, Rigaku, operated at 40 kV,
200 mA) using glancing incident scan mode with a scan range of 1 degree and a
scan speed of 2 degree/min.

Transmission electron microscopy measurement. Electron microscopy speci-
mens were prepared by a focused ion beam (FIB) (Helios NanoLab 600) system
along with the scanning electron microscopy imaging. For programmed cross-
sectional images, the memristor device was programmed before FIB sampling with
potentiation programming pulses. Pt was deposited to protect the specimen sur-
face, using a “C” gas injection system for electron beam deposition and ion beam
deposition. The samples were rough milled and lifted out using a probe system to
attach to a TEM grid, and the specimens were thinned and fine milled to 100 nm.
The micro-images of the prepared samples were investigated by a field-emission
TEM (Technai F20 G2, FEI), and scanning-TEM (STEM) images were obtained
using a Cs-corrected STEM (TitanTM 80-300, FEI) equipped with a fast charged-
coupled device camera (Gatan, Oneview 1095).

Feature extraction task. The sparse coding simulation is comprised of two stages:
receptive field learning and the following feature extraction step to sparsely

represent an input image. First, in the feature training step, we used stochastic
gradient descent (SGD), one of the back-propagation algorithms, and a locally
competitive algorithm (LCA) to train the dictionaries that create Gabor-like
receptive fields. In detail, we selected primitive features for each input using LCA,
and the activated receptive fields were only adapted while computing the error
gradient by SGD. The error gradient learning rule was implemented using the
following equations56:

∇E ¼ � X � a �ΦT
� �� a ð4Þ

4ΦT ¼ β X � a �ΦT
� �� a ð5Þ

Here, E is the error with respect to the receptive fields, Φ is the matrix of receptive
fields from the conductance values of the memristor, a is the activities of the
neurons by LCA, X is the original input vector, and β is the learning rate
(β= 0.0004 is used). We applied the nonlinearity values of each memristor device,
a-Si (pristine) and Ti4.8%:a-Si, measured at 0.6/−0.6 V P/D pulse condition and
compared with the ideal device case (ν= 0).

Then, feature extraction by sparse coding was performed using LCA after the
training. LCA was thus applied twice in our simulation. LCA is mathematically
expressed with the following equations53:

du
dt

¼ 1
τ

�uþ X � a � ΦT
� � �Φþ a

� � ð6Þ

a ¼ T u; λð Þ ¼
u; if uj j≥ λ

4u� 3λ; if 0:75λ< uj j< λ

0; if uj j≤ 0:75λ

8
><

>:
ð7Þ

Here, u is the membrane potential of the output neurons, and a is expressed by a
threshold function T (u, λ). During the algorithm process, the membrane potential
of output neurons is governed by the X ∙ Φ term, which indicates the closeness
between the input and output neuron elements. The important feature of LCA is a
−a ∙ ΦTΦ term that prevents similar receptive fields from being simultaneously
activated and ensures proper sparseness of the network. Through this inhibition
term in LCA, the network interactively triggers the competition of active neurons
and finds the optimal sparsity, which is considered an essential aspect of the
biological nervous system54. Further, the leakage term −u continuously impacts
the membrane potential of the output neurons with the time constant τ (τ= 0.008
is used). After the network stabilisation, the optimised sparsity of active neurons is
obtained, and with the linear combination of optimised receptive fields, the sparse
code can be used to reconstruct the original input patterns. Finally, the
reconstruction error of the algorithm is calculated by comparing the original image
with the reconstructed one. The mean squared error (MSE) is calculated with the
following equation56:

MSE ¼ 1
400

∑
400

i¼1
ðX � a �ΦTÞi ð8Þ

Data availability
The data that support the findings of this study are present in the paper and/or the
Supplementary Information. The experimental raw data, e.g. electrical measurement,
device characterisation, and sparse coding simulation, are too large to be shared publicly.
The corresponding author will directly respond to any additional data request.

Code availability
The code that supports the results of the sparse coding application is available in the
GitHub repository https://github.com/kykykkkk/LCA.
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