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ABSTRACT
Cells of the tumor microenvironment exert a vital influence on sarcoma prognosis. This study 
aimed to analyze and identify differentially expressed genes (DEGs) related to immunity and their 
significance as immune biomarkers for the accurate prediction of overall survival of patients with 
sarcoma. The Cancer Genome Atlas was adopted for obtaining sarcoma gene microarray and 
corresponding clinical information. ESTIMATE algorithm was used to calculate tumor immune 
microenvironment indices. Immune-associated DEGs were identified using the limma packages 
and were further analyzed using the ClusterProfiler package and STRING website. Based on the 
results of these analyses, we constructed a prognostic model. Furthermore, we assessed the 
prognosis prediction model through functional evaluation and analysis of GSE17674. The func-
tional analysis revealed that the upregulated immune DEGs were related to immune-related 
aspects. Chemokine ligands/receptors and immune-related genes were found to be vital for 
sarcoma formation and progression. We established a prognostic signature of seven genes, 
which indicated that high-risk cases exhibit poor prognostic outcome. The prognostic signature 
constructed in this study can accurately predict the overall prognosis in patients with sarcoma. 
Moreover, the novel immune gene expression analysis may provide clinical guidance for predict-
ing prognosis in patients with sarcoma.
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Introduction

Sarcomas that originate from the mesenchymal 
tissues are malignant and consist of 50 different 
subtypes, with a high degree of histological hetero-
geneity within each subtype. Currently, the num-
ber of patients with sarcoma is more than 10,000, 
and approximately 3800 sarcoma-related fatalities 
per year are reported in the United States [1]. Poor 
prognosis of sarcomas can be attributed to their 
extremely high recurrence rates, even after initial 
surgical resection. Additionally, the pathological 
mechanism of sarcomas remains poorly under-
stood to date.

The tumor microenvironment (TME) is the cellu-
lar environment composed of extracellular matrix 
molecules, endothelial, mesenchymal, and tumor- 
infiltrating immune cells, and inflammatory 

mediators [2]. It provides metabolites and controls 
the proliferation and spread of many tumors. The 
TME has been reported to considerably affect gene 
expression in tumor tissues [3–6]. Stroma and 
immune cells account for two major nontumour 
components in TME, and these cells play essential 
roles in the diagnostic, prognostic, and overall survival 
(OS) assessment of tumors [7–9].

We hypothesized that sarcoma microenviron-
ment and immune-related genes play a role in 
the pathogenesis and prognosis of sarcomas. 
Thus, in the present study, we explored the role 
of sarcoma microenvironment and immune 
genes in sarcomas and constructed risk models 
by using immune genes to predict the prognosis 
of patients with sarcomas. We performed the 
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ESTIMATE algorithm [5] analysis to determine 
the relative indices of TME of sarcomas from 
The Cancer Genome Atlas (TCGA) [10,11]. The 
limma package was used to calculate the immune 
DEGs based on their immune scores. IMMPORT 
data were used to screen immune cells. Finally, 
immune genes were incorporated to construct 
a prognosis prediction model.

Materials and methods

Data sources

Both sarcoma gene microarray data and clinical 
information (including age, sex, histological type, 
survival, and outcome) were downloaded from 
TCGA (https://portal.gdc.cancer.gov/).

Data processing

The standardization of gene expression was per-
formed in R software (version 4.0.0), whereas the 
indices of TME, including immune and stromal 
scores, were obtained using the ESTIMATE algo-
rithm [5]. The limma package [12] was used to 
analyze DEGs, with the criteria of adjusted p value 
≤ 0.05 and |logFC| ≥ 1.5 indicating statistical 
significance.

Functional enrichment analysis

Gene Ontology (GO) analysis is widely performed 
in bioinformatics to annotate large quantities of 
genes and their expression products after transla-
tion [13]. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is used to analyze the pathways 
in which certain genes are enriched [14]. In this 
study, the ClusterProfiler package [15], one of the 
R packages, was used for both GO and KEGG 
enrichment analyses.

Construction of a protein–protein interaction 
network

A protein–protein interaction (PPI) network was 
constructed using DEGs imported into the 
STRING database [16] (https://string-db,org/) at 
the confidence level of 0.700. Further, the final 
PPI networks data were downloaded and input 

into Cytoscape software [17] (version 3.7.1) to 
reconstruct and further analyze the PPI network. 
The PPI sub-networks, with both the number of 
nodes and Molecular Complex Detection 
(MCODE) scores being >10, were analyzed using 
the MCODE plug-in.

Immunohistochemistry

The collected samples from the tumor and adja-
cent samples were subjected to 10% formalin fixa-
tion and paraffin embedding. The gene expression 
was detected through EnVision immunohisto-
chemistry [18]. The antibodies and concentrations 
used were: anti-CCR2 rabbit polyclonal antibody 
(D260151; 1:50 dilution); anti-CCR4 rabbit poly-
clonal antibody (D162858; 1:400 dilution); and 
anti-CCR5 rabbit polyclonal antibody (D161519; 
1:15 dilution). All the antibodies were obtained 
from Sangon Biotech Co. Ltd. Shanghai, China. 
The study was approved by the Ethics Committee 
of The First Affiliated Hospital of Guangxi 
Medical University, China [Approval Number: 
2021(KY-E-130)].

Analysis of immune-related genes and 
establishment of a prognostic model

The shared IMMPORT data [19] (https://www. 
immport.org/) enable searching and downloading 
of biomedical research data, which were used in 
this study to obtain data regarding immune- 
related genes. Furthermore, the collected genes 
were combined with the immune DEGs to obtain 
immune genes related to sarcoma. Associations 
between the expression of immune-related genes 
and OS were analyzed through the univariate 
regression analysis. Genes were considered prog-
nostically significant only when the p value was 
<0.05 and the corresponding levels were markedly 
associated with OS. Immune-related genes for 
prognosis prediction were selected using a ‘step- 
by-step’ approach to establish the prognosis pre-
diction model [20]. Using OS as the dependent 
variable, immune-related genes for prognosis pre-
diction were fitted through multivariate regres-
sion for evaluating their corresponding 
contributions to OS prediction. The risk score 
prognosis prediction model was established 
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according to relevant gene expression, with corre-
sponding gene levels as linear combination and 
coefficient of multivariate regression (α) as 
weight. The cases were classified into low – or 
high-risk groups based on the median risk score 
value.

Evaluation and verification of the prognostic 
model

R package SurvivalROC was used to test the relia-
bility of the constructed prognosis model based on 
receiver operating characteristic (ROC) analysis 
[21,22]. Furthermore, univariate and multivariate 
regression analyses were performed for better eva-
luation of the model’s degrees of independence. 
Additionally, the prognostic assessments were per-
formed on the sarcoma data obtained from Gene 
Expression Omnibus (GEO; https://www.ncbi.nlm. 
nih.gov/geo/). The acquired patients’ clinical infor-
mation along with the genes and risk scores were 
analyzed to construct a nomogram by using R with 
the survival and RMS packages. Nomograms can 
be used to predict the survival probability for 
patients with sarcoma after disease onset.

Statistical analysis

The limma and ClusterProfiler packages were used 
based on a false discovery rate (FDRs, that is, 
adjusted p value) of ≤0.05 to adjust for the multi-
variate Cox regression analysis, and the FDR was 
controlled using the Benjamini–Hochberg pro-
gramme [23]. Univariate analysis was conducted 
using the log-rank test, and the Pearson correla-
tion coefficient was used to analyze the co- 
expression relationships. A p value of <0.05 was 
considered statistically significant. All statistical 
analyses were performed using GraphPad Prism 
(Version 8), SPSS (version 22.0), and R software 
(version 4.0.0).

Results

To better understand the immune microenviron-
ment and the possible underlying mechanism 
through which it contributes to sarcomas, we ana-
lyzed the sarcoma data downloaded from TCGA 
database to calculate the immune and stromal 

scores and identified the DEGs between the 
high – and low-score groups. PPI analysis showed 
that the C-C motif chemokine receptor (CCR) 
genes were closely related to sarcoma. By using 
the IMMPORT data, sarcoma-related immune 
genes were obtained that were used to construct 
risk models. Risk models can accurately predict 
the prognosis of patients with sarcoma. And the 
risk model constructed in this study also per-
formed well in GEO dataset.

The relationship of clinical data with scores

A total of 263 gene microarray samples and the 
clinical data were obtained from TCGA. Of these, 
119 (45.25%) cases were of male patients and 144 
(54.75%) cases were of female patients. The age of 
patients ranged from 20 to 90 years (mean: 
60.56 ± 14.63). A total of 158 (60.08%) inconclu-
sive histological cases were identified, of which the 
conventional leiomyosarcoma histological subtype 
accounted for 67 (25.48%) cases; poorly differen-
tiated, pleomorphic, or epithelioid leiomyosar-
coma accounted for 34 (12.93%) cases; and well- 
differentiated leiomyosarcoma accounted for 4 
(1.52%) cases. The number of cases with positive 
tumor margins was 74 (28.14%), that of cases with 
negative tumor margins was 139 (52.85%), and 
that of cases with unknown or incomplete data 
on tumor margins was 50 (19.01%). The clinical 
data are presented in the Supplement 1.xlsx. The 
ESTIMATE algorithm analysis indicated that the 
range of immune scores was from −2039.13 to 
3295.15 (mean: 433.88 ± 1116.81) and that of the 
stromal scores was from −1275.33 to 2519.30 
(mean: 882.36 ± 718.82). The mean immune 
score significantly increased compared with the 
mean stromal score (p < 0.001). Moreover, the 
results revealed that male patients had higher stro-
mal/immune scores than female patients (Figure 1 
(a,b), p < 0.05). The correlation between different 
subtypes and the stromal/immune scores was not 
statistically significant (Figure 1(c,d), p > 0.05). All 
the cases were classified into the high – or low- 
stromal/immune score group based on the corre-
sponding stromal/immune scores. The relation-
ship between the age and score was not 
statistically significant (Figure 1(e,f), p > 0.05). 
According to the Kaplan–Meier analysis, the low 
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stromal/immune scores predicted dismal OS. 
However, the relationship between stromal scores 
and OS was not statistically significant (Figure 1 
(g), p < 0.05; Figure 1(h), p > 0.05).

Identification of significant DEGs

The limma package was employed to analyze the 
association of gene levels with stromal/immune 
scores by examining DEGs. The heatmaps of 
DEGs obtained using the heatmap package are 
shown in Figure 2(a,b). We drew a volcano plot of 
DEGs (Figure 2(c,d)) and set | logFC | > 1.5 and 
FDR < 0.05. A total of 1299 DEGs were detected 
between high – and low-immune score groups. Of 
these, 732 genes were upregulated and 567 genes 
were downregulated. Altogether, we detected 1223 
DEGs between high – and low-stromal score 
groups, with 520 genes being upregulated and 703 
genes being downregulated. Furthermore, 410 over-
lapped genes with upregulation and 498 genes with 
downregulation were identified between immune 
and stromal DEGs (Figure 2(e,f)).

The functional analysis of DEGs

To analyze the associations of immunity with sar-
coma cells, we investigated the in-depth function 
of DEGs by analyzing both immune score groups. 
Altogether, 732 upregulated genes and 567 down-
regulated genes were analyzed using the 
ClusterProfiler package. The GO terms consisted 
of Biological process, Molecular function, and 
Cellular component aspects and processes. After 
analysis, 732 upregulated genes were found to be 
enriched in 1193 GO terms (n = 1015 in Biological 
process, n = 102 in Molecular function, and n = 76 
in Cellular component). The GO analysis indicated 
that most upregulated DEGs were related to the 
growth, adhesion, and activation of immune cells 
(Figure 3(a)). This finding further underlined the 
functional significance of immune cell processes in 
sarcoma development. Altogether, 567 downregu-
lated DEGs were enriched in 477 GO terms 
(n = 324 in Biological process, n = 48 in 
Molecular function, and n = 105 in Cellular com-
ponent). Clearly, these downregulated DEGs were 
mostly related to muscle contraction (Figure 3(b)). 
The KEGG pathway analysis indicated that these 

Figure 1. Associations of clinical information with stromal/immune scores of patients with sarcoma.
The relationship between gender and immune score (a), gender and stromal score (b), subtype and immune score (c), subtype and 
stromal score (d), age and immune score (e), age and stromal score (f), overall survival and immune score (g) and overall survival and 
stromal score(h). OS, overall survival. 
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upregulated DEGs were mostly related to the 
interaction of viral protein with cytokine/cytokine 
receptor, cell adhesion molecules (CAMs), cyto-
kine–cytokine receptor interaction, osteoclast dif-
ferentiation, and chemokine signaling (Figure 3 

(c)). Meanwhile, those downregulated DEGs were 
mostly related to cardiac muscle contraction, cal-
cium pathway, vascular smooth muscle contrac-
tion, cAMP pathway, and adrenergic signaling in 
cardiomyocytes (Figure 3(d)).

Figure 2. Gene levels in sarcoma and related scores. Heatmaps (a and b), volcanos (c and d), and Venn diagrams (e and f) regarding 
DEGs of high – versus low-stromal/immune score groups.
DEGs, differentially expressed genes; L, low scores; H, high scores; Str, stromal score; Imm, immune score; lfc, Log (fold change). 
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PPI network construction

To further understand the DEG interactions, the PPI 
network was constructed. Using the STRING data, we 
reconstructed PPI networks by incorporating the 
upregulated and downregulated DEGs with 
Cytoscape (Supplement 1–2). The PPI networks 
were further analyzed using the MCODE plug-in. 
Upon the thresholds of nodes ≥ 10 and 
Density*#Nodes score ≥ 10, we acquired four sub- 
networks based on the upregulated DEG PPI net-
works and 1 subnet from the downregulated DEG 
PPI networks (Figure 4(a–d)). Of the PPI sub- 
networks constructed by incorporating 

downregulated DEGs, GNG4 exhibited the greatest 
score of 24, followed by ADCY2 and ADCY5 (both 
with a degree of 17). The GO results indicated that the 
upregulated DEGs were mostly associated with 
immune activity. Sub-network 1 related to the upre-
gulated DEGs displayed the most edges and greatest 
scores but only 36 nodes. Therefore, this network was 
analyzed in detail; FPR2 had the highest degree (72), 
followed by C3 (degree = 66), C3AR1 (degree = 66), 
CXCL8 (degree = 66), CCR5 (degree = 65), CCR7 
(degree = 65), CCR2 (degree = 59), CXCL1 
(degree = 59), CXCL10 (degree = 57), and CXCR3 

Figure 3. Functional analysis of DEGs. Bubble charts showing the 20 most significant GO terms among DEGs (a and b). Bubble charts 
showing the KEGG pathways among DEGs (c and d).
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes. 

Figure 4. PPI sub-networks. (a–c) indicate the 3 PPI sub-networks constructed by the most significantly upregulated DEGs. (d) shows 
the PPI sub-network constructed by the downregulated DEGs. Node size stands for the connectivity degree. Blue and red colors 
indicate downregulated and upregulated genes, respectively. Color depth stands for fold change size. Edge thickness stands for 
combined score.
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(degree = 57). Among the top 10 genes, CCRs and 
CXCLs each accounted for three genes. The CCRs 
and CXCLs accounted for 5 and 8 genes, respectively, 
in the top 1 subnet. Additionally, the CCL gene, with 
six genes, was significantly enriched in the top 1 
subnet. As suggested by the matrix diagram for 
Pearson’s correlation, the levels of CCR family genes 
and certain CCL and CXCL family genes were tightly 
related to the correlation coefficient ≥ 0.5 (Figure 5(a– 
c)). The number in each grid represented the correla-
tion coefficient between each gene. Furthermore, our 
results indicated that the high expression of CCR 
genes corresponds to better short-term survival, 
although CCR1 and CCR4 did not exhibit any statis-
tical significance (Figure 6).

CCR family genes were protective factors

To further evaluate our results, we randomly 
selected CCR2, CCR4, and CCR5 belonging to 
the CCR family for immunohistochemical verifica-
tion. The expressions of CCR genes within tumor 
and matched noncarcinoma tissue samples in 
patients with leiomyosarcoma and synovial sar-
coma were examined. The immunohistochemical 
analysis results showed that the expressions of 
CCR2, CCR4, and CCR5 were considerably lower 
in cancer tissues than in paracancerous tissues 
(Figure 7). This result suggested that such genes 
exhibit a low expression level within tumor tissues, 
thus indirectly supporting our conclusion that 
patients with high expressions of CCR family 
genes have a better short-term survival prognosis, 
thereby indicating the protective nature of these 
genes.

Construction of an immune-related gene 
signature

Immune scores were calculated to analyze DEGs. 
To better understand immune-related genes 
involved in sarcoma, we obtained corresponding 
immune-related genes from IMMPORT and inter-
sected them with our obtained DEGs. Overall, 85 
sarcoma immune-related genes were obtained. 
Afterward, the univariate regression analysis was 
performed to examine the relationships of 
immune gene levels with OS of sarcoma cases. 
Lastly, 10 genes were identified as the prognosis- 
related immune genes, and their optimal combina-
tion was analyzed through the �step-by step’ func-
tion (Figure 8(a)). Finally, a prognostic model was 
constructed using the seven prognosis-related 
immune genes, namely EDN3, BTC, IL17B, 
GREM2, ZC3HAV1L, RAC3, and PAK3 (Table 1). 
Based on our prognostic model, we classified the 
cases into two groups, namely low – and high-risk 
score groups. Consequently, cases with high-risk 
scores exhibited poor prognosis compared with 
those having low-risk scores (Figure 8(b,c)). The 
expression of seven prognostic immune genes in 
the high – and low-risk groups was examined 
using the Wilcoxon rank sum test. The results 
revealed that the difference in the expression of 
seven prognostic immune genes was significant 
between the two groups (Figure 8(d)).

Evaluation and verification of the immune 
gene-based prognostic model

Based on ROC curve analysis, the prognostic 
model constructed by incorporating immune 
genes exhibited excellent performance in 

Figure 5. Matrix graphs for Pearson’s correlation analysis. a, b, and c are CCR gene, CXCL gene, and CCL gene, respectively. The 
correlations coefficients between the genes are shown in grid.
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predicting survival of patients with sarcoma, 
with an AUC (area under curve) of 0.765 
(Figure 9(a)). Univariate and multivariate regres-
sion analyses revealed that the risk score value is 
an independent factor for predicting the prog-
nosis of sarcoma (Figure 9(b)). Moreover, we 
obtained the GSE17674 dataset from the GEO 
database for analysis, which suggested that our 
constructed model is suitable for predicting sur-
vival of patients with sarcoma. GSE17674 con-
tains the clinical data of 44 Ewing sarcoma 
patients. The Robust Multichip Average algo-
rithm [24] was used to standardize, normalize, 
and correct gene expression profiles. Figure 10 
shows the Kaplan–Meier analysis for OS and 
event-free survival of patients in the high – 

and low – risk score groups in the GSE17674 
dataset. The results revealed that both event-free 
survival and OS were poor in the high-risk score 
group, although the difference in event-free sur-
vival between the two groups was not significant 
(p > 0.05). After screening, a total of 83 patients 
with complete pathological classification and 
margin status were selected to construct 
a nomogram diagram. The nomogram diagram 
showed that the constructed risk model had 
a significant effect on survival prognosis, and 
the high expressions of CCR4 and CCR5 also 
were identified as the protective factors. 
However, CCR2 was identified as a risk factor 
in the nomogram diagram constructed for these 
83 cases (Figure 11).

Figure 6. The survival analysis of CCR genes in sarcoma.

BIOENGINEERED 7623



Discussion

The treatment of sarcoma, a malignant tumor, is 
a nightmare for clinicians because of its high 
recurrence potential. The stromal and immune 
scores of CIBERSORT algorithm were used for 
analyzing the TME, which is significantly asso-
ciated with tumor prognosis [25,26]. Runzhi 
Huang el at [6] reported the association between 
TME and sarcoma recurrence. However, the pre-
sent study used TCGA data to analyze the TME 
for predicting survival of patients with sarcoma. 
The function of immune-related DEGs was ana-
lyzed for better understanding the association 
among these genes. The results indicated that the 
immune-related DEGs with high expression levels 
were mostly related to the immune-related biolo-
gical processes, such as T-cell activation regula-
tion, T-cell activation, leukocyte proliferation, 
lymphocyte activation regulation, and leukocyte 
cell–cell adhesion. In addition, these DEGs were 
found to be related to immune pathways including 
the viral protein–cytokine/cytokine receptor inter-
action, cytokine–cytokine receptor interaction, 
osteoclast differentiation, chemokine pathway, 

phagosomes, CAMs, NF-κB pathway, complement 
and coagulation cascades, PI3K–Akt pathway, and 
arachidonic acid metabolism.

CCRs, CXCLs, and CCLs are significantly 
related to cell inflammation, immune surveillance, 
migration, and tumourigenesis [27–29]. Several 
studies have reported that CCRs are associated 
with tumor growth [30] through various molecular 
mechanisms [31]. In PPI sub-network 1, wherein 
highly expressed immune DEGs were incorporated 
and which was analyzed using MCODE, genes in 
the CCR, CCL, and CXCL families, particularly the 
CCR family genes, showed distinct clusters and 
had obvious co-expression relationships. Cases 
with CCR gene upregulation demonstrated super-
ior short-term survival. These results are consis-
tent with those of studies by Zhou et al. and Zhang 
et al. Zhou et al. showed that CCRs are the pro-
tective genes in patients with early pancreatic duc-
tal adenocarcinoma [32]. Zhang et al. reported that 
high CCR expression in childhood osteosarcoma is 
associated with a better prognosis [33]. However, 
other studies have demonstrated that the high 
expression of CCRs promotes tumor progression 

Figure 7. Immunohistochemical evaluation of CCR family protein expression in cancer and adjacent tissues. CCR2 in leiomyosarcoma 
(a) and synovial sarcoma (b). CCR4 in leiomyosarcoma (c) and synovial sarcoma (d). CCR5 in leiomyosarcoma (e) and synovial 
sarcoma (f). The expression of CCRs in tumor tissues is weaker than that in adjacent tissues in the same tumor at 200× magnification. 
The picture at the bottom right of each slice image is magnified 10 times again.
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and indicates a poor prognosis [34,35]. In our 
study, survival analysis showed that the high 
expression of CCR family genes is associated with 
better short-term survival (Figure 6). Additionally, 
immunohistochemical results showed that the 
expression levels of CCR2, CCR4, and CCR5 
were higher in adjacent tissues than in cancer 
tissues. However, CCR2 was identified as a risk 

factor in the nomogram of 83 patients, although it 
was not as significant for the prognostic score as 
the risk model score. This can be ascribed to the 
following reasons: first, the less number of cases 
after screening might have lead to a different 
result; second, a nomogram diagram is 
a prediction method that integrates several indica-
tors, and the influence of some of the included 
indicators might have lead to differences in the 
results for CCR2. Therefore, further analysis in 
the future should be performed by collecting 
basic clinical information. In our study, the highly 
expressed immune DEGs were enriched in both 
chemokine signaling and NF-κB signaling path-
ways. We believe that CCR genes and their ligand 
genes increase the DNA binding activity of NF-κB, 
κB-mediated luciferase activity, and TNF-α level 
depending on NF-κB [36,37]. CCR, one of the 
G-protein-coupled receptors expressed on the cell 

Figure 8. The prognostic risk assessment of immune-related genes in sarcoma. (a) Univariate regression for immune genes. (b) RS 
values, distribution of survival status, and heatmap for the seven prognosis-related immune genes are shown from top to bottom. (c) 
Kaplan–Meier curves of the two groups. (d) Violin map of seven prognostic immune genes expressed in the high – and low-risk 

groups.

Table 1. Immune-related gene-based sarcoma prognosis pre-
diction model.

Genes Hazard ratio P value Coefficient

BTC 0.90675 0.00136839 −0.05946
EDN3 1.061255 0.02837185 0.057797
GREM2 0.912368 0.00131673 −0.09467
IL17B 0.936947 0.04169136 0.06285
PAK3 0.930598 0.03411862 −0.08109
RAC3 1.252358 6.6651E-05 0.215092
ZC3HAV1L 1.194909 0.03087486 0.270264

Hazard ratio and P value obtained upon univariate regression. 
Coefficients obtained upon multivariate regression. 
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Figure 9. Evaluation of the immune-related gene-based prognostic model. a, ROC analysis to predict sarcoma prognosis according to 
the risk score value. b, Univariate and multivariate regression analyses are shown from left to right.
his_subtype, histological subtype; ROC, receiver operating characteristic. 

Figure 10. Kaplan–Meier analysis for event-free survival and overall survival in high – and low-risk patients with sarcoma derived 
from the GSE17674 dataset.
EFS, Event-free survival; OS, Overall survival. 

Figure 11. The nomogram for predicting 1-, 3 – and 5-year overall survival of sarcoma patient.
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membrane, can inhibit tumor cell proliferation. 
CCR1 can inhibit the proliferation of human 
liver cancer cells [38]. CCR5 decreases breast can-
cer development in a p53-dependent manner [39]. 
CCR7-triggered migration of leukocytes has 
a crucial function in triggering immune response 
under normal conditions, and CCR7 can recruit 
the activated dendritic cells and innate T cells into 
the lymph nodes to stimulate the adaptive immu-
nity [40]. CCL19 is a type of CCR7 ligand [41,42] 
that activates T cells [43]. Suppression of CCR7 
genes can trigger the returning of T cells into 
secondary lymphoid organs experiencing severe 
impairment. Additionally, CXCL1 and CXCL2 
have been shown to be related to the proliferation 
of cancers, including melanoma, gastric cancer, 
pancreatic cancer, adenocarcinoma, and lung can-
cer [44,45]. In our study, the CCR gene upregula-
tion predicted longer short-term survival, although 
this association was not found to be significant in 
case of CCR1 and CCR4. In the later disease stage, 
patients displaying the upregulation of CCR family 
genes had poor survival. We assume that the TME 
was adversely affected due to tumor growth, and 
thus, the body was at a disadvantage.

To date, various prognostic models have been 
established based on molecular genes. Yang Liu 
et al. constructed an autophagy-related gene 
model to improve prognosis prediction in indivi-
dual cases of non-small cell lung cancer [46]. 
A prognostic model based on eight RNA binding 
proteins for lung adenocarcinoma was established 
by Wei Li et al [47]. Previous prognostic signatures 
for sarcoma were constructed based on the age, 
tumor size, histological type, necrosis, tumor stage, 
and vascular invasion [48,49]. Rong-Quan He 
et al. predicted the clinical outcome and survival 
in patients with sarcoma by using a ten-lncRNA 
signature [49]. Growing evidence suggests that the 
TME and immune genes play a pivotal role in 
regulating multiple tumor pathogenesis processes 
[25,26,50]. However, to date, no prognosis predic-
tion model for the prediction of survival in 
patients with sarcoma has been constructed by 
incorporating immune genes. To further analyze 
the relationship between immunity and sarcoma, 
this study selected sarcoma-related immune genes 

based on IMMPORT-derived immune genes and 
immune-related DEGs. Univariable and multivari-
able analyses were conducted for constructing the 
sarcoma prognosis prediction model. Finally, the 
prognostic model was constructed using seven 
immune-related genes. Among these genes, 
GREM2, BTC, PAK3, and IL17B were the favorable 
prognostic factors, whereas EDN3, ZC3HAV1L, 
and RAC3 were the risk factors.

Endothelin 3 (EDN3) is a vital paracrine factor 
that affects the migration, proliferation, and sur-
vival of embryonic melanocytes during embryo-
nic development [51]. It is involved in the 
development of choriocarcinoma [52] and malig-
nant melanoma [53]. EDN3 is produced in large 
quantities by glioblastoma stem cells and serves 
as a crucial mitogen related to the growth and 
invasion of neural crest cells [54]. RAC3, a small 
GTPase 3 in the Rac family, belongs to the small 
guanosine triphosphatases (GTPases) Rac family, 
which has a crucial role in regulating cancer 
genesis and metastasis [55,56]. Liu TQ reported 
that lung cancer cell growth and clone formation 
were markedly suppressed after RAC3 knock-
down [57]. Moreover, Wang reported that 
RAC3 upregulation predicts the extended survi-
val of patients with lung adenocarcinoma [58]. 
Limited reports are available on ZC3HAV1L (zinc 
finger CCCH-type containing, antiviral 1 like), 
particularly on its relation with the tumor patho-
genic mechanism. To the best of our knowledge, 
this study is the first to report that ZC3HAV1L is 
a risk factor for sarcoma, and the prognostic 
model in the present study is the first model 
constructed using the immune-related genes 
screened from the sarcoma environment. The 
ROC curve and GSE17674 analysis further sup-
ported the sarcoma prognosis prediction model. 
In summary, we analyzed the DEGs in different 
microenvironments of sarcoma and illustrated 
the sarcoma pathogenic mechanism, in particular 
the functions and prognosis prediction value of 
CLLs, CCRs, and CXCLs in the context of sar-
coma. Based on IMMPORT-derived genes, 
immune genes associated with sarcoma were 
obtained, which were used to establish the prog-
nosis prediction model. The constructed model 
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could accurately predict survival of patients with 
sarcoma.

Conclusion

Chemokine receptors or ligands and immune- 
related genes are vital for the development and 
progression of sarcoma. The novel immune gene- 
based prognosis model may provide clinical gui-
dance for prognosis prediction in patients with 
sarcoma.

Research highlights

1. A seven-gene signature to predict sarcoma prognosis is 
constructed for the first time.

2. CCR family genes are closely related to the pathogenesis 
and prognosis of sarcoma.

3. The seven genes and CCR genes could be potential 
therapeutic targets for sarcoma.
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