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Snake trajectories in ultraclean graphene
p–n junctions
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Snake states are trajectories of charge carriers curving back and forth along an interface.

There are two types of snake states, formed by either inverting the magnetic field direction or

the charge carrier type at an interface. The former has been demonstrated in GaAs–AlGaAs

heterostructures, whereas the latter has become conceivable only with the advance of

ballistic graphene where a gap-less p–n interface governed by Klein tunnelling can be formed.

Such snake states were hidden in previous experiments due to limited sample quality. Here

we report on magneto-conductance oscillations due to snake states in a ballistic suspended

graphene p–n junction, which occur already at a very small magnetic field of 20 mT. The

visibility of 30% is enabled by Klein collimation. Our finding is firmly supported by quantum

transport simulations. We demonstrate the high tunability of the device and operate it in

different magnetic field regimes.
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A
magnetic field fundamentally modifies the transport

properties of an electronic conductor by acting on its
charge carriers via the Lorenz force. The most prominent

magnetotransport effect is the quantum Hall effect in a two-
dimensional electron gas. A strong perpendicular magnetic field
forces the charge carriers into one-dimensional conduction
channels in which they flow along the edges of a sample. At
moderate magnetic fields, however, electron trajectories can be
understood in a quasiclassical picture where the Lorenz force
bends charge carriers into cyclotron orbits. In the bulk this leads
to localization, whereas at the boundary charge carriers can
propagate via so-called skipping orbits. Magnetic focusing
experiments1,2 represent a direct proof of the skipping orbit
picture. In such experiments, an increase of conductance is
observed if the distance between two contacts is an integer
multiple of the diameter of a cyclotron orbit. One condition for
the observation of such trajectories is ballistic transport over the
relevant device dimensions. This has limited the observation of
skipping orbits to the cleanest available semiconductor samples.

Since 2004, graphene as a new two-dimensional conductor has
moved into the focus of condensed-matter research and its
behaviour in magnetic field has been intensely investigated. The
quality of graphene devices has improved over the recent years
and ballistic transport over distances of several microns have
been demonstrated recently3,4. Since graphene is a gap-less
semiconductor, it offers the possibility of creating internal
interfaces with opposite charge carrier polarity. These so-called
p–n interfaces5–7 are formed by local electrostatic gating.

If electrons that propagate via skipping orbits encounter such a
p–n interface, they will turn into snake states. These states consist
of alternating half circles with opposite chirality and they
transport current along the interface. Similar snake states have
first been realized in GaAs/AlGaAs two-dimensional electron
gases by defining regions of alternating magnetic field direction8.
These states share the condition of commensurability (similar to
the above-described magnetic focusing experiments) with p–n
snake states but they do not propagate along a single and tunable
interface. Snake states in graphene p–n junctions were claimed to
have been observed in disordered substrate-supported samples9

but the experiment lacked direct evidence for snaking trajectories.

In this article, we investigate ballistic transport across a
graphene p–n junction in different magnetic field regimes and
identify magneto-conductance oscillations as a direct signature of
snake states. These findings are supported by detailed tight-
binding simulations that allow us to visualize the alternating
cyclotron orbits of the snake states.

Results
Evolution of electron trajectories in graphene p–n junction. In
Fig. 1a–d, we illustrate schematically how trajectories under
increasing perpendicular magnetic field evolve in such a device.
Figure 1a describes the low-field situation where transport is
still dominated by Fabry–Pérot oscillations with slightly bent
trajectories10. As the field is increased, resonant scar states
(Fig. 1b) may occur, as observed in semiconductor quantum
dots11. At higher fields (Fig. 1c), snake states at the p–n interface
govern the electronic properties. Finally (Fig. 1d) the system
enters the quantum Hall regime12,13 where transport is
dominated by edge states and Landau level mixing at the p–n
interface can occur14,15. Even though this article is focusing on
snake states, we will discuss the phenomenology of the mentioned
magnetic field regimes. By doing so, we present an integral
picture of graphene p–n physics in magnetic field.

Device architecture. Figure 1e shows the design of the measured
device and Fig. 1f a scanning electron microscope picture of a
similar sample. In a suspended 2� 2 mm graphene sheet, a p–n
junction is formed by applying different voltages on the left (Vleft)
and right (Vright) bottom gates, resulting in different charge
carrier concentrations nleft and nright. The fabrication follows
partly ref. 16, which we combined with a wet transfer process
allowing us to align the graphene with the bottom gates. For
details, see ref. 17 and Methods.

Measurements in the Fabry–Pérot and quantum Hall regime.
In the following, we characterize the measured device in the zero,
low- and high-field regimes. Figure 2a shows a two-dimensional
colour map of the electrical conductance G(Vright,Vleft). As soon
as a p–n interface is formed, G is lowered drastically. Regular
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Figure 1 | Evolution of electron states in increasing magnetic field and design of a graphene p–n junction. (a) A two-terminal graphene device consisting

of a hole (blue) and an electron (red) cavity is sketched. By applying a weak field, the electron trajectories in the p- and n-cavities bend, leading to

dispersing Fabry–Pérot resonances. (b) The field is increased until the cyclotron orbit becomes comparable to the cavity size, where resonant scar states

can occur. (c) The field is further increased and transport is still described by quasiclassical cyclotron orbits. Snake states are formed along the p–n

interface. (d) Finally, quantum Hall edge states propagate in opposite directions in the p- and n-region at higher fields. (e) Three-dimensional design of the

measured device. The SiO2 substrate is coloured in blue and the bottom gates in gold. The contacts, supported by the lift-off resist (green) are coloured in

grey. (f) Scanning electron microscope image of a device similar to the measured sample. The graphene is coloured in blue and the bottom gates in gold.

Scale bar, 1mm.
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Fabry–Pérot resonances in the left/right cavity are visible as
oscillations perpendicular to the zero density line in the left/right
cavity (horizontal/vertical white dashed line in Fig. 2a), indicating
ballistic transport3,4. The inset in Fig. 2a is a slice along the
pp–nn diagonal (blue dashed). We estimate the mobility to
be m ¼ 1

e
ds
dn � 470�103 cm2 V� 1 s� 1 at carrier density n¼ 1.1

� 109 cm� 2, which we calculated by a simple parallel plate
capacitor model. The mobility is mainly limited by scattering at
the contacts3,18.

In Fig. 2b, we show cuts along the pp–nn diagonal at different
magnetic fields B and obtain quantum Hall plateaus at
G¼G0� n, where n¼ 2,6,10,... is the filling factor12,13 and
G0¼ e2/h is the conductance quantum. Even at fields as low as
60 mT, the n¼ 2 plateau is visible. The colourscale map in Fig. 2c
taken at 200 mT shows that plateaus develop in the unipolar
region with conductance values given by the lowest number
of edge modes in the left or right cavity, that is,
G¼G0�min(nright,nleft)¼ 2, 6, 10 e2/h. This observation com-
pares well to experiments of ref. 14, even though we apply only
0.2 T instead of 4 T. In the bipolar region, the conductance stays
well below 2e2/h due to the smoothness of the p–n interface.

In a further step, we study the dispersion of the Fabry–Pérot
interference pattern in low magnetic field10. Figure 2d shows the
numerical derivative dG=d ~V as a function of B and ~V , where ~V
represents the magnitude of gate voltage in the situation of
antisymmetric charge density (red dashed line in Fig. 2a, that is,
the np–pn diagonal). In this configuration, the device consists
of two Fabry–Pérot cavities of equal length LE0.8 mm. The
darkened region where the cyclotron radius RcoL will be
discussed later. In Fig. 2e, a tight-binding transport calculation
is shown, which reproduces the measured interference pattern

very well (for details see ref. 19 and Methods). We highlight the
quality of the measured graphene and the ability of the simulation
to capture the complex oscillation pattern of this micron-sized
system in the magnetic field. The dispersion of the Fabry–Pérot
oscillations can be described by bent electron trajectories such as
the one sketched in the inset of Fig. 2e (refs 3,10). The condition
for constructive interference is met if the accumulated phase
along such a trajectory is a multiple of 2p (see ‘Methods’). The
yellow lines in Fig. 2e are numerical solutions based on such a
condition.

Measurement of snake states. We now discuss the regime where
snake states emerge. In Fig. 3a, a snake state at a sharp p–n
junction is sketched. Consider a charge carrier trajectory starting
at the grey cross with momentum k in � x direction. Due to the
magnetic field, the trajectory is bent towards the p–n interface
within the cyclotron diameter 2Rc ¼ 2‘ k=eB ¼ 2‘

ffiffiffiffiffiffi
np
p

=eB. If
the trajectory hits the p–n interface, the hole will be transmitted
to the n side with high probability due to Klein tunnelling20. At
the upper edge of the sample, the snake trajectory scatters at the
left side, resulting in a current towards the left contact. At lower
n, Rc is reduced. As sketched in Fig. 3b, the snake trajectory
scatters to the right at the upper edge, resulting in a net current
towards the right contact. With this mechanism, one expects
conductance oscillations that depend on B and n, and constant
conductance along curves where Rc is constant. In Fig. 3c, we
display calculated functions n(B) for constant Rc. Snake states
occur once the cyclotron diameter 2Rc is smaller than the sample
width W (green dashed curve) and can be described by
quasiclassical trajectories as long as Rc is larger than the
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Figure 2 | Device characterization in the Fabry–Pérot and in the quantum Hall regime. (a) Two-terminal conductance as a function of left and right gate

voltage shows regular Fabry–Pérot oscillations at zero magnetic field. The inset reveals the narrow Dirac dip along the pp–nn diagonal (blue dashed line) from

which a mobility of mE470� 103 cm2 V� 1 s� 1 is deduced. (b) Cuts along the same diagonal at different magnetic field strengths exhibit the expected

quantum Hall plateaus at 2, 6, 10 e2/h. The G¼ 2e2/h plateau is already visible at 60 mT. (c) The colour plot as a function of Vleft and Vright at 200 mT shows

quantum Hall plateaus in the unipolar region. (d) The numerical derivative dG=d~V (in arbitrary units) is recorded as a function of gate voltage ~V and B

displaying the dispersion of the Fabry–Pérot oscillations. ~V is the magnitude of gate voltage in the situation of antisymmetric charge densities nleft¼ � nright

(red dashed line in a, that is, the np–pn diagonal). The white dashed curve indicates the line along which the cyclotron radius Rc is equal to the cavity length

L¼0.8mm, the region RcoL is darkened and will be discussed in the main text. (e) The measured pattern is reproduced by a tight-binding quantum transport

calculation based on the designed geometry of the measured device. The small inset shows a resonant electron trajectory at low magnetic field. Constructive

interference occurs if the phase along this trajectory is an integer of 2p, leading to the numerical solution of the yellow lines (see Methods).
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magnetic length lB ¼
ffiffiffiffiffiffiffiffiffiffiffi
‘=eB

p
(red dashed line). In the regime

W42Rc4lB, additional parabolic lines show the condition for
which the number of oscillations in the snake pattern is fixed and
commensurate with W, that is, m� 2Rc¼W with m¼ 1,2,3,....

In Fig. 3d, we show the measured conductance G B; ~V
� �

(bottom) and its numerical derivative dG/dB (top). The
measurement exhibits strong oscillations that follow parabola-
like curves. We notice that the oscillations occur on a background
of strongly decreasing conductance from GE6e2/h to Go2e2/h.
The steep decrease indicates that the transport becomes
dominated by the low-density region close to the p–n interface
and this happens when 2RcoW.

In a real p–n interface, the density does not sharply jump from
the p to the n side but evolves smoothly. An electron trajectory in
such a smooth p–n interface is sketched in Fig. 3e. Here the
density gradient leads to an electric field Ex and its interplay with
the perpendicular magnetic field results in E�B drift (here along
y), leading to elongated cyclotron orbits. The condition Ry¼
const. can be studied in the measurement of Fig. 3f, where we
show dG Vright;Vleft

� �
=d~V at B¼ 120 mT. The measured oscilla-

tion pattern follows curves of constant Ex at the p–n interface
(obtained from electrostatic simulations) as shown in the inset.

Tight-binding theory of snake states. So far, we have seen that
the oscillation pattern occurs in the regime where snake states are
expected (that is, 2RcoW) and that the oscillations are related to
transport along the p–n interface. We now present a quantitative
comparison between experiment and theory. Figure 4a shows a
quantum transport simulation of G B; ~V

� �
and dG B; ~V

� �
=dB on

the basis of a scalable tight-binding model19 that fully takes into
account the device geometry. The simulation compares very well

with the measurement shown in Fig. 3d. The parabola-like
patterns are reproduced and a similarly steep decrease of
conductance is obtained. In Fig. 4b, a slice following the white
dashed line in Fig. 4a is shown. The visibility DG/G of the
oscillations reaches 30% in theory and experiment and is enabled
by the strong Klein collimation at the smooth p–n interface.

Next we apply the Keldysh–Green’s function method to extract
local current density profiles (see Methods) at high and low
conductance along this line. In Fig. 4c, we show the x component
of the current density jx, taken at ~V ¼ � 4:8 V (dashed circle in
Fig. 4b). The current is injected from the left contact using a small
d.c. offset. In the left cavity, a complex resonance pattern appears,
given by so-called ‘bubbling’ trajectories21, which are reflected
before reaching the p–n interface and do not contribute to
current between the contacts. The pattern relevant for transport is
located at the p–n interface (dashed line). We observe that jx
changes sign along the p–n interface and that the blue and red
regions penetrate the dashed line, indicating that transport is
dominated by Klein-collimated snake trajectories. As a guide to
the eye, we added a curve in Fig. 4d–g that follows the snake state.
This is done for different ~V values for which G is maximal/
minimal at a fixed magnetic field of 90 mT (coloured circles in
Fig. 4b). In Fig. 4d, for example, the current density profile
corresponds to a conductance maximum where the current
points to the right at the upper edge of the p–n interface.
One period is added by changing ~V from one maximum to the
next. More current density profiles evolving with ~V at fixed
B¼ 90 mT are shown in Supplementary Movie 1. By tracing
along one of the parabola-like patterns, the current density profile
of the snake state stays constant (an example is given in
Supplementary Movie 2).
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Figure 3 | Parabola-like conductance oscillations as a signature of snake states. (a) Charge carrier trajectory (white) along a sharp p–n junction in

perpendicular magnetic field starting at the grey cross, where Rc is the cyclotron radius and n(x) is the electron density. (b) At lower p- and n-density Rc is

reduced. In contrast to a, the trajectory results in current flow towards the right contact. (c) Curves of constant Rc as a function of n and B. The continuous

lines are given by the condition that the cyclotron diameter 2Rc is commensurate with the sample width W. Snake states occur between the green dashed

2Rc¼W and the red dashed Rc¼ lB line. The black dashed line indicates up to which field transport is dominated by bent Fabry–Pérot patterns

(dark grey area). In the red area, scar states can occur. Below the red dashed line, Rc is smaller than the magnetic length lB and Landau levels start to

dominate the transport (light grey area). (d) Conductance as a function of antisymmetric gate tuning ~V and magnetic field is shown in the lower panel,

and its derivative dG/dB (in arbitrary units) in the upper panel. Striking lines of high and low conductance with a parabola-like B-dependence can be

observed. (e) In a smooth p–n junction (here: linear n(x)), the cyclotron orbits become elongated along the y direction due to the additional electric

field caused by the density gradient. (f) dGðVright;VleftÞ=d~V at 120 mT. The blue dashed lines in d and f are equivalent. The inset shows lines of

constant electric field Ex at the p–n interface as a function of Vright,Vleft taken from electrostatic simulations.
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The conductance oscillates as a function of the ratio W/2Ry, the
exact snake period corresponding to 4Ry is, however, difficult to
determine using quasiclassical trajectories, since current is
injected from many points under various angles resulting in a
complex cusp structure similar to what was predicted in refs
22–25. The excellent agreement between measurement and
calculated conductance for which we could determine local
current density profiles clearly indicates that the oscillations result
from snake state trajectories.

There are additional parabola-like structures at lower magnetic
field indicated by arrows in Fig. 4a, these structures are, however,
less pronounced in the experimental data. Those resonances
occur in a regime where scar states (Fig. 1b) would be expected.
The parabola-like behaviour indicates that the states are
commensurate with a cavity dimension. In the model, the
resonances disappear for non-reflective contacts as expected for
scar states.

Discussion
We investigated the magneto-conductance of a ballistic graphene
p–n junction in different magnetic field regimes. We have
observed resonance patterns occurring in the intermediate
quasiclassical regime in experiment and theory, which result
from the formation of snake states at the p–n interface. Among
many other possibilities, these states can be used to guide
electrons on arbitrary paths with a high efficiency even at very
low magnetic fields. This could be used to guide electrons away
from sample edges to suppress uncontrolled momentum or spin
scattering. The directional scattering at the sample boundaries
could be used to implement multi-terminal switches24,26.
Furthermore, the similarity between Andreev reflection and
Klein tunnelling is stressed in theory27 leading to a
correspondence of snake states and Andreev edge states which

are of theoretical28 and experimental29 interest. Our work points
out that snake states are highly tunable and occur at low fields
and that ballistic graphene p–n junctions in a magnetic field
reveal novel and intriguing phenomena.

Methods
Experimental methods. High-quality graphene is obtained by in situ current
annealing30. All the measurements were performed in a variable temperature
Helium cryostat with a base temperature of 1.5 K. We measured differential
conductance G¼ dI/dV by standard lock-in technique applying an a.c. voltage
of 0.1 mV at 77 Hz.

For the quantum Hall data of Fig. 2b,c, we subtracted a contact resistance
of 1.2 kO.

We extracted the cavity length L used in Fig. 2d,e from the spacing Dn between
resonant Fabry–Pérot peaks in the bipolar situation Dn ¼ 2

ffiffiffiffiffiffi
pn
p

=L and obtained
LE0.8 mm.

Simulation methods. Real-space Green’s function method in the tight-binding
framework using a scaled graphene Hamiltonian19 is applied to simulate ballistic
quantum transport in the present device, taking into account the realistic on-site
energy profile obtained by three-dimensional electrostatic simulation for the self-
partial capacitances of the bottom gates. All the presented conductance simulations
are obtained by calculating the transmission function at zero temperature,
combined with the contact resistance 1.2 kO. Local current densities are imaged by
applying the Keldysh–Green’s function method in the linear response regime31 on
the basis of the same model Hamiltonian used for conductance simulation. At each
lattice site n, the bond charge current density Jn¼

P
men-mhJn-mi is computed,

where the summation runs over all the sites m nearest to n, en-m is the unit vector
pointing from n to m, and hJn-mi is the quantum statistical average of the bond
charge current operator Jn-m (ref. 32). After computing for each site, the position-
dependent current density profile J(x,y)¼ [jx(x,y),jy(x,y)] is imaged. In Fig. 4c–g,
the x component jx(x,y) is shown.

The low-field Fabry–Pérot interference contours sketched in Fig. 2e are
numerically obtained from solving the resonance condition DF¼ 2jp, arising from
the path difference between the directly transmitted and twice reflected trajectories
within the p cavity as sketched in the inset of Fig. 2e, which is found to be the major
interference contribution. For such a simplified model, the phase difference is given

by DF¼FWKBþFABþFBerryþF0, where FWKB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

F �ðeBL=2‘ Þ2
q

�2L is the
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Figure 4 | Tight-binding transport calculation reproducing the experimental results and local current density profiles revealing the snake states.

(a) Tight-binding calculation of conductance G B; ~V
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(bottom) and its numerical derivative dG/dB (top, in arbitrary unit). The parabola-like lines seen in the

experiment are well captured. (b) G ~V
� �

along the white dashed line in a at B¼ 90 mT. (c) Calculated x component of the local current density distribution,

jx, for electrons injected from the left contact with a small d.c.-offset at B¼ 90 mT and ~V ¼ �4:8 V (dashed circle in b). The complex resonance pattern in

the left cavity consists of ‘bubbling’ trajectories that do not contribute to conductance. At the p–n interface (dashed line), an alternating current pointing to

the left (red) and right (blue) is observed. (d–g) Current density profiles at different ~V corresponding to the circles in b. As a guide to the eye, a snaking

trajectory following jx is added. From one conductance maximum to the next (that is, c to g), one snake period is added. The snake state in e and f

corresponds to a conductance minimum and c,d and g to a maximum.
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kinetic WKB-phase, FAB¼ dA� eB/‘ is the Aharanov–Bohm phase due to the

flux enclosed by the bent orbit segments, FBerry ¼ � p 1� e� B=Bcð Þ2
� �

is the Berry

phase, and F0¼ p is a constant phase due to reflections off the two p–n junction
interfaces of the p cavity (smooth at the middle and sharper at the contact side).
Here kF is the numerical average of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p j nðx; y ¼ 0Þ j

p
within the p cavity.

The cavity size L is numerically determined and is about half of the flake length
L/2¼ 840 nm. The loop area is given by dA¼Rc

2(f� sinf) with f¼ 2 arcsin
(L/2Rc) and Rc¼ ‘kF/eB. The form of the Berry phase follows from the
consideration of ref. 33 with the critical field estimated by Bc ¼ 2‘ kF=eLð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1�Tc
p

, where the critical transmission value Tc is a parameter close to one and
does not significantly influence the shape of the contours; Tc¼ 0.95 is chosen. The
contours sketched in Fig. 2e correspond to j¼ 1,2,?,8.
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