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Abstract: A high-performance solar-blind photodetector with a metal–semiconductor–metal structure
was fabricated based on amorphous In-doped Ga2O3 thin films prepared at room temperature by
radio frequency magnetron sputtering. The photodetector shows a high responsivity (18.06 A/W)
at 235 nm with a fast rise time (4.9 µs) and a rapid decay time (230 µs). The detection range was
broadened compared with an individual Ga2O3 photodetector because of In doping. In addition,
the uneven In distribution at different areas in the film results in different resistances, which causes a
quasi-Zener tunneling internal gain mechanism. The quasi-Zener tunneling internal gain mechanism
has a positive impact on the fast response speed and high responsivity.

Keywords: amorphous InGaO thin films; solar-blind photodetector; fast response; quasi-Zener
tunneling effect

1. Introduction

Ultraviolet light (UV) is electromagnetic radiation, which can be classified into three wavebands:
ultraviolet A (UVA, 320–400 nm), ultraviolet B (280–320 nm), and ultraviolet C (UVC, 200–280 nm). UVC
light, also known as solar-blind ultraviolet light, is completely absorbed by ozone in the atmosphere
and does not exist on the surface of the earth [1,2]. Compared with other light detection technologies,
solar-blind ultraviolet light detection technology is less affected by the external environment; the
interference of other signal sources on the surface is smaller, and it can work around the clock. Therefore,
solar-blind photodetectors based on semiconductor materials with wide-bandgaps, such as AlGaN [3],
MgZnO [4], diamond [5,6], and Ga2O3 [7], have received much attention for applications in missile
warning, flame sensors, air purification, space communication, and ozone-layer monitoring. Among
the materials, MgZnO and AlGaN exhibit serious composition fluctuations or phase segregation.
Additionally, the cost of diamond is too high to apply in practical applications [8,9]. As a direct
wide-bandgap semiconductor material, Ga2O3 has a bandgap width of ~4.9 eV, which is very suitable
for solar-blind UV detection [10–12], avoiding the complexities and difficulties of fabricating alloys,
such as AlGaN and ZnMgO. In addition, Ga2O3 has great thermal and chemical stability and is
inexpensive. Therefore, in recent years, Ga2O3-based deep ultraviolet light detectors have been
widely studied.

Ga2O3 consists of five different crystal structures. Monoclinic β-Ga2O3 is the most stable among
these structures, and its UV detection properties have drawn increasing attention [13,14]. In 2007,
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Oshima et al. first reported the metal—semiconductor–metal (MSM)-type β-Ga2O3 thin film detector
prepared on a sapphire substrate by the molecular beam epitaxy (MBE) method [15]. However,
high-quality β-Ga2O3 thin film materials demand, for example, a high temperature during fabrication,
but high-temperature manufacturing conditions are not suitable for flexible devices [16,17]. In addition,
due to the persistent photoconductive effect, the speed of the device response and recovery is greatly
reduced even to a level of seconds [18]. Recently, amorphous solar-blind photodetectors have
demonstrated fast response speeds and simple processing conditions. In 2017, Shujuan Cui et al.
fabricated an amorphous Ga2O3 (a-Ga2O3) photodetector with a responsivity of 0.91 A/W and a fast
decay time of 19.1 µs [19]. At the same time, the amorphous film and room temperature promoted the
preparation of a flexible device. However, the responsivity needs to be improved, and the response
mechanism also needs to be further researched.

Doping is a good method to help change the photoelectric properties of a device. In2O3 is a
very important n-type semiconductor with a bandgap of 3.6–3.75 eV and has high conductivity and
high transmittance in the visible light region. At the same time, In2O3 also has excellent chemical
and thermal stability and is widely used in many fields due to its unique excellent photoelectric
properties [20]. In2O3 and Ga2O3 can be properly combined into a new InGaO (IGO) oxide alloy with
an adjustable bandgap width between 3.6–4.9 eV, thus the detection range of a photodetector could
be broadened.

In this paper, we demonstrated the fabrication of an amorphous In-doped Ga2O3 (a-IGO) thin
film MSM photodetector on a sapphire substrate with both high responsivity and fast response speed.
We found that In doping leads to the bandgap change, which is the reason for the larger detection range.
The photoelectrical characteristics and mechanisms of the fabricated devices were also investigated.

2. Materials and Methods

The a-IGO thin films were grown on c-plane sapphire substrates by radio frequency (RF) magnetron
sputtering, and the sputtering target was an IGO ceramic target (Ga:In = 5:2 at%). The sapphire
substrates were cleaned in acetone, ethanol and deionized water for 45 min using an ultrasonic cleaning
machine. The chamber base pressure was maintained at 5 × 10−4 Pa. The sputtering process was
carried out for 35 min with a working pressure of 5 Pa, a sputtering power of 80 W, and an Ar flow rate
of 40 sccm. The film thickness was approximately 200 nm. To fabricate the MSM detectors, a 50 nm Au
film was deposited on the a-IGO film by thermal evaporation. Then, the Au film was lithographed
with a mask. As shown in Figure 1a,b, the length of the fabricated detector electrodes was 500 µm, and
the finger spacing and width were 5 and 10 µm, respectively.
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Figure 1. (a) The device diagram and (b) the finger diagram of the a-IGO thin film solar-blind
photodetector.

The thickness was estimated by a surface profile scanner using the steps between film and
the substrate. The structure and orientation of the film were tested by D/max-RA X-ray diffraction
(XRD and GI-XRD, RIGAKU SmartLab). The film surface roughness and resistance distribution were
determined by atomic force microscopy (AFM, Bruker Dimension ICON) and conductive atomic force
microscopy (CFM) measurements. The In content and distribution of the films were characterized by
energy-dispersive X-ray spectroscopy (EDX, HITACHI SU-70). The transmission rate was tested using
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a Shimadzu UV-2450PC scanning spectrophotometer, and the detection range and bandgap were also
calculated. The important responsivity and response speed parameters are shown from Zolix Solar
Cell Scan 100 measurement system (200 W UV-enhanced Xe lamp with a monochromator and Keithley
2450) and transient response test system.

3. Results and Discussion

Figure 2a shows the normal XRD spectra of the IGO thin film. From the normal XRD results, there
are only two diffraction peaks, namely, (0003) and (0006), that belong to sapphire. To prove that the
IGO thin film is amorphous, the characterization of the XRD grazing incidence is necessary. Figure 2b
shows the grazing incidence XRD results of the IGO thin film. No obvious peak could be found, which
indicates that the film is amorphous. We can obtain the film surface information from AFM. Figure 3 is
the AFM image with a 5 µm × 5 µm scanning area. The a-IGO film is very smooth and exhibits a small
roughness of ~1 nm, which is consistent with the amorphous characteristic of the film.
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Figure 3. AFM image of the a-IGO thin film surface.

EDX analysis was performed to evaluate the In, Ga, and O contents and distributions in the a-IGO
thin film, as shown in Figure 4, with highlight points. In was successfully doped in Ga2O3; the In
element content was 3.48%, the Ga element content was 10.94%, and the O content was ~85.58%. From
Figure 4a,b, the distributions of Ga and O elements are even. There are some obvious dark areas
where there are no In elements, as shown in Figure 4c. Figure 4d depicts the scanning results of four
small areas, and the results indicate that the contents of the different areas are clearly different, which
indicates that the In distribution is uneven.
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different areas.

Figure 5a is the transmission spectrum of the a-IGO thin film, and the average transmittance in
the visible light range is near 85%. For UV light, the transmittance decreases rapidly below 280 nm,
and it is close to zero at 200 nm, which indicates that the rate is very low in the range of UVC light.
The absorption coefficient can be given by the relation T = Aexp(−αd); d is the film thickness, A is a
constant, T is the transmittance [21], and the result is shown in Figure 5b. As the wavelength increases,
the absorption rate decreases rapidly. The absorption rate decreases to near zero at approximately 320
nm, which is the absorption cutoff edge of this film. The bandgap Eg can be estimated by the equation
(αhv)2 = B(hv − Eg); B is a constant, hv is the photo energy [22]. As shown in the inset of Figure 5b, Eg

can be extracted from a linear extrapolation of (αhv)2; the photon energy at the point where (αhv)2 = 0
is Eg. The obtained Eg is ~4.2eV; it decreases compared to ~4.9eV of Ga2O3, which is consistent with
references [23–25].
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film; the inset shows the plot of (αhv)2 versus energy bandgap.

Above the a-IGO thin film, we fabricated Au finger electrodes by lithography to be a photodetector.
Figure 6a shows the responsivity under different voltage conditions. The responsivity increases with
increasing voltage. The highest responsivity reaches 18.06 A/W under 25 V at 235 nm, which is between
the solar-blind wave range. The photodetector also has a larger detection range, which reveals the
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changeable bandgap because of In doping and proves that the bandgap of Ga2O3 decreased. The test
range is broadened to 210–330 nm, which is wider than the individual Ga2O3 photodetector.
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photodetector under 255 nm illumination.

As a photodetector, the response speed is a key parameter. Figure 6b exhibits the response time
curves of the detector. When the detector was illuminated by the 255 nm light, the photocurrent
increased rapidly. After the light was turned off, the detector needs time, which is decay time (longer
than the rise time), to recover to the dark current. To obtain the specific numbers of the rise time
and decay time, the response curves were fitted, and these constants were analyzed by the double
exponential equation:

y = y0 + y1 exp(−t/τ1) + y2 exp(−t/τ2).

In this equation, y0 is the steady-state dark current, y1 and y2 are both constants, t refers to the
time, and τ1 and τ2 stand for the relaxation time, including the fast and slow two stages of the rise
time (τr) and decay time (τd). From the well-fitted curves, the rise time (τr1/τr2 = 4.9 µs/13.3 µs) and
decay time (τd1/τd2 = 0.23 ms/2.3 ms) results are faster than those of the other Ga2O3-based solar-blind
photodetectors listed in Table 1.

Table 1. Comparison of key parameters of the different solar-blind photodetectors.

Material Structure R [AW−1] τr1/τr2 τd1/τd2 Ref.

a-Ga2O3 thin film MSM 70.26 @ 20 V 0.41/2.04 s 0.02/0.35 s [18]

a-Ga2O3 thin film MSM 0.19 @ 10 V 19.1 µs 80.7 µs [19]

β-Ga2O3 thin film MSM 259 @ 20 V 2.1 s 0.4 s [26]

β-Ga2O3 thin film MSM 96.13 @ 5 V 32.2 ms @ 0 V 78 ms @ 0 V [27]

β-Ga2O3 thin film MSM 3.3 @ 16 V 3.33 s @ 20 V 0.4 s @ 20 V [28]

Zn: β-Ga2O3 thin film MSM 210 @ 20 V 3.2 s 1.4 s [29]

Si: β-Ga2O3 thin film MSM 1.45 @ 5 V 0.58/32.93 s 1.2/32.86 s [30]

InGaO nanobelt 547 @ 40 V 1 s 0.6 s [23]

InGaO thin film MSM 0.31 @ 10 V 21 s 27 s [24]

a-InGaO thin film MSM 6.9 × 10−5 @ 5 V 2.4/0.4 s 18.2/0.4 s [25]

a-InGaO thin film MSM 18.06 @ 25 V 4.9/13.3 µs 0.23/2.3 ms Our work

As previously mentioned, the speed of the device response and recovery are greatly reduced
because of the persistent photoconductive effect of the β-Ga2O3 thin film detector [19]. However, our
photodetector both has fast response speed and high responsivity. Therefore, the a-IGO photodetector
may have a different response mechanism than the crystallization photodetector. The current–voltage
(I–V) characteristic is shown in Figure 7a with dark current and photocurrents, which were measured
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at 235 nm. As shown in the Figure 7a, the dark current below ~13 V is small and increases significantly
above ~13 V. There is an obvious kink point at ~13 V, which implies that the device has a breakdown
voltage of ~13 V at room temperature. There may be two recoverable breakdown internal gains, an
avalanche gain mechanism or a Zener tunneling effect. To determine what the internal gain type is, we
tested the dark current at changeable temperatures (I–V curves at different temperatures are shown in
Figure 7b and the inset figure). The tunnel breakdown voltage decreases from 13 V under 300 K, which
is close to room temperature to 6.5 V under 400 K. Through a calculation, the temperature coefficient is
negative, −0.065 V/K, which indicates that the gain in our a-IGO photodetector could be a quasi-Zener
tunneling effect.
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The breakdown phenomenon always occurs in some types devices, such as the avalanche
photodetector (APD), metal–insulator–semiconductor (MIS) tunnel junction, and the p–n
junction [31–33]. The quasi-Zener tunneling effect that exists in our detector indicates that there
may be different resistance areas between which barriers exist. CFM tests were carried out to determine
the surface dark current density. As shown in Figure 8, the resistance distribution in the a-IGO thin
film is not uniform, and the resistance values of different regions are different. This phenomenon may
be due to the uneven distribution of In, which can be seen in Figure 4c. There are some obvious dark
areas in the In distribution mapping. Figure 4d, which is the small area scanning of EDX, shows that
the In contents are different at different areas in the film. The low resistance regions have high In
content, and the high resistance regions have low In content [34]. The thin high resistance regions are
shown in Figure 8.
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When a small bias voltage is applied to both ends of the electrode, most of the carriers cannot jump
over the barrier formed by the high resistance region. Carriers are blocked by a distributed small area of
high resistance, and Idark of the a-IGO detector is relatively smaller. As the bias voltage increases to the
breakdown voltage, a large number of carriers in the low resistance region can break through the high
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resistance region by tunneling which usually occurs in MIS-structure tunnel junction detectors [33],
and an internal gain mechanism appears. The formula for the carrier tunneling probability is:

Tt = exp

−2d
√

2qm∗φT

}

.
Here, q, m∗ and } are constants, φT represents the barrier of the high resistance region, and d

represents the distance of tunneling. The distance d can be seen as the effective thickness, and the
probability of tunneling Tt increases exponentially with φT and d decreasing. When the device is
exposed to deep ultraviolet light, the photogenerated carriers appeared in both high resistance areas
and low resistance areas. The photogenerated carriers drop the effective thickness and barrier of
the high resistance regions, and also increase the carrier concentration of the low resistance regions.
Therefore, the carrier tunneling probability increases, and the photocurrent increases exponentially and
is much higher than the dark current. The switching between the above block process and tunneling
process is very quick, which has been reported in MIS-structure tunnel junction detectors [35]. So our
a-IGO photodetector with quasi-Zener tunneling effect exhibits faster response and recovery speed
compared to other crystallization devices with persistent photoconductive effect.

4. Conclusions

In summary, the In-doped Ga2O3 amorphous thin film was successfully deposited on sapphire by
RF sputtering at room temperature. A fast response MSM solar-blind photodetector with a higher
responsibility of 18.06 A/W under a 25 V bias voltage was fabricated based on the film. The rise
time and decay time reached 4.9 and 230 µs, respectively. The uneven In distribution results in the
quasi-Zener tunneling effect improved the photodetector’s key parameters. Simultaneously, In doping
changed the bandgap of the films, and thus, the detection range of the photodetector was broadened
from 210 to 330 nm. The high-performance a-IGO solar-blind photodetector preparation at room
temperature is very important for flexible devices; additionally, the process is inexpensive and can be
developed in for applications in different fields.
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