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Abstract

Background: Disruption of epithelial cell-cell adhesions represents an early and important stage
in tumor metastasis. This process can be modeled in vitro by exposing cells to chemical tumor
promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C
(PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell
contact remain poorly understood. In the present study we investigate mechanisms by which PKC
activation induces disassembly of tight junctions (T]s) and adherens junctions (AJs) in a model
pancreatic epithelium.

Results: Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V
or 12-O-tetradecanoylphorbol-|3-acetate caused rapid disruption and internalization of AJs and
TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which
was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor
nonmuscle myosin (NM) Il. The OI-V-induced disruption of AJs and TJs was prevented by either
pharmacological inhibition of NM Il with blebbistatin or by siRNA-mediated downregulation of NM
IIA. Furthermore, AJ/T] disassembly was attenuated by inhibition of Rho-associated kinase (ROCK)
Il, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase.

Conclusion: Our data suggest that stimulation of PKC disrupts epithelial apical junctions via
ROCK-II dependent activation of NM I, which increases contractility of perijunctional actin
filaments. This mechanism is likely to be important for cancer cell dissociation and tumor
metastasis.

Background (EMT) [1,2]. Weakening and disruption of intercellular
Progression and dissemination of epithelial tumors is  adhesions represents one of the most characteristic fea-
accompanied by a loss of morphological features of epi-  tures of EMT [3,4]. Differentiated epithelial cells strongly
thelial cells and acquisition of mesenchymal cell pheno-  adhere to each other via specialized junctional complexes
type known as epithelial to mesenchymal transition  assembled at the lateral plasma membrane [5-7]. Among
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them, the most apically-located tight junctions (TJs) and
adherens junctions (AJs) are critical for epithelial cell dif-
ferentiation and maintenance of the integrity of epithelial
layers [5-7]. TJs and AJs mediate cell-cell adhesions
through homotypical interactions of their transmem-
brane proteins such as occludin, claudins and E-cadherin
[5-7]. Furthermore, these junctional complexes are affili-
ated with the apical actin cytoskeleton, and participate in
outside in transduction of signals and forces [5,8].

Disruption of TJs and AJs occurs at the early stage of EMT
and has two major functional consequences in tumor
cells. One is the increase in cell proliferation, and another
is enhanced cell motility [3,4]. The former reflects the fact
that TJs and AJs sequester many transcriptional regulators
such as B-catenin, ZONAB, and symplekin, which upon
junctional disassembly translocate into the nucleus to
stimulate expression of genes controlling cell division
[9,10]. The later effect is due to dramatic cytoskeletal reor-
ganizations induced by the loss of intercellular contacts
and resulting in altered cell-matrix adhesions and actin fil-
ament dynamics [11-13]. Although TJ/AJ disassembly
plays an important role in tumor growth and metastasis,
its molecular mechanisms remain poorly investigated.

Disruption of epithelial junctions during EMT is com-
monly modeled in vitro by exposing epithelial cells to
growth factors or chemical tumor promoters [2,14].
Among them, carcinogens targeting protein kinase C
(PKC) are the most extensively characterized. PKC, which
plays a key role in cancer signaling pathways, is dramati-
cally stimulated by two major classes of pharmacological
agents: phorbol esters and indole alkaloids, teleocidins
[15,16]. These PKC activators elicit a variety of responses
characteristic of tumor cells, including stimulation of cell
proliferation, decreased sensitivity to apoptosis, increased
cell-matrix adhesion and cell migration/invasion [17,18].
Because of this, phorbol esters and teleocidins are widely
used to study signaling pathways which underline tumor
progression and metastasis.

Alarge body of evidence indicates that scattering/invasive-
ness of epithelial cells induced by PKC-targeting tumor
promoters involves disassembly of intercellular junctions.
Indeed, 12-O-tetradecanoylphorbol-13-acetate (TPA) was
shown to disrupt AJs in Madin-Darby canine kidney
(MDCK) cells [19-21], mouse epidermal cells [22], and rat
liver epithelial cells [23]. Furthermore, TPA and teleocidin
have been shown to rapidly increase paracellular permea-
bility and disassemble TJs in confluent monolayers of
MDCK cells [24,25], LLC-PK1 porcine renal epithelial
cells [26-28], and human corneal epithelial cells [29].
However, molecular mechanisms underlying disassembly
of epithelial junctions by PKC-targeting tumor promoters
remain poorly characterized. Several studies highlighted
the role of endocytosis of AJ/TJ proteins E-cadherin and
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occludin [19,20,22,25]. Nevertheless, endocytosis alone
cannot be responsible for PKC-dependent junctional
breakdown. Indeed, a continuous internalization of E-
cadherin and claudins in confluent epithelial cell monol-
ayers does not result in AJ/TJ] disassembly [30-32], being
antagonized by the apical actin cytoskeleton, known to
associate with and stabilize AJ and TJ structure [5,8]. Reor-
ganization/disassembly of the perijunctional actin
cytoskeleton is required for the large-scale disruption and
internalization of epithelial apical junctions [33-35].

PKC is a powerful regulator of the actin cytoskeleton in a
variety of cells [36], and phorbol esters have been shown
to induce dramatic reorganization of actin filaments in
epithelial monolayers [23]. It is therefore likely that disas-
sembly and internalization of epithelial junctions
induced by PKC activators is mediated by remodeling of
the perijunctional actin cytoskeleton. Reorganizations of
the actin cytoskeleton are usually driven by myosin II
motor, which slides actin filaments against each other,
thus producing contractile forces [37,38]. Epithelial cells
express nonmuscle myosin (NM) II, which is enriched in
perijunctional circumferential F-actin bundles [39,40].
Furthermore, NM II activity was shown to be critical for
disassembly of epithelial junctions caused by various
stimuli, such as depletion of extracellular calcium and
proinflammatory cytokines [35,40-43]. However, it is
unknown whether NM II plays a role in the disruption of
epithelial junctions during cancer cell metastasis and spe-
cifically during junctional disassembly induced by PKC-
activating tumor promoters.

The aim of this study was to investigate the role of NM II
in the disassembly of epithelial apical junctions caused by
PKC-targeting tumor promoters, which mimic the disrup-
tion of epithelial cell-cell adhesions during EMT and
tumor metastasis. We rationalized that appropriate model
cell line for this study should fulfill the following criteria:
1) to be a human tumor cell line; 2) to have well-devel-
oped TJs and AJs; 3) to readily disassemble their junctions
after exposure to PKC-activating tumor-promoters. How-
ever, MDCK and LLC-PK1 cell lines, which are widely
used to study phorbol ester-induced junctional disrup-
tion, do not fulfill the first criteria since they are neither
human, nor cancer cells. On the other hand, well charac-
terized human colonic carcinoma cell lines, such as T84,
Caco-2, and HT-29 do not respond to PKC activation by
junctional disassembly [44-48]. To overcome this prob-
lem, we used HPAF-II human pancreatic adenocarcinoma
cells. These cells readily differentiate to form well-defined
apical junctions [49,50], which appear to be easily dis-
ruptable by tumor promoters octylindolactam (OI)-V and
TPA. Using this model, we observe that OI-V-induced dis-
assembly of epithelial AJs and TJs is mediated by activa-
tion of NM II, which is stimulated by Rho-associated
kinase (ROCK) II in a RhoA-independent manner.
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Results

OI-V and TPA rapidly disrupt paracellular barrier and
induce disassembly of epithelial apical junctions

HPAF-II cells cultured on permeable membrane support
rapidly (within 5-7 days) developed confluent cell mon-
olayers with high (1,500-2,100 Ohm x cm?) transepithe-
lial electrical resistance (TEER) (Figure 1). Immuno
fluorescence analysis of these monolayers showed a typi-
cal 'chicken wire' labeling pattern for E-cadherin, B-cat-
enin, occludin and ZO-1 at the cell apex (Figure 2), which
is characteristic for the mature AJs and TJs. To investigate
the effects of PKC activators on apical junctions, HPAF-II
cells were treated with 0.1 pM and 1 puM of either OI-V or
TPA. In this concentration range, both agents reportedly
induce membrane translocation and activation of 50-
100% of different PKC izoenzymes [51,52]. Exposure of
HPAF-II cell monolayers to either OI-V or TPA resulted in
a rapid and dose-dependent increase in paracellular per-
meability (Figure 1). Thus, 1 uM of OI-V (curve 3) or TPA
(curve 5) decreased TEER from initial value of ~2000
Ohm x cm?to ~5 Ohm x cm2within 5 h. In contrast, vehi-
cle-treated cells maintained high TEER (> 1500 Ohm x
cm?; Figure 1, curve 1).

To analyze if the observed increase in paracellular perme-
ability was caused by alteration in junctional structure, we
investigated effects of OI-V and TPA on localization of AJ
and TJ proteins in HPAF-II cells. Both agents induced dra-
matic reorganization of apical junctions. These reorgani-
zations were manifested by the loss of TJ (occludin and
Z0-1) and AJ (E-cadherin and B-catenin) proteins from
the areas of cell-cell contacts and their accumulation in
cytosolic dot-like structures (Figure 2, arrows). Interest-
ingly, OI-V caused more profound disruption of junc-
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Tumor promoters increase paracellular permeability
of human pancreatic epithelial cell monolayers. Con-
fluent HPAF-II cell monolayers were exposed to either vehi-
cle, or two concentrations of OI-V or TPA, and the integrity
of the paracellular barrier was evaluated by transepithelial
electrical resistance (TEER) measurements. Both tumor pro-
moters induce a rapid and dose-dependent decrease in
TEER, thus indicating the increase in paracellular permeabil-

ity.
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tional morphology than TPA (Figure 2), which is
consistent with a previous study demonstrating a superior
potency of teleocidin over phorbol ester in increasing per-
meability of LLC-PK1 cell monolayers [27]. Because of its
higher efficiency, all subsequent experiments were per-
formed using 1 uM of OI-V.

Classical PKC isoenzymes mediate OI-V-induced
junctional disassembly

Next we sought to elucidate which intracellular signal ini-
tiates OI-V-dependent junctional disassembly. While tele-
ocidins and phorbol esters primarily signal through
activation of PKC, several other target proteins, such as
protein kinase D, chimaerins, and Munc 13 have been
recently identified [53]. Therefore, we analyzed the role of
PKC in OI-V-mediated AJ/T] disassembly in HPAF-II cells.
In addition, we sought to determine which subclass of
PKC is involved. PKC isoenzymes are classified into three
subclasses: "classical" (PKCa, BI, BII, and y), "novel"
(PKCS9, 6, € and n) and "atypical" (PKCC and 1/A) [54,55].
Since only first two subclasses are activated by teleocidins
and phorbol esters, we asked whether classical or novel
PKC mediate disruption of epithelial junctions.

To address these questions, we first investigated which
PKC isoforms are expressed in HPAF-II cells. RT-PCR and
immunoblotting analyses revealed the presence of multi-
ple isoforms including three classical (PKCa, B I, and v)
and four novel (PKCS$, 6, € and 1) isoenzymes (Additional
Files 1 &2). In OI-V treated cells, members of both classi-
cal (PKCa and BI) and novel (PKCS) subclasses rapidly
(within 1 h) accumulated at cell membranes (Additional
File 2), which is indicative of PKC activation [51,52]. To
gain insight into the functional roles of different PKC sub-
classes in OI-V-mediated junctional disassembly, pharma-
cological PKC inhibitors with different subclass specificity
were used. They include GF-109203X, which inhibits
both classical and novel PKC [56,57], a selective inhibitor
of classical PKC, G6 6976 [58], and an inhibitor of novel
PKC 6 and 6, rottlerin [59,60]. Incubation of HPAF-II cells
with either GF-109203X (Figure 3A, curve 3) or G6 6976
(curve 4) prevented OI-V-induced decrease in TEER,
whereas rottlerin (curve 5) had no effect. Furthermore,
GF-109203X and G6 6976, but not rottlerin blocked OI-
V-induced AJ/TJ disassembly (Figure 3B). These data sug-
gest that activation of classical PKC triggers disruption of
the paracellular barrier and breakdown of apical junctions
in OI-V-treated pancreatic epithelial cells.

OlI-V-induced disassembly of epithelial junctions is
mediated by NM II

Given the critical role of the actomyosin cytoskeleton in
regulation of epithelial junctions, we next sought to inves-
tigate its involvement in PKC-induced disassembly of TJs
and AJs in pancreatic epithelium. In control HPAF-II
monolayers, staining with fluorescently-labeled phalloi-
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din revealed a prominent F-actin belt at the level of apical
junctions along with fine punctate apical staining repre-
senting microvilli F-actin (Figure 4A). PKC activation
induced cell rounding associated with the lateral conden-
sation of actin filaments (Figure 4A, arrows), which are
suggestive of increased F-actin contractility in these areas
[33,40]. To further characterize these putative contractile
events, we analyzed effects of OI-V on localization of the
F-actin motor, NM II. Epithelial cells express three differ-
ent NM II heavy chain isoforms, IIA, 1IB, and IIC [40,61],
and NM IIA is the most abundant isoform in HPAF-II cells
(data not shown). In control HPAF-II monolayers,
immunofluorescence analysis revealed predominant
localization of NM IIA at the apical surface (Figure 4B).
Upon PKC activation, NM IIA translocated to the lateral
plasma membrane in the areas of F-actin condensation
and AJ/TJ disassembly (Figure 4B, arrows).

Since OI-V altered cellular localization of NM II, we next
analyzed whether OI-V also affected its activation status.
NM II activity is regulated by the phosphorylation of the
regulatory myosin light chain (RMLC) on either one (Ser
19) or two (Thr18/Ser19) residues [62,63]. By using
immunoblotting analysis, we compared levels of mono-
and diphosphorylated RMLC in control and OI-V-treated
HPAF-II cells and observed an early and dramatic increase
in the amount of monophosphorylated (p) and diphos-
phorylated (pp) RMLC at 1-3 h after OI-V treatment (Fig-
ure 5A, B). Furthermore, PKC activation altered
intracellular localization of activated NM II. Indeed, while
in control HPAF-II cells p-RMLC was diffusely distributed
within apical actin filaments, OI-V treated cells demon-
strated significant accumulation of p-RMLC at lateral F-
actin bundles localized in areas of disintegrating cell-cell
contacts (Figure 5C, arrows).

To obtain definitive evidence for the role of NM II in OI-
V-induced junctional disassembly we inactivated NM II by
using either the pharmacological inhibitor, blebbistatin
[64] or siRNA-mediated depletion of NM IIA. Incubation
with blebbistatin (100 uM) significantly attenuated dis-
ruption of TJs and AJs induced by 5 h exposure of HPAF-
II cell monolayers to OI-V (Figure 6A). Furthermore, RNA
interference, which caused ~68% decrease in NM IIA
expression (Additional File 3), attenuated disassembly of
apical junctions. Indeed, while control siRNA transfected
HPAF-II cells lost the majority of their occludin-based TJs,
cells with decreased NM IIA level retained morphologi-
cally-intact TJs after 5 h of OI-V treatment (Figure 6B,
arrows). Interestingly, NM II inhibition while preserving
TJ structure did not prevent PKC-dependent increase in
paracellular permeability. Indeed, 3 h exposure of HPAF-
II cells to OI-V resulted in TEER drop from 1555 + 87 to
30 + 2 Ohm x cm? (98%) and from 1046 + 20 to 47 + 3
Ohm x cm? (95%) in vehicle- and blebbistatin-treated cell
monolayers respectively. Together these data suggest that
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NM II plays an important role in the disruption of A] and
TJ structure caused by PKC activation in pancreatic epithe-
lium.

Inhibition of Rho associated kinase, but not RhoA GTPase
attenuated OI-V-induced disassembly of epithelial
junctions

Since PKC does not directly phosphorylate RMLC at Ser19
and Thr18 to stimulate actomyosin contractility [65,66]
these events should be mediated by other protein kinases.
The most likely candidates are Rho-associated kinase
(ROCK) and myosin light chain kinase (MLCK), which
have been previously implicated in the activation of peri-
junctional NM II and AJ/TJ disassembly triggered by vari-
ous stimuli [42,43,67,68]. To analyze the involvement of
ROCK in the OI-V-induced disruption of apical junctions
we used two structurally unrelated pharmacological
ROCK inhibitors, Y-27632 (20 uM) and H-1152 (10 uM).
Both compounds significantly attenuated OI-V-induced
drop in TEER (Figure 7A) and inhibited disassembly of E-
cadherin-based AJs and occludin-based TJs (Figure 7B). In
agreement with these functional data H-1152 also sup-
pressed OI-V-dependent increase in RLMC phosphoryla-
tion (Figure 7C). We next used RNA interference to
confirm these pharmacological inhibition results and to
identify which ROCK isoform, ROCK-I or ROCK-II, is
involved. ROCK-I and ROCK-II expression was selectively
downregulated by ~65% and ~70% respectively in HPAF-
IT cells using isoform-specific siRNA duplexes (Figure 8A).
siRNA-mediated depletion of ROCK-II, but not ROCK-I
significantly attenuated OI-V-induced disassembly of epi-
thelial TJs (Figure 8B,C) and AJs (data not shown).

To elucidate whether ROCK II plays a unique role in PKC-
dependent disruption of epithelial junctions, we next
tested the involvement of alternative signaling pathways
previously implicated in either NM II activation, or PKC-
dependent  disassembly  of cell-cell adhesions
[29,42,43,69]. We used pharmacological inhibitors, ML-7
(20 uM), W-7 (100 uM) and U 0126 (10 uM), which
block the activity of MLCK, calmodulin (a cofactor of
MLCK), and extracellular signal regulated kinases (ERK)
1/2 respectively, and found that neither inhibitor affected
OI-V-induced junctional disassembly in HPAF-II cells
(Figure 9). These data highlight a unique role for ROCK II
in the signaling cascade, which is initiated by PKC activa-
tion and leads to junctional breakdown.

Since ROCK represents the major downstream effector for
Rho small GTPase [70,71], we investigated whether RhoA
mediates OI-V-induced disassembly of epithelial junc-
tions. Two different approaches were used to inhibit RhoA
activity in HPAF-II cells. One involved pharmacological
inhibition of Rho with cell-permeable Clostridium botuli-
num C3 exoenzyme [72] and the other employed the over-
expression of a dominant-negative (N19) RhoA mutant.
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Tumor promoters induce rapid disassembly of epi-
thelial tight junctions and adherens junctions. Conflu-
ent HPAF-II cell monolayers were treated for 5 h with either
vehicle, OI-V, or TPA (each, | uM). Localization of AJ pro-
teins (E-cadherin, B-catenin) and T) proteins (occludin, ZO-
I) was determined by fluorescence labeling and confocal
microscopy. Both tumor promoters induce translocation of
AJ and T] proteins from the areas of cell-cell contact into
cytosol (arrows). Bar, 20 um.

We observed that pharmacological Rho inhibitor failed to
prevent OI-V-induced disassembly of TJs (Figure 10A) and
an increase in RMLC phosphorylation (Additional File
4A). Itis noteworthy, that this inhibitor caused disruption
of basal F-actin bundles in confluent HPAF-II monolayers
(Additional File 4B), which indicates its activity in our
experimental conditions. Likewise, the dominant-nega-
tive RhoA mutant had no effect on junctional disassembly
in OI-V treated cell monolayers (Figure 10B). Finally, we
sought to investigate if tumor promoter-depended disrup-
tion of AJs and TJs can be initiated by pro-apoptotic sign-
aling. Apoptosis in control and OI-V-exposed HPAF-II cell
monolayers was examined by using fluorescent pan-cas-
pase activation detection kit. As shown in Additional File
5A, OI-V treatment did not result in significant caspase
activation thus indicating lack of apoptosis induction.
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Furthermore, pretreatment with a pan-caspase inhibitor z-
VAD-fmk (50 uM) failed to prevent OI-V-induced AJ dis-
assembly (Additional File 5B). Overall, these results sug-
gest that mechanism of OI-V-induced AJ/T] disassembly
in pancreatic epithelial cells involves activation of acto-
myosin contractility via RhoA- and apoptosis-independ-
ent ROCK-II signaling.

Discussion

Loss of epithelial cell-cell adhesions upon exposure to
PKC-activating carcinogens is commonly used to model
scattering of epithelial cells during tumor metastasis
[19,22,25]. In this study, we investigate molecular mech-
anisms underlying tumor promoter-induced disassembly
of epithelial apical junctions by challenging HPAF-II
human pancreatic epithelial cell monolayers with OI-V or
TPA. HPAF-II cells have been derived from highly meta-
static pancreatic adenocarcinoma. These cells polarize in
culture and develop a high resistance paracellular barrier
with well-defined TJs and AJs. In addition, these cells are
amenable to transfection with siRNAs. Together, these fea-
tures make HPAF-II cells an excellent in vitro model to
study disruption of epithelial cell-cell adhesions during
tumor progression/metastasis.

Exposure of HPAF-II cell monolayers to OI-V or TPA
induced rapid opening of the paracellular barrier (Figure
1) and disassembly of AJs and TJs (Figure 2). Since both
agents are known to activate PKC, it is logical to suggest
that such a junctional disassembly is triggered by activa-
tion of PKC. Our pharmacological inhibition and bio-
chemical analyses confirmed the role of PKC activation in
disruption of epithelial AJs and TJs and indicated that clas-
sical PKC isoenzymes are responsible for this biological
effect (Figure 3 and Additional File 2). Different classes of
PKC have been previously implicated in phorbol ester-
mediated opening of epithelial barriers. Our data are con-
sistent with results of two studies that have implicated
classical PKC in TPA-induced increase in paracellular per-
meability in LLC-PK1 [28] and T84 cell monolayers [73].
However, some other studies have suggested the role of
novel PKC isoforms in TPA-induced internalization of AJ
protein E-cadherin in MDCK cells [20] and disruption of
claudin-4-based TJ in OVCA433 ovarian epithelial cells
[74]. Since TPA and OI-V activate both classical and novel
PKC, distinct roles of these subfamilies in AJ/TJ disassem-
bly in different epithelia is likely to reflect cell-specific dif-
ferences in their expressional levels and/or junctional
association. It is noteworthy, that pharmacological inhib-
itors do not allow identification of the individual PKC iso-
form, which is responsible for AJ/TJ disruption in HPAF-II
cell monolayers. Further studies involving more selective
RNA interference or dominant-negative PKC mutant
approaches are required to answer this important ques-
tion.
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A key finding of this study is a critical role of NM II in dis-
assembly of AJs and TJs upon PKC activation in HPAF-II
epithelial cells. It should be noted that the involvement of
actomyosin contractility in PKC-dependent disruption of
cell-cell adhesions has been addressed in previous publi-
cation, which yielded conflicting results. Thus, the
increased F-actin tension/contraction has been implicated
in phorbol-ester-induced disruption of endothelial junc-
tions in one [66], but not another [75] study. Further-
more, TPA was shown to either increase [76,77], have no
effect [66] or decrease [47,75,78] RMLC phosphorylation
in endothelial and epithelial cell monolayers. Our conclu-
sion that PKC activation disrupts epithelial AJs and TJs via
stimulating NM II activity is based on several lines of evi-
dence. First, OI-V triggered NM II activation in HPAF-II
cells at the onset of junctional disassembly (Figure 5). Sec-
ond, NM II relocalized to disassembling junctions in par-
allel with cell rounding in OI-V-treated cells (Figure 4B,
5C). Finally, inhibition of NM II significantly attenuated
OI-V-induced disassembly of AJs and TJs (Figure 6).

Our study provides the first direct evidence implicating
NM II activity in the disruption of epithelial apical junc-
tions by PKC-activating tumor promoters. Such activation
of NM 11 is likely to serve as a trigger for junctional disas-
sembly by either breaking adhesive contacts formed by
transmembrane junctional proteins, or by destabilizing
perijunctional F-actin bundles. This may activate endocy-
tosis of AJ/TJ proteins, thus leading to complete disinte-
gration of apical junctions [19,25]. Although the role of
NM II in the breakdown of epithelial barrier in inflamma-
tion is generally accepted [79,80], it has not been explored
whether similar mechanism mediates disruption of epi-
thelial cell-cell adhesions in tumorigenesis. Based on the
present in vitro data, we hypothesize that stimulation of
actomyosin contractility can also be involved in the loss
of epithelial cell-cell contacts during metastatic scattering
of tumor cells in vivo.

Although PKC was shown to directly phosphorylate
RMLC at Ser1/2 residues [65,66], such phosphorylation
cannot be responsible for the increased level of Ser19/
Thr18-phosphorylated RLMC and stimulation of actomy-
osin contractility. In a search for an intermediate signaling
step, which links PKC activation and stimulation of NM
11, we identified ROCK as a critical regulator of junctional
disassembly in OI-V-challenged HPAF-II cells (Figures 7
&8). Importantly, selective siRNA-mediated knock-down
of ROCK-I and ROCK-II showed a unique role of the latter
isoform in the PKC-dependent disruption of epithelial
junctions (Figure 8). These results are in a good agreement
with our recent study, which demonstrated the involve-
ment of ROCK-II, but not ROCK-I in AJ/TJ disassembly
induced by the depletion of extracellular calcium in intes-
tinal epithelial cells [68]. Although ROCK-I and ROCK-II
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are highly homologous (~65% of sequence identity and
92% identity in their kinase domain) [81], these isoforms
can be differentially regulated, and can activate distinct
actomyosin-dependent processes [82,83]. For example,
ROCK-II, but not ROCK-I, binds to inositol phospholip-
ids, and is activated by phosphoinositol-3-kinase [82].
These different regulatory mechanisms are likely to under-
line a selective involvement of ROCK-II in the dynamics
of epithelial apical junctions. Importantly, our pharmaco-
logical analysis failed to observe the involvement of
MLCK or ERK-mediated signaling in PKC-dependent AJ/
TJ disassembly (Figure 9), which further supports a
unique role of ROCK in stimulating NM II-dependent
contractility that disrupts epithelial junctions.

Inhibition of NM II and ROCK while substantially atten-
uating OI-V-induced disintegration of AJ/TJ structure
either did not affect, or only modestly attenuated the
decrease in TEER (Figures 6 &7). This suggests that PKC
activation compromises integrity of the epithelial barrier
via several pathways including, but not limited to ROCK
and NM II. Additional mechanisms may involve PKC-
dependent changes in phosphorylation of different junc-
tional components, which perturbs normal protein-pro-
tein interactions within the AJ/TJ complexes. Indeed,
altered phosphorylation of occludin and p120 catenin
was observed in epithelial and endothelial cells exposed
to PKC-activating tumor promoters [84]

One intriguing findings of this study is that the signaling
cascade, which is triggered by PKC activation and medi-
ated by ROCK-II does not involve RhoA GTPase (Figure
10). This implies that PKC can bypass RhoA in stimulating
ROCK-II activity and is consistent with a recent report
demonstrating PKC-dependent ROCK activation down-
stream of RhoA in human endothelial cells [85]. Our find-
ings also agree with data obtained in other experimental
systems which demonstrated that RhoA inhibition did
not prevent TPA-induced contraction in cerebrovascular
smooth muscle [86] or TPA-mediated reorganization of
NM II in CHO cells [87]. Lack of involvement of RhoA in
OI-V-induced junctional disassembly indicates that this
process may be either regulated by other Rho isoforms
such as RhoC and RhoE, or may involve Rho-independent
mechanisms.

Recent studies have unraveled a complexity of mecha-
nisms regulating ROCK activity which also involves Rho-
independent activatory modes. For example, a Rho-inde-
pendent cleavage of ROCK, that renders this enzyme con-
stitutively active, was reported by several groups [88-91].
Particularly, ROCK-II was shown to be cleaved by caspase-
2 in thrombin-stimulated endothelial cells [89] or by
granzyme B in apoptotic lymphocytes [90]. However, this
mechanism is not responsible for ROCK-II activation by
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Figure 3

Classical PKC isoenzymes mediate Ol-V-induced dis-
ruption of epithelial apical junctions. HPAF-II cells were
treated for 5 h with either OI-V alone (I uM) or in a combi-
nation with pharmacological inhibitors of different subfamilies
of PKC isoenzymes. The barrier properties of cell monolay-
ers were determined by TEER measurement (A), and the
integrity of AJ and T] was determined by immunofluores-
cence labeling for E-cadherin and occludin respectively (B). A
dual inhibitor of classical and novel PKC, GF-109203X (10
1M), as well as a selective inhibitor of classical PKC, G6 6976
(5 pnM) significantly attenuate octylindiolactam-induced dis-
ruption of paracellular barrier and T)/AJ disassembly,
whereas inhibitor of a novel PKC, rottlerin (10 uM), has no
effects. Bar, 20 um.

PKC-targeting tumor promoters in model pancreatic epi-
thelium, since OI-V did no induce ROCK-II cleavage in
HPAF-II cells (data not shown), and caused junctional
disassembly in caspase-independent fashion (Additional
File 5). Further studies are required to elucidate mecha-
nisms of PKC-dependent activation of ROCK-II in epithe-
lial cells.

Conclusion

This study dissected critical intracellular events which are
involved in disassembly of epithelial apical junctions
stimulated by the tumor promoter, octylindolactam V.
These events involve activation of classical PKC isoforms,
which bypasses RhoA and signals directly through ROCK-
II to activate NM II. Activation of NM II stimulates reor-
ganization/contractility of perijunctional actomyosin
ring, which drives the disassembly of epithelial AJs and
TJs. Similar mechanisms may contribute to the disruption
of cell-cell adhesions during tumor progression and
metastasis.

http://www.biomedcentral.com/1471-2121/10/36

Methods

Antibodies and other reagents

The following primary polyclonal (pAb) and monoclonal
(mAb) antibodies were used to detect junctional, cytoskel-
etal and signaling proteins: anti-occludin, ZO-1, E-cad-
herin, and B-catenin mAbs (Invitrogen, Carlsbad, CA);
anti-NM I1A pAb (Covance, Berkley, CA); anti-PKCa mAb,
anti-PKC BI, anti-ROCK-I (H-85), anti-ROCK-II (C-20
and H-85), and anti-RMLC pAbs (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA); anti-PKCd pAb (Millipore, Billerica,
MA) anti-mono, and di-phosphorylated RMLC pAbs (Cell
Signaling Technology Inc., Beverly, MA); anti-actin pAb
(Sigma-Aldrich, St. Louis, MO). Alexa-488 or Alexa-568
dye conjugated donkey anti-rabbit and goat anti-mouse
secondary antibodies and Alexa-labeled phalloidin were
obtained from Molecular Probes (Eugene, OR); horserad-
ish peroxidase-conjugated goat anti-rabbit and anti-
mouse secondary antibodies were obtained from Jackson
Immunoresearch Laboratories (West Grove, PA). (-)-7-
Octylindolactam V was obtained from Biomol Interna-
tional (Plymouth Meeting, PA); TPA, S(-)-Blebbistatin, W-
7, ML-7 and rottlerin were purchased from Sigma; Go6
6976,Y-27632, H-1152, and U0126 were purchased from
EMD Biosciences (San Diego, CA); GF-109203X was
obtained from Axxora LLC (San Diego, CA); a cell perme-
able Rho inhibitor was obtain from Cytoskeleton Inc.
(Denver, CO). All other reagents were of the highest ana-
lytical grade and obtained from Sigma.

Cell culture and pharmacological modulation of junctional
disassembly

HPAF-IT human pancreatic epithelial cells (American Type
Culture Collection, Manassas, VA) were grown in RPMI
medium supplemented with 10% fetal bovine serum, 10
mM HEPES, 1 mM sodium pyruvate, 2 mM L-glutamine,
100 IU/ml penicillin and 100 pg/ml streptomycin, pH
7.4. For immunofluorescence labeling experiments epi-
thelial cells were grown for 6-10 days on either collagen-
coated permeable polycarbonate Transwell filters with 0.4
pm pore size (Costar, Cambridge, MA) or on collagen-
coated coverslips. For biochemical experiments cells were
cultured on either Transwell filters, or 6-well plastic
plates. Junctional disassembly in HPAF-II cell monolayers
was induced by incubation with either OI-V or TPA for
indicated periods of time. For pharmacological inhibition
experiments, cells were preincubated with inhibitors for
30 min followed by exposure to OI-V in the presence of
inhibitors. Appropriate vehicle (DMSO) was added to all
control samples.

Immunofluorescence labeling and image analysis

Cell monolayers were fixed/permeabilized in 100% meth-
anol or 100% ethanol (-20°C for 20 min) and double-
immunolabeled according to previously described proto-
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Figure 4

Junctional disassembly in PKC-activated pancreatic
epithelial cells is accompanied by reorganization of
the apical actomyosin cytoskeleton. Confluent HPAF-II
cell monolayers were exposed for 3 h to either vehicle or
OI-V (I pM) followed by fixation and dual fluorescence labe-
ling for occludin (red) with either F-actin or NM IIA heavy
chain (green). OI-V induces cell rounding and accumulation
of F-actin and NM IIA at the lateral plasma membrane in the
areas of disassembling T] (arrows). Bar, 20 um.

cols [33,35,40]. For visualization of F-actin cells were
fixed in 3.7% paraformaldehyde for 15 min and subse-
quently permeabilized with 0.5% Triton X-100 for 10 min
at room temperature. Stained cells were examined using
Zeiss LSM510 laser scanning confocal microscope (Zeiss
Microimaging Inc., Thornwood, NY) equipped with 63x
and 100x Pan-Apochromat oil lenses. The Alexa Fluor 488
and 555 signals were imaged sequentially in frame-inter-
lace mode to eliminate cross-talk between channels.
Images were processed using Zeiss LSM5 image browser
software and their brightness and contrast were adjusted
in Adobe Photoshop. Images shown are representative of
at least 3 independent experiments with multiple images
taken per slide. The statistical analysis of TJ disassembly
was performed as described previously [68]. Briefly, cells

http://www.biomedcentral.com/1471-2121/10/36

were co-stained for occludin (or E-cadherin) and nuclei,
and at least 10 random images per slide were acquired at
the level of TJ using 63x objective. The total number of
cells per image was determined by nuclei count. The cells
with diffuse cytoplasmic localization of occludin, which
showed no discontinuous staining pattern with the other
cells, were counted as cells with disassembled TJ. If neigh-
bor cells showed common discontinuous occludin locali-
zation pattern, those cells were counted as cells
maintaining TJ.

Immunoblotting

Cells were homogenized in a RIPA lysis buffer (20 mM
Tris, 50 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1% sodium
deoxycholate, 1% TX-100, and 0.1% SDS, pH 7.4), con-
taining a protease inhibitor cocktail (1:100, Sigma) and
phosphatase inhibitor cocktails 1 and 2 (both at 1:200,
Sigma). Lysates were cleared by centrifugation (10 min at
14,000 x g), diluted with 2x SDS sample buffer and
boiled. SDS-polyacrylamide gel electrophoresis and
immunoblotting were conducted by standard protocols
with equal amount of total protein (10 or 20 ng) per lane.
Results shown are representative immunoblots of three
independent experiments. Protein expression was quanti-
fied by densitometric analysis of at least three Western
blot images each representing independent experiment,
using Scion Image (Scion, Frederick, MD) and UN-SCAN-
IT digitizing software (Silk Scientific, Orem, UT).

Cell fractionation

Cytosolic and membrane fractions of control or OI-V
treated HPAF-II cells were prepared as described previ-
ously [92]. Briefly, cells were harvested in Relax buffer
(100 mM KCl, 3 mM Na(l, 3.5 mM MgCl,, 10 mM Hepes,
pH 7.4) containing protease and phosphatase inhibitor
cocktails and nitrogen cavitated (200 psi, 15 min). Nuclei
were removed by centrifugation (1,000 x g x 10 min).
Membranes were pelleted by ultracentrifugation of the
post nuclear supernatants at 100,000 x g for 60 min.
Supernatants (cytosolic fraction) were collected and the
pellets were resuspended in an equivalent volume (equal
to the starting volume of cell lysate) of Hanks balanced
salt solution containing 1% n-octylglucoside by sonica-
tion on ice. Equal volumes of the cytosolic and membrane
fractions were subjected to immunoblotting analysis as
described above.

RT-PCR

Total RNA was isolated from confluent HPAF-II cells using
Trizol LS extraction reagent (BD Biosciences, Franklin
Lakes, NJ) according to manufacturer's protocol followed
by DNase I digestion (Promega, Madison, WI). RT-PCR
reaction was performed using a SuperScript III One-Step
RT-PCR System (Invitrogen). The primer sequences of dif-
ferent PKC isoforms are presented in the Additional File
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Figure 5

PKC-activating tumor promoter induces rapid acti-
vation of myosin Il. (A) Representative Western blots and
(B) densitometric quantification show an increase in the
amounts of mono-phosphorylated (p) and di-phosphorylated
(pp), but not total regulatory myosin light chain (RMLC) in
HPAF-II lysates after | and 3 h exposure to OI-V (I uM).
Data are presented as mean * SE (n = 4); *p < 0.05 com-
pared to the vehicle-treated group. (C) Double-fluorescence
labeling of p-RMLC (red) and F-actin (green) shows diffuse
apical staining of p-RLMC in control HPAF-II cells and a lat-
eral accumulation of p-RLMC (arrows) after 3 h of the OI-V
treatment. Bar, 20 um.

1B. Specificity of amplification was verified by running
agarose electrophoresis of each amplicon and obtaining a
single band of expected size. To control for genomic con-
tamination and other nonspecific products, SuperScript
II RT in PCR reaction was substituted with Tag DNA
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+ NM IIA siRNA

Figure 6

Inhibition of NM Il attenuates disassembly of epithe-
lial apical junctions induced by activation of PKC. (A)
HPAF-II cells were treated for 5 h with either OI-V alone (I
pM), or in a combination with pharmacological inhibitors of
NM II, blebbistatin (100 1uM). Blebbistatin significantly attenu-
ates disassembly of E-cadherin-based AJ and occludin-based
TJ induced by the PKC activator. (B) HPAF-II cells were
transfected with either control or NM IlIA-specific siRNAs
and exposed to | uM OI-V for 5 h on day 3 post-transfec-
tion. In contrast to control cell monolayers, NM [|A-depleted
cells do not respond to PKC activator by junctional disas-
sembly and retain their occludin in the areas of cell-cell con-
tacts (arrows). Bar, 20 pm.

polymerase (a negative control line in the Additional File
1A).

RNA interference and adenoviral infection

siRNA-mediated knock-down was carried out using iso-
form-specific human NM IIA siRNA SmartPool (Dhar-
macon, Lafayette, CO), pl60ROCK (ROCK-I) duplex 2
and ROCK-II duplex 1 (QIAGEN, Valencia, CA) respec-
tively. Cyclophilin B siRNA SmartPool (Dharmacon) was
used as a control. HPAF-II cells were transfected using the
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Figure 7

Pharmacological inhibition of Rho-dependent kinase
(ROCK) prevents OIl-V-induced disruption of apical
junctions. HPAF-I| cells were treated for 5 h with either OI-
V alone (I pM) or in a combination with two pharmacologi-
cal ROCK inhibitors, Y-27632 (20 uM) and H-1152 (10 uM).
The effects of the PKC activator on barrier properties were
determined by TEER measurement (A), whereas the integ-
rity of A] and T) was analyzed by immunofluorescence labe-
ling for E-cadherin and occludin respectively (B). Both
ROCK inhibitors significantly attenuate Ol-V-induced disrup-
tion of paracellular barrier and disassembly of AJ and TJ. Bar,
20 um. (C€) Immunoblotting analysis shows that inhibition of
ROCK using H-1152 (10 uM) abolishes both mono- and di-
phosphorylation of RMLC induced by 3 h exposure to OI-V
(I uM), while not affecting the levels of total RMLC.
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Figure 8

siRNA-mediated knock-down of the ROCK-Il isoform
selectively attenuates PKC-dependent disassembly of
T). HPAF-II cells were transfected with either control or
ROCK-isoform specific siRNAs and treated with OI-V (|
pM) for 5 h on day 3 post-transfection. (A) Immunoblotting
analysis shows effective down-regulation of ROCK-| and
ROCK:-II by corresponding siRNAs. (B) Down-regulation of
ROCK-II attenuates OI-V-induced T] disassembly whereas
ROCK-I knockdown has no effect. Bar, 20 um. (C) Quantita-
tive analysis of T) disassembly. Data are presented as mean *
SE (n = 3); *p < 0.05 compared to the control siRNA-trans-
fected cells.

DharmaFect 1 transfection reagent (Dharmacon) in Opti-
MEM I medium (Invitrogen) according to manufacturer's
protocol with a final siRNA concentration of 50 nM. Cells
were used in experiments 72-80 h post-transfection. Ade-
noviruses expressing EGFP-tagged dominant negative
N19RhoA mutant, as well as control EGFP virus were pro-
vided by Dr. James Bamburg (Colorado State University)
and produced as described previously [93]. Cells were
incubated in DMEM medium containing purified viral
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Figure 9

Inhibition of MLCK, calmodulin, and ERK1/2 does not
affect Ol-V-induced disassembly of epithelial apical
junctions. HPAF-II cells were treated for 5 h with either OI-
V alone (I uM) or in a combination with pharmacological
inhibitors of MLCK (ML-7 (20 uM)), calmodulin (W-7 (100
pM)), and ERK1/2 (U 1026 (5 uM)). The integrity of A] and T)
was determined by immunofluorescence labeling for E-cad-
herin and occludin respectively. Neither inhibitor prevents
Ol-V-induced disassembly of AJ and TJ. Bar, 20 um.

particles diluted to 5 x 105 plaque-forming units/ml for 36
h before OI-V treatment.

Transepithelial electrical resistance measurement

Effect of PKC activators on transepithelial electrical resist-
ance was measured using an EVOMX voltohmmeter
(World Precision Instruments, Sarasota, FL). The resist-
ance of cell-free collagen-coated filters was subtracted
from each experimental point.

Caspase activation assay

Confluent HPAF-II monolayers were incubated for 5 h
with either vehicle, octylindolactam-V (1 pM), or camp-
tothecin (2 pg/mL). Live cells were labeled with Poly Cas-
pase FLICA detection Kit (Axxora LLC) according to the
manufacturer protocol, fixed in 3.7% paraformaldehyde
and examined by confocal microscopy as described
above.

Statistics

Numerical values from individual experiments were
pooled and expressed as mean + standard error of the
mean (S.E.) throughout. The results were compared by a
post-hoc Bonferroni test following analysis of variance
(ANOVA) with a statistical significance assumed at p <
0.05.

List of Abbreviations
AJs: adherens junctions; EMT: epithelial to mesenchymal
transition; OI-V: octylindolactam V; NM II: nonmuscle

http://www.biomedcentral.com/1471-2121/10/36

Octylindolactam-V

A i Y
Octylindolactam-V Rho inhibitor

E-cadherin

Occludin

o~

Merged

Control EGFP

N19 RhoA EGFP

Figure 10

Inhibition of RhoA GTPase does not prevent OI-V-
induced disassembly of epithelial apical junctions.
Activity of Rho GTPase in HPAF-II cells was blocked by
either incubation with a cell-permeable inhibitor C3 toxin (2
pg/ml for 3 h; A) or overexpression of a dominant-negative
N19 RhoA mutant (B), and effect of this inhibition on OI-V
induced disassembly of AJ and T] was determined by immun-
ofluorescence labeling and confocal microscopy. Neither
pharmacological inhibitor, nor dominant-negative RhoA
mutant prevent disassembly of epithelial junctions induced by
the PKC activator. Bar, 20 pum.

myosin II; PKC: protein kinase C; ROCK: Rho-dependent
kinase; TEER: transepithelial electrical resistance; TJs: tight
junctions; TPA: 12-O-tetradecanoylphorbol-13-acetate;
Z0O-1: 'zonula occludens'-1.
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Additional material

Additional file 1

Detection of different PKC isoforms in HPAF-II cells. The data pro-
vided represent the RT-PCR analysis of different PKC isoform expression
in confluent HPAF-II cell monolayers. (A) Agarose electrophoresis of PCR
amplicons shows expression of two classical (PKCs « and y) and four
novel (PKCs 8, & nand 6) PKC isoforms. (B) Primer sequences that were
used to detect expression of different PKC isoenzymes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-36-S1.pdf]

Additional file 2

OI-V induces membrane translocation of different PKC isoforms. The
data presented show distribution of different PKC isoenzymes between
cytosolic and plasma membrane fractions in control and OI-V-treated epi-
thelial cells. Note that 1 h OI-V treatment rapidly increased the amount
of both classical (aand fl) and novel (6) PKC isoenzymes associated with
cell membranes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-36-S2.pdf]

Additional file 3

NM IIA-specific siRNAs effectively downregulate expression of this
protein. The data show the effectiveness of siRNA-mediated depletion of
NM IIA. HPAF-II cells were transfected with either a control (cyclophilin
B), or NM IIA-specific siRNA SmartPools and analyzed for NM I1A
expression 84 h post-transfection.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-36-83.pdf]

Additional file 4

Effects of Rho inhibition on myosin phosphorylation and basal F-actin
filaments in OI-V-treated and control epithelial cells. The presented
data demonstrate different effects of Rho inhibition on actomyosin
cytoskeleton in HPAF-II cells. (A) HPAF-II cells were treated for 3 h with
either OI-V alone (1 uM), or in a combination with cell-permeable Rho
inhibitor, C3 toxin (2 pg/ml). Immunoblotting analysis shows that Rho
inhibitor fails to prevent OI-V-dependent increase in the amount of mono-
and di-phosphorylated RMLC. (B) Control HPAF-1I monolayers were
treated for 3 h with either vehicle or C3 toxin with subsequent fixation
and fluorescence labeling of F-actin. Note that Rho inhibitor causes dis-
appearance of basal actin filaments in HPAF-II cell monolayers which
indicates the efficiency of this inhibitor in our experimental conditions.
Bar, 20 um.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-36-4.pdf]
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Additional file 5

OI-V-induced junctional disassembly is independent of apoptosis.
These experiments probed the role of caspase activation in OI-V-induced
junctional disassembly (A) Confluent HPAF-II cell monolayers were incu-
bated for 5 h with either vehicle, or OI-V. Cell monolayers exposed for 5
h to a classical pro-apoptotic agent, camptothecin (2 ug/mL), were used
as a positive control. Cell monolayers were fixed and probed with Poly Cas-
pase FLICA detection kit. Note, that camptothecin-treated cells show a
significant increase in the number of FLICA-positive caspase-activated
cells (green), whereas OI-V does not induce such a caspase activation. (B)
HPAF-II cell monolayers were treated for 3 h with either vehicle or 1 uM
OI-V with or without pretreatment with a potent pan-caspase inhibitor
zZVAD-fmk (50 uM). Junctional integrity was evaluated by immunolabe-
ling for E-cadherin. Note that caspase inhibition has no effect on AJ dis-
assembly induced by OI-V. Bar, 20 um.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-36-S5.pdf]
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