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What is an RNA? A top layer for RNA classification
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ABSTRACT
Every ribonucleic acid begins its cellular life as a transcript. If the transcript or its processing product has a
function it should be regarded an RNA. Nonfunctional transcripts, by-products from processing,
degradation intermediates, even those originating from (functional) RNAs, and non-functional products of
transcriptional gene regulation accomplished via the act of transcription, as well as stochastic (co)
transcripts could simply be addressed as transcripts (class 0). The copious functional RNAs (class I), often
maturing after one or more processing steps, already are systematized into ever expanding sub-
classifications ranging from micro RNAs to rRNAs. Established sub-classifications addressing a wide
functional diversity remain unaffected. mRNAs (class II) are distinct from any other RNA by virtue of their
potential to be translated into (poly)peptide(s) on ribosomes. We are not proposing a novel RNA
classification, but wish to add a basic concept with existing terminology (transcript, RNA, and mRNA) that
should serve as an additional framework for carefully delineating RNA function from an avalanche of RNA
sequencing data. At the same time, this top level hierarchical model should illuminate important
principles of RNA evolution and biology thus heightening our awareness that in biology boundaries and
categorizations are typically fuzzy.
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Historical considerations

As RNomes continue to increase in complexity and with a new
RNA category being proclaimed almost monthly,1-3 it is time to
contemplate the basic question as to what an RNA is. About a
century ago, the veil on the structure of a substance initially
known as yeast nucleic acid or zymonucleic acid, later as pen-
tose nucleic acid (PNA), and finally as ribonucleic acid, began
to lift largely due to the contributions of Phoebus A.T. Levene
and Jean L.A. Brachet.4-6 Since the late fifties to early sixties, we
learned that most if not all cellular ribonucleic acid is copied
from DNA templates in an enzymatic process.7 Around the
same time, knowledge concerning RNA’s participation in pro-
tein biosynthesis emerged, including microsomal RNA (rRNA)
and soluble RNA (tRNA) as well as mRNA.8 In the sixties and
seventies other RNAs were detected and characterized, includ-
ing members of RNA families that we classify today as small
nuclear and nucleolar RNAs.9-11. In those days, RNAs other
than mRNAs were termed structural RNAs, presumably owing
to their anticipated structural tasks, following rRNA that was
simply regarded as a rack or backbone for the “only” functional
components, the ribosomal proteins.8 An additional motivation
for this term might have been the presumption that these RNA
species could form higher order structures (secondary and ter-
tiary structures) akin to tRNA12 - at that time in alleged con-
trast to mRNAs. Remarkably, in the early 60s, isolated
investigators predicted the roles of RNA not only in the evolu-
tion of life but also as functional and regulatory entities in
extant organisms.13

Apart from the few aforementioned RNAs as well as others
thought to be fossils from the RNA world, the contributions of
RNAs in cellular function and evolution were largely underap-
preciated. Only now, after 3-4 decades, does RNA finally
receive the recognition it truly merits and in some instances,
this attention has led to an exaggeration of its functions. All
DNA-templated RNAs are transcripts, but the question is
whether every transcript, albeit clearly a ribonucleic acid in the
chemical sense, deserves to be classified as an RNA. In the bio-
logical context, we ought to be more discriminating.

The controversy

Recently, large-scale experimental approaches, such as micro-
chip analysis and ultra-deep sequencing of the cellular RNA
componentry, revealed copious transcripts including those of
very low abundance. A debate is raging as to which fraction
exerts a function. One camp claims that most if not all identi-
fied transcripts, including detectable degradation products, are
functional.14-20. The other side stipulates that although
genomes of most organisms likely encode, in addition to
mRNAs, as many as thousands or tens of thousands of func-
tional RNAs, a large fraction, in particular the low abundant
transcripts, merely represent transcriptional noise resulting
from stochastic initiation in intergenic regions,20-27 previously
un-annotated (alternatively spliced) untranslated regions
(UTRs),28 read-throughs of bona fide gene termination sites,29

and more or less stable debris or leftovers from the processing
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of primary/precursor transcripts. The most prominent are dis-
carded introns, internal transcribed spacers, leaders, trailers,
etc., but occasionally also sequences comprising spliced exons
if, for example, the genes are merely hosts for miRNAs or snoR-
NAs and the corresponding exons lost (or never had) protein
coding capacity.30 as well Furthermore, molecules generated
during the turnover and degradation of mature RNAs fall into
this class.31-37 Notably, transcriptional interference, which is
gaining acceptance as yet another important layer of gene regu-
lation, produces ribonucleic acids whose sequences are
completely irrelevant; simply the act of transcription mediates
an effect on, for example, a downstream promoter, including
the blockade of transcription factor binding sites38-41 or the
alteration of chromatin structure.42,43

The difference between a transcript and an RNA

If we think about a ribonucleic acid chain as an RNA, it is usu-
ally with the association of a certain functional (including regu-
latory) or structural role – in analogy to a protein. This should
not be expected from every stochastic transcript or degradation
product or other “non-functional” ribonucleic acids. In keeping
with the tradition of the oxymoronic term non-coding ribonu-
cleic acids (ncRNAs, see also below) for functional non-
mRNAsc, one is tempted to address the ribonucleic acids that
are devoid of function as “non-RNAs.” Instead, we endorse the
generic term transcripts for this class of ribonucleic acid,
because some members of this category had previously been
designated as stable untranslated transcripts or transcripts of
unknown function (SUTs, TUFs).46,47 As it is not trivial to
assess whether such transcripts are never translated or other-
wise functional,48 and as ultra-deep RNA sequencing also iden-
tifies spurious or background transcripts of very low
abundance, we prefer the simple term transcripts, adding that
it includes stochastic transcripts, leftovers from primary tran-
script processing, or degradation products from the turnover of
mature RNAs as well as products from regulatory acts of tran-
scription. It follows then that transcripts constitute a further
category, class 0d, in addition to class I (functional including
structural RNA)e and class II (mRNA encoding peptide or pro-
tein) RNAs.49

Gray areas

A recurring theme in biology is the frequent lack of clear
boundaries or states; we are confronted instead with broad,
fuzzy interphases or with chimera (Fig. 1). Evidently, most
mRNAs (class II) not only feature an open reading frame
(ORF) but also contain other codes in UTRs or even within
ORFs. Those codes function as regulatory elements influencing
the stability or translatability of mRNAs, and thus, mRNAs are
chimeras of class I and II RNAs.50-53 The borders between
RNA and mRNA are also fuzzy because some bona fide class I
RNAs might also encode ORFs, which are occasionally trans-
lated54 (i.e., they are bifunctionalf RNAs).56,57 Likewise, an RNA
might be in the process of exaptation as mRNA.58 An example
for a chimera is the bacterial hybrid of a transfer and a mRNA,
tmRNA, formerly known as 10Sa RNA, which functions to
deblock ribosomes engaged in translating truncated mRNAs
devoid of an in-frame stop codon.59 Furthermore, rRNA also
encodes short peptides conveying antibiotic resistance.60

Interphases between transcripts on one hand and RNAs or
mRNAs on the other, are also of interest. A broad range is
expected between transcripts and RNAs, with some transcripts
on their way to exaptation and a significant fraction on their
way to oblivion.21,61-63 In contrast to the interphase between
transcripts and RNAs, the range between transcripts and
mRNA is presumably somewhat condensed by mRNA’s
requirement of at least temporal ribosome association, which
can be assessed experimentally.64 While this does not necessar-
ily assure translatability, its absence would not clearly exclude
it, as this association might not have been investigated in the
appropriate cell types or developmental times.

Ribonucleic acids that serve as binding partners for one or
more proteins to bring them into close proximity for a com-
bined function or to shuttle them to a specific subcellular loca-
tion exert a task and hence are RNAs (class I). Then again, any
transcript or degradation product can become or remain deco-
rated with protein, which does not automatically imply a func-
tion; hence, they would constitute transcripts (class 0). In
contrast, ribonucleic acids that act as decoys or sinks for other
RNAs, proteins, or other molecules should be categorized as
RNAs (class I).65-68 This includes some of the circular RNAs
(circRNAs) and non-translatable transcripts generated from
duplicated genes, such as retroposed pseudogenes.69 However,
the majority of circRNAs, often generated by aberrant splicing,
is expected to be devoid of function and consequently should
be considered transcripts (class 0).70 Likewise, a ribonucleic
acid generated by a regulatory act of transcription also is not an
RNA in the biological sense. As argued above, this does not
rule out a fortuitous future exaptation of any class 0 transcript
as a functional RNA or mRNA.21 Notably, a role for extra tran-
scripts as evolutionary raw material was proposed by Henry
Harris half a century ago.71,72

c Possibly, the sole function of miRNAs is to act as guides complementary to
regions of mRNA 3’UTRs (usually), placing repressive proteins for translational
regulation or stability onto the targeted mRNAs. Likewise, snoRNAs act as guides
complementary to RNAs (mostly rRNAs), exactly determining the nucleosides to
be modified by enzymes bound to snoRNAs. These RNA classes clearly carry
(anti)codes according to Barbieri43 and Trifonov44. and thus, should not be
addressed as non-coding RNAs.

d Of course, any RNA begins life as a transcript and a few of the functional RNAs
remain unprocessed. Thus the primary transcript constitutes the functional RNA,
but it is the function that usually sets RNAs apart from nonfunctional transcripts
or parts thereof: Many processed parts of primary transcripts (e.g., introns, lead-
ers, trailers) are nonfunctional, perhaps performing a temporary function such as
providing higher order structure, e.g., necessary for processing. Yet, these ribo-
nucleic acids should not be regarded as RNAs in the considerations presented
here, due to their lack of function (biology over chemistry). Usually, a transcript
without being processed does not function despite the fact that it harbors func-
tional RNAs (e.g., pre-mRNAs, pre-rRNA, pre-miRNAs, etc.).

e It does not matter how tiny (e.g., miRNA, piRNA), or large (e.g., Xist) an RNA is or
whether an RNA was chemically synthesized. The latter is an RNA since most, if
not all, molecules are being designed to exert a function, in vivo or in vitro. Viral
RNA genomes are RNAs where one of the functions is the mobility from cell to
cell and host to host.

f The term bifunctional RNA is also used for other molecules with two domains.
For example, an antisense RNA sequence specific to a target hnRNA and an
untethered RNA segment that serves as a binding platform for splicing factors to
guide certain desired splice variants as potential therapeutic agents. ADDIN EN.
CITE.DATA 55.
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Concluding remarks

If we address a functional ribonucleic acid as RNA (class I), a
translated or messenger ribonucleic acid as mRNA (class II)
and everything else as a transcript (class 0), we do not need
terms such as non-protein coding RNA (npcRNA), which
sometimes might be subject to revision if a templated transla-
tion product is subsequently revealed. Neither do we need the
unfortunate term non-coding RNA (ncRNA), because it
reduces the RNA to something that it is not, obscures the fact
that there is a gene coding for it (“a gene encoding a non-cod-
ing RNA”), and ignores the fact that RNAs carry many codes
other than the one translated at ribosomes.44,45 In any event,
there is absolutely no need for the “nc” qualifier for RNA, as
the term mRNA (mRNA) already provides the necessary quali-
fying differentiator. We do not propose to abandon clearly
defined categories of RNAs, such as, for example, tRNAs,
rRNAs, snRNAs, snoRNAs, miRNAs, or piRNAs, Instead, we

simply add a top-level hierarchical layer to RNA classification
using established categories of ribonucleic acids. Importantly,
with this basic framework in mind, it should be easier to com-
prehend that defining a (sub)class of RNA does not necessarily
imply that all its members are functional, such as any circular
RNA by-product from splicing or any RNA snippet that hap-
pens to be in a size range of miRNAs or piRNAs.
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Figure 1. A basic classification of transcripts and RNAs including the fuzziness of boundaries. Depicted is a continuum of the 3 ribonucleic acid superclasses: the first
includes stochastic transcripts, other transcripts generated during gene regulation by acts of transcription, secondary products of RNA maturation such as introns etc.,
and RNA turnover products (transcripts, class 0) in yellow, functional RNAs (RNAs, class I) in blue, and classic mRNAs (mRNAs, class II) in red. Hybrid zones, interphases, or
transitions between the 3 classes, for example, reflecting chimeras of 2 classes or those in the process of exaptation or abandonment are shown in purple, orange, and
green. This figure does not represent quantitative measures of ribonucleic acid species or their abundances.
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