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Abstract: Ellagic acid (EA) has long been recognized as a very active antioxidant, anti-inflammatory,
and antimicrobial agent. However, its low bioavailability has often hampered its applications
in health-related fields. Here, we report a phospholipid vesicle-based controlled release system
for EA, involving the exploitation of chestnut wood mud (CWM), an industrial by-product from
chestnut tannin production, as a largely available and low-cost source of this compound. Two kinds
of CWM with different particle size distributions, indicated as CWM-A and CWM-B (<100 and
32 µm, respectively), containing 5 ± 1% w/w EA, were incorporated into transfersomes. The latter
were small in size (~100 nm), homogeneously dispersed, and negatively charged. 2,2-Diphenyl-
1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated up to
three-fold improvement in the antioxidant properties of CWM upon incorporation into transfersomes.
The kinetics of EA released under simulated physiological conditions were evaluated by UV-Vis
spectroscopy and HPLC analysis. The best results were obtained with CWM-B (100% of EA gradually
released after 37 days at pH 7.4). A stepwise increase in the antioxidant properties of the released
material was also observed. Cell-based experiments confirmed the efficacy of CWM-B transfersomes
as antioxidant agents in contrasting photodamage.

Keywords: ellagic acid; chestnut wood; antioxidant; controlled release; transfersomes; HaCaT; 2,2-
diphenyl-1-picrylhydrazyl (DPPH) assay; ferric reducing/antioxidant power (FRAP) assay; UVA;
reactive oxygen species

1. Introduction

Ellagic acid (EA) is a phenolic compound naturally present in many red fruits and
berries. Apart from being the main product of ellagitannin hydrolysis, it is endowed with
remarkable biological properties, including antioxidant [1–3], anti-inflammatory [4], antimi-
crobial [5], antidiabetic [6], antiviral [7], antidegenerative [8], and anticancer activities [9].
In addition to systemic uses, topical applications of EA have been widely described [10].
Several studies have reported the potential use of EA for the prevention or treatment of
skin disorders. For example, EA was found to be effective against skin tumors [11], contact
dermatitis [12], or cutaneous leishmaniasis [13]. It can be used in wound bandaging [14], or
as a photoprotective [15] and antiaging agent [16]. Furthermore, EA is considered a useful
compound in the treatment of skin pigmentation disorders, such as hyperpigmentation,
melasma, and other dyschromia [17].

Despite its remarkable properties, the wide application of EA is limited by its low
permeability and low solubility in aqueous solvents. To overcome these drawbacks,
several approaches have been proposed, involving modulation of EA solubility prop-
erties through encapsulation or chemical derivatization [18–23], and different type of
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formulations based on e.g., pectins [24,25], chitosan [25–27], chitin [28], zein [5], cel-
lulose [29], cyclodextrins [30–32], poly(lactide-co-glycolide) (PLGA) [33], graphene ox-
ide [34], alginate [35], and microalgae [36] have been designed for the controlled release
of this compound.

In this context, liposomes (spherical vesicles composed of one or more bilayers formed
by dispersion of phospholipids in aqueous medium) have been largely utilized as a drug
delivery vehicle for administration of nutrients and pharmaceutical drugs in biomedi-
cal, food, and agricultural industries, and have also been exploited for enhancing the
biological effects [37–39], improving skin permeation [40], and guaranteeing a sustained
release [41] of EA. In particular, over the last few years, liposomes have been the target of
reformulating studies aimed at producing vesicles capable of delivering active compounds
to the deeper skin layers. A number of additives have been explored in combination
with conventional components of liposomes, producing new classes of vesicles, such as
transfersomes. Transfersomes are composed of phospholipids and an edge activator, which
is a membrane-softening agent (e.g., Tween 80, Span 80, or sodium cholate) that makes
the vesicle ultra-deformable and capable of penetrating the skin more efficiently than
conventional liposomes [42–45].

In addition to the development of novel formulations to improve its bioavailability,
another primary aim of the recent scientific research on EA is the discovery of sustainable,
low cost and easily available sources of this compound, prompted by the global increasing
demand for green products and processes. Among these sources, a prominent role is
occupied by agri-food by-products such as pomegranate peel [46–50], although other
ellagitannin-rich wastes have recently emerged as possible sources of EA. A noticeable
example is represented by chestnut shell [51–53] as well as chestnut wood fiber, which is
the residual exhausted material from chestnut tannin industrial production [54,55].

Within this scenario, we report herein the exploitation of chestnut wood mud (CWM)
as an easily available source of EA for dermo-cosmetic applications upon incorporation
into transfersomes. CWM is an industrial by-product of the chestnut tannin production,
deriving from exhausted chestnut wood subjected to a natural fermentation process. The
antioxidant properties of the samples were investigated by chemical assays and the pro-
tective effects on UVA-induced oxidative photodamage were evaluated on immortalized
human keratinocytes (HaCaT). Finally, the controlled-release profile of EA under simulated
physiological conditions was investigated by UV-Vis spectroscopy and HPLC.

2. Materials and Methods
2.1. Materials

CWM was provided by Silvateam (S. Michele Mondovì, Cuneo, Italy). CWM was
first dried in an oven at 35 ◦C for one week, then ground in a common blender and finally
passed through sieves to obtain two fractions with particle sizes lower than 100 and 32 µm,
indicated as CWM-A and CWM-B, respectively.

Lipoid S75 (S75), a mixture of soybean phospholipids (70% phosphatidylcholine, 9%
phosphatidylethanolamine and 3% lysophosphatidylcholine), triglycerides and fatty acids,
was purchased from Lipoid GmbH (Ludwigshafen, Germany). Tween 80 (polysorbate
80, polyoxyethylene sorbitan monooleate; non-ionic hydrophilic surfactant, HLB 15) was
supplied by Galeno (Carmignano, Prato, Italy).

2,2-Diphenyl-1-picrylhydrazyl (DPPH), iron(III) chloride (97%), phosphate buffer
saline (PBS) 10×, 2,4,6-tris(2-pirydyl)-s-triazine (TPTZ) (≥98%), and (±)-6-hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid (Trolox) (97%) were obtained from Sigma-Aldrich
(Milan, Italy).

2.2. Methods

UV–Vis spectra were recorded on a Jasco (Lecco, Italy) V-730 Spectrophotometer.
HPLC analysis was performed with an Agilent (Cernusco sul Naviglio, Milan, Italy) in-

strument equipped with a UV-Vis detector; a Phenomenex (Castel Maggiore, Bologna, Italy)
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Sphereclone ODS column (250 × 4.60 mm, 5 µm) was used at a flow rate of 1.0 mL/min.
A gradient elution using 0.1% formic acid in water (solvent A) and methanol (solvent B)
was performed as follows: 5% B, 0–10 min; from 5 to 80% B, 10–57.5 min. The detection
wavelength was set at 254 nm.

2.3. Preparation and Characterization of Transfersomes

CWM (A or B) was weighed in a glass vial along with S75; thereafter, Tween 80 and
water were added (Table 1). To obtain the transfersomes, the dispersion was sonicated (5 s
on and 2 s off, 10 cycles; 13 microns of probe amplitude) with an ultrasonic disintegrator
(Soniprep 150 plus; MSE Crowley, London, UK).

For comparative purposes, empty transfersomes (i.e., those without CWM) were also
prepared under the same conditions as CWM transfersomes (Table 1).

The mean diameter, polydispersity index, and zeta potential of the transfersomes were
determined by dynamic and electrophoretic light scattering using a Zetasizer nano-ZS
(Malvern Panalytical, Worcestershire, UK). Samples (n > 10) were diluted with water (1:100)
and analyzed at 25 ◦C.

The above three parameters were monitored for 90 days to assess the long-term
stability of the formulations.

Table 1. Composition of the transfersome formulations.

Formulation S75 CWM Tween 80 H2O

Empty transfersomes 120 mg - 0.05 mL 0.95 mL
CWM-A transfersomes 120 mg 2 mg 0.05 mL 0.95 mL
CWM-B transfersomes 120 mg 2 mg 0.05 mL 0.95 mL

2.4. Antioxidant Properties of CWM Samples
2.4.1. DPPH Assay

CWM or CWM transfersomes (0.02–0.15 mg/mL final dose) (concentrations are re-
ferred to as CWM content in the formulations) were added to 3 mL of a 0.2 mM ethanolic
solution of DPPH [56], and after 10 min under stirring at room temperature, the absorbance
at 515 nm was measured. Experiments were run in triplicate.

2.4.2. Ferric Reducing/Antioxidant Power (FRAP) Assay

CWM and CWM transfersomes were added (0.001–0.1 mg/mL final dose) (concentra-
tions are referred to as CWM content in the formulations) to 3 mL of 0.3 M acetate buffer
(pH 3.6) containing 1.7 mM FeCl3 and 0.83 mM TPTZ [57], and after 10 min of stirring at
room temperature, the absorbance of the solutions at 593 nm was measured. Results were
expressed as Trolox equivalents (eqs). Experiments were run in triplicate.

2.5. Release Experiments from CWM Transfersomes

Each CWM transfersome formulation (3 g) was placed in a dialysis membrane (MWCO
100–500 Da) and dialyzed against 30 mL of PBS 1×. The samples were kept at 37 ◦C in a
water bath. Next, 0.5 mL of release medium was periodically withdrawn and replaced with
an equal volume of corresponding fresh medium and analyzed using UV-Vis spectroscopy
or HPLC. Each experiment was run in triplicate.

2.6. Antioxidant Properties of Released Fractions from CWM Transfersomes

Aliquots (150 µL) of the released fractions from CWM transfersomes were added to
2 mL of FRAP reagent prepared as described in Section 2.4.2. After 10 min under stirring,
the mixtures were centrifuged (3 min at 5000 rpm) and the absorbance of the supernatants
at 593 nm was measured.



Antioxidants 2022, 11, 1681 4 of 11

2.7. Analysis of Cell Viability

Immortalized human keratinocytes (HaCaT, Innoprot, Derio, Spain) were cultured
in 10% fetal bovine serum in Dulbecco’s Modified Eagle’s Medium, in the presence of 1%
antibiotics and 2 mM L-glutamine, in a 5% CO2 humidified atmosphere at 37 ◦C. To verify
the biocompatibility of each sample, cells were seeded in 96-well plates at a density of
2 × 103/cm2 and 24 h after seeding. Cells were incubated in the presence of increasing
concentration of EA (up to 10 µM) or transfersome samples (up to 25 µL/mL) for 24 and
48 h. At the end of incubation, cell viability was assessed by the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Cell survival was expressed as the
percentage of viable cells in the presence of each sample and compared with control cells
(represented by the average obtained between untreated cells and cells supplemented with
the highest concentration of buffer). Each sample was tested in three independent analyses,
each carried out in triplicate.

2.8. UVA Irradiation and Dichlorofluorescein Diacetate (DCFDA) Assay

The protective effect of each sample was measured by determining the intracellular
reactive oxygen species (ROS) levels. A previously reported protocol [58] was followed,
with some modifications. Briefly, HaCaT cells were preliminarily exposed for 2, 6, and 16 h
to 10 µM EA to define the proper incubation time. After that, cells were incubated with the
samples (10 µM EA or 25 µL/mL transfersomes, providing a 10 µM EA concentration) for 6
h in the absence or presence of 10 min UVA irradiation (100 J/cm2). At the end of the irradi-
ation, H2-DCFDA was added to measure intracellular ROS level. Fluorescence intensity of
the probe was measured at an emission wavelength of 525 nm and an excitation wavelength
of 488 nm using a Perkin-Elmer (Milan, Italy) LS50 spectrofluorometer. Emission spectra
were acquired at a scanning speed of 300 nm/min, with 5 slit widths for both excitation
and emission. ROS production was expressed as percentage of DCF fluorescence intensity
of the sample under test, compared to the untreated sample. Results are presented as mean
of results obtained after three independent experiments (mean ± SD) and compared by
one-way ANOVA according to Bonferroni’s method (post hoc) using Graphpad Prism for
Windows, version 6.01.

3. Results and Discussion
3.1. Determination of the EA Content in CWM Samples

To gain information about the amount of EA contained in the two CWM samples,
DMSO solutions of CWM-A and CWM-B were prepared and then analyzed using UV-Vis
spectroscopy and HPLC after proper dilution in methanol. DMSO was chosen as the
solvent based on its ability to dissolve a wide range of most polar and non-polar natural
phenolic compounds, including EA [50,54,59].

As an example, the UV-Vis spectrum and elutographic profile of CWM-A are reported
in Figure 1. The UV-Vis spectrum was characterized by absorption maxima at around 280
and 360 nm, as expected based on the presence of EA [60]. In agreement with this observa-
tion, HPLC analysis showed the presence of a single chromatographable compound eluted
at ca. 38 min, identified as EA by comparison with an authentic standard. Quantitative
analysis indicated content of EA of 5 ± 1% w/w for both CWM-A and CWM-B.
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Figure 1. (a) UV-Vis spectrum (recorded at 0.02 mg/mL) and (b) HPLC profile (recorded at 1 mg/mL)
of CWM-A.

3.2. Incorporation of CWM Samples into Transfersomes

Transfersomes—that is, phospholipid vesicles modified with Tween 80 to promote
skin penetration—containing CWM were produced and characterized in terms of size,
homogeneity, and surface charge. To evaluate the CWM effect on the vesicles, the CWM
transfersomes were compared with the empty transfersomes.

The light scattering results, as reported in Table 2, showed that the empty transfer-
somes had a mean diameter of 106 nm, and were homogeneously dispersed (polydispersity
index 0.27) and highly negatively charged (−71 mV). CMW-A incorporation significantly
increased the mean diameter of the vesicles, although they remained small (around 120 nm);
the polydispersity index was unaltered, and the zeta potential value became less negative
(Table 2), but it was still high enough to allow particle repulsion and prevent aggregation.
On the other hand, CMW-B incorporation did not affect the vesicle size, nor the homogene-
ity of the dispersion, but produced less negative surface charge, as much as CMW-A.

The stability of the transfersome formulations was evaluated by monitoring the mean
diameter, the polydispersity index, and the zeta potential during a 90-day storage period at
4 ◦C. No significant alterations (<10%) were detected.

Table 2. Characteristics of empty and CWM transfersomes: mean diameter (MD), polydispersity
index (PI), and zeta potential (ZP). Each value represents the mean ± SD (n > 10). * values statistically
different (p < 0.05) with respect to empty transfersomes.

Formulation MD
(nm) PI ZP

(mV)

Empty transfersomes 106 ± 3.1 0.27 ± 0.01 −71 ± 5.8
CWM-A transfersomes * 121 ± 7.8 0.27 ± 0.01 * −56 ± 5.7
CWM-B transfersomes 105 ± 2.9 0.27 ± 0.03 * −58 ± 9.4

The physicochemical characteristics of the herein described transfersomes are in line
with those reported in literature for other EA-incorporating nanosystems [20]. As an exam-
ple, Tween 80-coated chitosan-based nanoformulations exhibited an average hydrodynamic
diameter of 155 nm and a PI of 0.37, although a lower ZP (−9.7 mV) compared to CWM
transfersomes was determined. These nanoformulations led to a sustained release of EA
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(47% after 24 h) at pH 7.4 and exhibited more efficient anticancer effects in tumor-bearing
mice compared to EA alone [27]. EA-loaded schizophyllan and chitin nanoparticles showed
size distributions of 217.8 and 39.82 nm, and ZP of +27 and −9.14 mV, respectively. The
chitin nanoparticles in particular led to a rapid release of EA (ca. 50%) after 8 h at pH 7.4,
followed by a gradual release (up to 63%) that continued up to 50 h. MTT assay indicated
that both nanoformulations effectively inhibited the growth of breast cancer cell lines, with
IC50 values of 60 and 115 µg/mL, respectively [28]. Zein nanoparticles containing EA
showed a mean size between 260 and 370 nm and a PI lower than 0.3. These formulations
were found to be positively charged, with ZP ranging from +24 to + 37 mV, and showed
inhibitory and bactericide activity against S. aureus and P. aeruginosa (MIC <72 µg/mL) [5].
Finally, poly(ε-caprolactone)-based EA nanoparticles formulated by applying various stabi-
lizing agents exhibited average diameters ranging from 193 to 1252 nm, PI of 0.36–0.98 and
ZP of −25–+62 mV. A fast release followed by a linear release period with a slower rate was
observed at pH 7.4, with a cumulative release ranging from 25% to 48% after 8 days. These
nanoparticles enhanced the cytotoxicity of EA up to 6.9-fold against colon adenocarcinoma
cells, as well as the absorption extent of orally taken EA in rabbits [61].

3.3. Antioxidant Properties of CWM Transfersomes

The antioxidant properties of the CWM transfersomes were initially investigated with
respect to the starting CWM samples by widely used chemical assays; that is, the DPPH and
FRAP assays. Standard EA was also tested for comparison. The results are shown in Table 3.
Both CWM-A and CWM-B exhibited antioxidant properties in line with what was expected
based on a 5% w/w EA content. Notably, incorporation into transfersomes induced an
about 2.5-fold decrease in the EC50 values determined in the DPPH assay for the CWM
samples, and an even higher improvement in the reducing properties was observed in the
FRAP assay. Since empty transfersomes were not found to exhibit significant antioxidant
properties, these results clearly suggest a larger availability of the antioxidant compound
EA following incorporation into the vesicles.

Table 3. Antioxidant properties of CWM samples. Reported are the mean ± SD values of at least
three experiments. Data for CWM transfersomes have been normalized based on the CWM content
in the formulation.

DPPH Assay
EC50 (mg/mL)

FRAP Assay
(mg of Trolox/mg of Sample)

CWM-A transfersomes 0.0389 ± 0.0005 0.36 ± 0.06
CWM-B transfersomes 0.0375 ± 0.0004 0.39 ± 0.04
Empty transfersomes - 0.00015 ± 0.00002

CWM-A 0.103 ± 0.001 0.047 ± 0.002
CWM-B 0.106 ± 0.001 0.050 ± 0.001

EA 0.0051 ± 0.0004 1.04 ± 0.02

3.4. Release of EA from CWM Transfersomes and Antioxidant Properties of the Released Fractions
under Simulated Physiological Conditions

The release of EA from the CWM transfersomes in PBS at 37 ◦C was followed by
UV-Vis spectroscopy and HPLC over 5 weeks. No significant release of EA was observed in
the case of CWM-A, probably as a result of the higher particle size of the sample, whereas
very promising results were obtained with the CWM-B transfersomes. Indeed, the UV-Vis
spectra of the released fractions from the latter exhibited absorption maxima at ca. 280
and 360 nm, which linearly increased over time (Figure 2a). HPLC analysis confirmed a
controlled release of EA, which was complete after 30 days, reaching a concentration of ca.
56 µM (Figure 2b).
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Figure 2. (a) UV-Vis spectra of fractions released over time from CWM-B transfersomes in PBS at
37 ◦C. (b) Kinetics of release of EA, determined by HPLC analysis. Reported are the mean values of
at least three experiments (SD ≤ 10%).

The released fractions from CWM-B transfersomes were also evaluated for their
antioxidant properties by chemical assays. Actually, it was not possible to perform the
DPPH assay due to interference of the released material with the assay medium. On the
other hand, the reducing properties evaluated by the FRAP assay (Figure 3a) linearly
increased over time on account of the progressive release of EA from the transfersomes. A
good linear correlation (R2 = 0.91) of the antioxidant properties with the amount of total
released EA was indeed observed (Figure 3b).
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the amount of released EA.

3.5. Cell Viability of CWM Transfersomes

Based on the encouraging results of the release experiments, and with the aim of
further probing the potential of CWM transfersomes for dermo-cosmetic applications,
in subsequent experiments the sample biocompatibility was evaluated on HaCaT, since
these cells are normally present in the outermost layer of the skin. EA was also tested for
comparison in a range of concentrations corresponding to those provided by the CWM
transfersome samples. MTT assay (not shown) showed that both EA (up to 10 µM) and the
transfersomes (up to 25 µL/mL) were biocompatible under all the experimental conditions.

3.6. Protective Effect of CWM Transfersomes on Photoinduced Oxidative Stress

The antioxidant cytoprotective properties of CWM-A and CWM-B transfersomes were
evaluated on UVA-irradiated HaCaT. Preliminary experiments (data not shown) were
performed to define the optimal time (2, 6, or 16 h) for cell preincubation with 10 µM
EA (corresponding to a non-cytotoxic concentration of 25 µL/mL CWM transfersomes),
and 6 h incubation was chosen for further experiments. As shown in Figure 4, UVA
irradiation induced a significant increase in intracellular ROS levels (150–200%) with
respect to untreated cells. When cells were pretreated with 10 µM EA (Figure 4a, gray bars)
prior to UVA exposure, a significant lowering of intracellular ROS levels was observed. As
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expected, empty transfersomes did not exert any protective effect against oxidative stress.
Interestingly, when cells were treated with 25 µL/mL CWM-B transfersomes (providing
an EA concentration of 10 µM) (Figure 4b, gray bars) prior to UVA exposure, a significant
reduction (p ≤ 0.05) in intracellular ROS levels, compared to untreated UVA-exposed
cells, was observed. On the other hand, CWM-A transfersomes (Figure 4b, white bars)
were unable to protect cells from UVA-induced oxidative stress injury. Thus, these results,
combined with those from the release experiments, suggest that the particle size of the
CWM incorporated into transfersomes is fundamental to allow EA to be active as an
antioxidant in cellular models.
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4. Conclusions

In conclusion, the present work reports the efficacy of transfersomes as carriers for
the controlled release of the biologically active compound EA from CWM, an industrial
by-product deriving from tannin extraction. The incorporation into the transfersomes
induced a significant improvement of the antioxidant properties of CWM, likely as a
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result of the larger availability of EA. Moreover, the transfersomal CWM-B was found
to be able to decrease ROS production in UVA-irradiated keratinocytes and to provide a
complete and controlled release of EA in pseudophysiological conditions at pH 7.4, a result
of interest in dermo-cosmetic applications. For example, open wounds are characterized by
a neutral or alkaline pH ranging from 6.5 to 8.5, whereas chronic wounds exhibit a pH in
the range of 7.5–8.5 [62,63]. All together, these results highlight nanoformulated CWM of
proper particle size as an easily accessible and biocompatible material that could warrant
a sustained release of the water-insoluble bioactive EA under physiologically relevant
conditions; for example for the treatment and protection of damaged skin.
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