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Abstract: Human rhinovirus infections are a major trigger for acute exacerbations of lower airway
diseases, including asthma and chronic obstructive pulmonary disease. Disease exacerbation is
thought to be regulated via double-stranded RNA (dsRNA)-mediated signaling of proinflammatory
and host defense responses in airway epithelial cells. Despite the central role of dsRNA in regulating
host cell responses, no method for the quantitative assessment of dsRNA levels during HRV infections
has been developed. Conventional RT-PCR for the negative strand template is not effective as self-
priming results in apparent signals, even in the absence of primer during reverse transcription.
To avoid these issues, we developed a selective assay for the negative strand template that uses a
chimeric primer containing a 5′ non-viral sequence for reverse transcription and a primer using
the non-viral sequence during subsequent PCR. We established that this assay avoided issues of
self-priming and is strand specific, as it is unaffected even in the presence of a 1000-fold excess of
positive strand. Assays in primary human airway epithelial cells showed that negative strand was
detectable within 6 h of virus exposure and peaked at 18 h after virus exposure. The temporal pattern
of negative strand induction mirrored that of genomic RNA but was always 1000-fold lower than
positive strand, indicating that the negative strand levels regulate levels of dsRNA formation. This
assay will permit relative quantification of dsRNA during studies of HRV regulation of epithelial
cell function.
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1. Introduction

Human rhinovirus (HRV) species belong to the Enterovirus genus of the Picornaviradae
family. They are the dominant virus type responsible for the common cold. Importantly,
HRV infections are also a major trigger of acute exacerbations in patients with lower
respiratory diseases, such as asthma and chronic obstructive pulmonary disease [1]. The
human airway epithelial cell (HAE) is the primary site of HRV infection and replication [2,3].
Because HRV infections do not lead to overt epithelial toxicity, either in vitro or in vivo, it
is assumed that symptoms are induced as a result of alterations in epithelial cell biology
that lead to increased airway inflammation. In support of this hypothesis, a number of
proinflammatory cytokines and chemokines are released by HRV-infected airway epithelial
cells and are also found in airway secretions during experimental or naturally acquired
in vivo HRV infections [4]. Although some chemokines can be induced as a direct result of
HRV binding to its receptor [5,6], the majority of proinflammatory and epithelial antiviral
responses depend upon viral replication.

HRV replication requires virus entry into cells and genome release [7]. After the
translation of the viral polyprotein from the positive sense RNA genome, the viral RNA
polymerase generates negative strand copies of the HRV genome [8]. These negative
strands then serve as templates for replication of positive strand genomes. Thus, during
HRV replication, viral double-stranded RNA (dsRNA) is generated and can be recog-
nized by pattern recognition receptors, including toll-like receptor 3 (TLR3) and the RNA
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helicases, retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated
gene 5 (mda5). The interaction of dsRNA with these receptors initiates proinflammatory
and host defense gene induction [9]. Based on this concept, the majority of studies of
replication-dependent responses to HRV infection have relied on the knockdown of these
key pattern recognition receptors to infer a role for dsRNA in signaling [10–12].

A major limitation of studies of the role of dsRNA during HRV infections is that there
has not been any means to quantify the relative intracellular levels of dsRNA with time.
Although antibodies can be used to demonstrate the presence of dsRNA in infected cells
using immunofluorescence microscopy [13], this does not permit quantification. Since
negative strand RNA is created during replication and serves as the template for synthesis
of multiple strands of genomic RNA, absolute quantification of negative strand would
represent a reliable means of assessing levels of dsRNA. Unfortunately, it has been demon-
strated for multiple single-strand positive sense viruses that standard RT-PCR cannot
reliably quantify levels of negative strand RNA [14,15], particularly in the presence of
excess positive strand [16]. This is due to the process of “self priming” in which signal is
generated by positive strand even in the absence of primers during reverse transcription. In
the current study, we sought to establish an assay to permit reliable absolute quantification
of the negative strand in HRV infected primary airway epithelial cells. We provided a
much-abbreviated description of this assay in a prior publication [17], but this did not
include any of the validation, data and analysis included here.

2. Materials and Methods
2.1. Materials

The following reagents were purchased from the indicated suppliers: Ham’s F-
12 medium, Eagle’s minimal essential medium, Hank’s balanced salt solution (HBSS),
penicillin-streptomycin-amphotericin B, L-glutamine, sodium pyruvate, nonessential amino
acids, gentamicin, fetal bovine serum (FBS), dNTPs, oligo(dT), random hexamers, RNase
Cocktail and Maxima Reverse Transcriptase were from Invitrogen Life Technologies
(Burlington, ON, Canada). Airway epithelial cell growth medium was from PromoCell
GmbH (Heidelberg, Germany). Primers, probes and a GAPDH gene expression kits were
from Applied Biosystems (Foster City, CA, USA); TaqMan master mix was from Roche Di-
agnostics (Laval, QC, Canada); All-in-one 5X All-in-one RT Master Mix was from Diamed
(Mississauga, ON, Canada). All other chemicals were purchased from Sigma-Aldrich (St.
Louis, MO, USA).

2.2. Methods
2.2.1. Viral Propagation of HRV-16

Stocks of HRV-16 (family Picornaviridae, genus Enterovirus, species Rhinovirus) were
propagated in WI-38 cells and purified by sucrose density centrifugation, as described.
Viral titer was assessed using WI-38 cells, as previously described [18].

2.2.2. Isolation and Culture of Human Bronchial Epithelial Cells (HBE)

HBE were obtained by protease digestion of dissected airways (main stem bronchus
to fourth generation) derived from normal, non-transplanted human lungs, as previously
described [19], and stored in aliquots in liquid nitrogen until used. Lungs were obtained
from a tissue retrieval service (International Institute for the Advancement of Medicine,
Edison, NJ, USA). Ethics approval to receive and use human lungs was obtained from the
Conjoint Health Research Ethics Board of the University of Calgary. HBE were grown in
submersion culture on 6-well plates in Airway Epithelial Cell Growth Medium (PromoCell
Medium; PromoCell GmbH, Heidelberg, Germany). Cells were then fed every 48 h with
PromoCell medium until confluent. Each “n” value for experimental data represents the
use of cells from a different individual donor.
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2.2.3. Human Rhinovirus Inoculation

HBE cultures were infected with 105 50% tissue culture-infective dose (TCID50) of
HRV-16 at 34 ◦C for 2 h. Cells were then washed multiple times to remove unbound virus,
fresh PromoCell medium was added and cells were cultured at 34 ◦C for various times.
Intracellular RNA was isolated for assessment of intracellular HRV levels.

2.2.4. RNA Extraction and Real-Time RT-PCR

Total cellular RNA was isolated with the NucleoSpin RNA kit (Macherey-Nagel
GmbH & Co, Duren, Germany), which included the homogenization of the lysates, an on-
column DNase digestion and elution in RNase/DNase free water. RNA concentration and
purity were determined on a NanoDrop 2000 spectrophotometer (ThermoFisher Scientific,
Waltham, MA, USA). Genomic HRV-16 levels were assessed using quantitative RT-PCR
using primers and a TaqMan probe directed to the 5′ untranslated region of HRV previously
described [20]. A synthetic first-strand cDNA was used to generate standard curves to
permit absolute quantification and data were converted to total copy number. For positive
sense genomic RNA, the detection limit of the RT-PCR system corresponded to a total copy
number of 106.

3. Results
3.1. Rhinovirus Self-Primes in Conventional RT-PCR

To determine if measuring rhinovirus negative strand RNA by standard RT-PCR
approaches would be disrupted by self-priming, we designed specific forward and reverse
primers and a fluorescently labeled probe (Table 1) directed within the VP1 region of the
HRV-16 genome. To evaluate the potential for self-priming, total RNA harvested from
infected HBE at 24 h post infection with HRV-16 was used. Reverse transcription was
performed using Maxima reverse transcriptase and the reverse primer and then PCR was
performed using both forward and reverse primers together with probe. As shown in
Figure 1, amplification of the fluorescent signal was observed, suggesting measurement
of the negative strand of the virus. Control experiments were also performed, however,
in which reverse transcription reactions were also performed in which either the negative
strand primer was omitted, or in which reverse transcriptase was not added. In the absence
of reverse transcriptase, no amplification was observed, as would be expected. However,
when the reverse transcription reaction was performed in the absence of reverse primer,
the amplification curve generated was virtually identical to that generated when reverse
primer was used (Figure 1). This amplification in the absence of reverse primer during
reverse transcription is consistent with the phenomenon of self-priming that has been
observed with several other virus types [14–16].

Table 1. Primer and probe sequences used for the negative strand HRV-16 RT-PCR reactions.

Name Purpose of Oligonucleotide Sequence

Neg RT primer Standard Negative RT/PCR primer 5′-GGCAGCATGGGCAACCT-3′

For HRV16 primer Real-time PCR Forward Primer 5′-TGCTGATGCAATACTCAAAAAGG-3′

Neg-Tag-cDNA Chimeric RT primer 5′-ATCAGCGATGCCGAACGTATGGCAGCATGGGCAACCT-3′

Tag-Rev Real-time PCR Reverse Primer 5′-ATCAGCGATGCCGAACGTAT-3′

Probe Real-time PCR Probe 5′FAM-TGAAAAGCGAGGGA-MGB3′

Underlined nucleotides denote non-viral tag sequences.

3.2. Tagged Primer System and Sample Clean Up Prevents Self-Priming

To try and prevent self-priming, an assay was developed that uses a chimeric primer
(Table 1) for reverse transcription containing a non-viral sequence at the 5′ end of the
specific sequence targeting the negative strand of HRV-16. This non-viral sequence is
then used as a primer to selectively amplify the negative strand specific cDNA at the PCR
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stage. In the current assay, the non-viral sequence was taken from within the Escherichia
coli genome, based on the hypothesis that a bacterium may have sequences discrete from
rhinovirus. A Blast search confirmed that the sequence chosen lacked any homology
anywhere within the rhinovirus genome sequence. Reverse transcription of RNA from
infected HBE was performed using Maxima reverse transcriptase with RNase H+ activity
(Invitrogen, Burlington, ON, Canada) and the chimeric primer. To remove any potential
carry over RNA, cDNA was RNase treated with an RNase cocktail (Invitrogen). The cDNA
was then purified using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany).
Real-time PCR was carried out using the HRV-16 negative strand-specific forward primer
and probe (Table 1) and the non-viral sequence only from the chimeric primer was used
as the reverse primer. When this assay was applied to RNA from infected HBE, there
was a normal amplification curve when the chimeric reverse primer was used for RT-PCR,
but no signal was observed either in the absence of negative primer, or in the absence of
reverse transcriptase (Figure 2), indicating that self-priming was no longer an issue in this
assay system.
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3.3. Further Validation Using Excess Positive Strand

To further validate the selectivity of the negative strand assay, we used synthetic,
HPLC-purified negative and positive strand oligonucleotide sequences that spanned the
sequences used for the assay. We first confirmed that the negative strand primer did not
show any detectable signal when tested against an excess (10,000 fg) of positive strand (not
shown). We also created a serial dilution curve of negative strand (1–10,000 attograms),
using a first strand cDNA standard to permit absolute quantification. We then showed
that adding either 100 fg (10 × the maximum amount of negative strand) or 10,000 fg
(1000 × the maximum level of negative strand) of positive strand did not alter the dilution
curve for negative strand (Figure 3), demonstrating no interference of excess positive strand
in the assay.
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Figure 3. Strand specificity is observed using the chimeric primer system. A dilution curve using
HPLC purified negative strand oligonucleotide is not affected even in the presence of 10- or 1000-fold
excess positive strand oligonucleotide. Data are representative of n = 4.

3.4. Monitoring Positive and Negative Strand Levels in Infected Cells

Having validated the selectivity of the negative strand assay, we monitored increases
in time of levels of negative and positive strand HRV-16 RNA in cells infected with purified
virus. Positive strand, genomic RNA was measured using a previously validated RT-PCR
system, as described [20]. Cells were exposed to HRV-16 for 2 h and then washed repeatedly.
At varying times after infection total cellular RNA was isolated and subjected to RT-PCR
for negative strand and for positive strand. For consistency, times are shown as time from
first addition of virus. Using first strand cDNA standards, each strand was expressed
as absolute amounts (attograms). These values were used to calculate copy numbers of
each strand. As expected, no negative strand was found in cells prior to infection but
levels of negative strand RNA were increased within 6 h after virus exposure, peaking at
18 h post virus exposure. The temporal pattern of negative strand template production
closely mirrored levels of positive strand genome (Figure 4). However, in all cases, levels of
negative strand were approximately 1000-fold lower than those of positive strand genome.
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4. Discussion

For all picornaviruses, including rhinoviruses, the generation of negative strand
template is absolutely essential for the transcription of new genomic RNA strands [8]. The
process of transcribing negative strands to genomic RNA leads to the formation of dsRNA,
which is a major pathogen-associated molecular pattern that can activate proinflammatory
and innate host defense responses. Although antibodies exist that can detect the presence
of dsRNA in cells via imaging, these reagents suffer from a relative lack of sensitivity and
do not permit any assessment of relative levels of dsRNA.

For rhinovirus, we confirmed prior studies using other virus types that have demon-
strated that conventional RT-PCR targeting the negative strand does not provide strand
specificity [14,15]. This has been observed for several virus families, including positive
sense strand RNA viruses of the Flaviviradae family (hepatitis C and dengue virus) [14,15]
and Caliciviradae family (norovirus) [16], as well as for puumala virus, a segmented neg-
ative sense strand virus of the Hantaviridae family [15]. Our data demonstrating that
apparent negative strand could be detected, even in the absence of any primer during
reverse transcription, are consistent with the previous reports of “self priming” of the
RNA or of priming by exogenous nucleic acids. Moreover, it has also been reported that,
when experiments using RT-PCR for negative strand were conducted using single strands
generated from plasmids by in vitro transcription, that measurements of negative strand
were not specific in the presence of the excess positive strand [16].

To overcome these issues, we modified a previously described strategy to design a
chimeric primer for reverse transcription of negative strand in which the specific sequence
targeting the negative strand of HRV-16 was extended at the 5′ end with a non-viral
sequence [16]. To minimize any homology with the rhinovirus genome, we selected a
non-viral sequence from the genome of Escherichia coli. This non-viral sequence was then
used as a primer to selectively amplify the negative strand specific cDNA at the PCR stage.
Using the chimeric primer, it was found that optimal results required treating the cDNA
generated with an RNAse cocktail followed by the purification of the cDNA. Under these
conditions, self-priming was eliminated, and the specificity of the negative strand assay
was established. Further evidence of the specificity of the assay came from showing that,
when purified, positive and negative strand oligonucleotides spanning the assay sequences
were used, dilution curves for negative strand were unchanged even in the presence of a
1000-fold excess of positive strand oligonucleotide.
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When this specific assay was used to examine both negative and positive strands in
primary cultures of human airway epithelial cells grown in submersion culture, we found
that the negative strand was detected within 6 h after exposure to HRV and peaked by 18 h
post infection. Interestingly, the temporal patterns of negative strand levels paralleled that
of levels of genomic positive strand RNA. At all time points, however, copy numbers of
negative strand were approximately 1000-fold lower than positive strand copy numbers,
implying that transcription of positive strand from negative strand template must be
highly efficient. Our observation of a 1000:1 ratio of positive to negative strand differ
from those of a previous report using an RNAse protection assay to study poliovirus in an
unspecified cell line, in which a ratio of only about 70 positive strands per negative strand
was reported [21]. This difference may be due to the use of poliovirus, as opposed to HRV,
to the specificity and sensitivity of the different assays, or to the use of the natural cell host
in our current study. We should also note that, in highly differentiated cultures of human
airway epithelial cells, where viral replication is higher than in submersion culture, we
also observed much lower levels of negative strand (approximately 10,000-fold) compared
to positive strand numbers [17]. In any case, the presence of a 1000-fold lower level of
negative strand in our current study confirms that the levels of negative strand dictate
the amount of dsRNA that can be generated in epithelial cells and, thereby, regulate host
immune signaling. Thus, measurements of the negative strand template will permit the
assessment of relative levels of dsRNA with time during studies of host responses, either
in submersion culture or in epithelial cells grown at the air–liquid interface.
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