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Calcific aortic valve disease (CAVD) is the most common valvular heart disease. CAVD

results in a considerable socio-economic burden, especially considering the aging

population in Europe and North America. The only treatment standard is surgical valve

replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped.

Novel diagnostic techniques and biomarkers for early detection and monitoring of CAVD

progression are thus a pressing need. Additionally, non-destructive tools are required for

longitudinal in vitro and in vivo assessment of CAVD initiation and progression that can

be translated into clinical practice in the future. Multiphoton microscopy (MPM) facilitates

label-free and non-destructive imaging to obtain quantitative, optical biomarkers that

have been shown to correlate with key events during CAVD progression. MPM can

also be used to obtain spatiotemporal readouts of metabolic changes that occur in the

cells. While cellular metabolism has been extensively explored for various cardiovascular

disorders like atherosclerosis, hypertension, and heart failure, and has shown potential

in elucidating key pathophysiological processes in heart valve diseases, it has yet to gain

traction in the study of CAVD. Furthermore, MPM also provides structural, functional,

and metabolic readouts that have the potential to correlate with key pathophysiological

events in CAVD progression. This review outlines the applicability of MPM and its derived

quantitative metrics for the detection and monitoring of early CAVD progression. The

review will further focus on the MPM-detectable metabolic biomarkers that correlate

with key biological events during valve pathogenesis and their potential role in assessing

CAVD pathophysiology.

Keywords: calcific aortic valve disease, multiphotonmicroscopy, valve interstitial cell metabolism, aortic stenosis,

early diagnosis

INTRODUCTION

Calcific aortic valve disease (CAVD) is the most common heart valve disease, with a prevalence of
25% in those 65 years and above (1). Additionally, 75% patients with congenital bicuspid aortic
valve disease develop CAVD by the age of 30 years (2, 3). CAVD is a progressive disease with
complex pathophysiology (4), and is associated with a 50% elevated risk of fatal cardiovascular
pathologies resulting in more than 15,000 deaths annually in North America alone (5). The only
available standard of care is valve replacement surgery (6), as early detection, prevention, and
mitigation strategies are underdeveloped (7). Several techniques such as echocardiography, cardiac
magnetic resonance imaging, and computed tomography are clinically employed for the diagnosis
and monitoring of CAVD (8, 9), while newer techniques such as positron emission tomography are
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gaining traction (9). However, there remains a need for a
multimodal technique capable of performing early detection and
monitoring of CAVD progression.

Multiphoton microscopy (MPM) is well-suited to provide
non-invasive assessments of tissue structure and function. The
most commonly used MPM technique, two-photon excited
fluorescence (TPEF)microscopy, employs the use of two photons
of near-infrared (NIR) wavelengths to excite fluorophores,
which offers advantages such as intrinsic depth sectioning, less
photobleaching, and label-free imaging of various endogenous
fluorophores (10–13). These characteristics make TPEF suitable
for non-destructive, non-invasive, spatiotemporal imaging of
live cells and tissue samples, both in vitro and in vivo (10, 12,
13). MPM has been shown to be useful for generating high-
resolution image-based data but also quantitative metrics that
can be correlated with biologically-relevant features and events
ranging from sub-cellular scales up to gross tissue morphology
(10, 13–18).

TPEF allows for quantification of the endogenous
fluorescence of the cellular co-factors flavin adenine
dinucleotide (FAD) and the reduced forms of nicotinamide
adenine dinucleotide (NADH) and nicotinamide adenine
dinucleotide phosphate (NADPH). NAD(P)H and FAD play
key roles as electron carriers in various metabolic pathways,
including glycolysis, the tricarboxylic acid cycle, and the
electron transport chain in mitochondria (11, 12, 19, 20).
The ratio of the fluorescence intensity of these factors [e.g.,
FAD/(FAD+NAD(P)H)], called optical redox ratio (ORR), can
reveal insights into the interplay between glucose catabolism
and oxidative phosphorylation (11, 12, 19–21). NAD(P)H
autofluorescence can also be used to assess the mitochondrial
organization via the mitochondrial fractal dimension (FD)
parameter (20, 22, 23).

In addition to spatially-resolved fluorescence measurements
of NAD(P)H, measurements of the time between excitation and
emission can provide additional insights into cell metabolism
through fluorescence lifetime imaging (FLIM). This technique
involves estimating the fluorescence lifetime decay rates, which
are sensitive to microenvironmental changes such as pH or
protein binding (11). Of note, FLIM of NAD(P)H can be used
to distinguish its bound and free states through a biexponential
least-squares fit of the lifetime decay curves (11, 19, 24–26). Free
NAD(P)H has a mean lifetime of 0.3–0.4 ns, while protein-bound
NAD(P)H has a mean lifetime of 1.9–5.7 ns (11). The proportion
of free NAD(P)H tends to increase when cells are undergoing
glycolysis, while bound NAD(P)H often increases with increases
in the rate of oxidative phosphorylation. FLIM is advantageous
because it is independent of fluorophore concentration, laser

Abbreviations: CARS, Coherent anti-Stokes Raman Spectroscopy; CAVD,
Calcific Aortic Valve Disease; EVs, Extracellular Vesicles; FAD, Flavin Adenine
Dinucleotide; FD, Fractal Dimension; FLIM, Fluorescence lifetime imaging;
hMSCs, Human mesenchymal stem cells; MPM, Multiphoton Microscopy;
NAD(P)H, Nicotinamide Adenine (phosphorylated) Dinucleotide Reduced; ORR,
Optical Redox Ratio; ROS, Reactive Oxygen Species; SHG, Second Harmonic
Generation; TPEF, Two-Photon Excited Fluorescence; VICs, Valve Interstitial
Cells.

intensity fluctuations, and the effects of tissue adsorption and
scattering (18, 19, 24–27).

Second harmonic generation (SHG) imaging is another
powerful MPM technique used to assess non-centrosymmetric
molecules like fibrillary collagen (17, 28–30). SHG is sensitive to
collagen fiber amount, length, diameter, density, and orientation
(31–33) and has been used in various research applications
including dermatology, oncology, neurology, and cardiovascular
disorders (17, 28–34). Apart from measuring collagen via
SHG, TPEF imaging has been used to assess elastic fiber
content, density, and length to characterize cardiovascular
pathophysiology (17, 30, 35). MPM-based coherent Raman
imaging techniques, such as coherent anti-Stokes Raman
spectroscopy (CARS), have also provided a powerful tool to
visualize lipid droplet organization, concentration, and size (24–
26, 29, 36–38). SHG and CARS imaging of collagen, calcium, and
lipids can be performed simultaneously with TPEF microscopy
(11, 13, 20, 39, 40) and could be potentially used to characterize
optical signatures associated with CAVD progression.

There are relatively few studies that have applied MPM for
the study of aortic valves and its pathophysiology. MPM-based
approaches combining TPEF, SHG and CARS, for label-free
imaging of an aortic valve have been previously demonstrated
(41). TPEF has been used to assess aortic valve interstitial
cell (VIC) proliferation (21, 42), osteogenesis (43), and valve
calcification in vitro and ex vivo (39). TPEF autofluorescence
ratios have shown potential in assessing CAVD progression
ex vivo (44). SHG has also been used to quantify collagen
remodeling in valve tissues (45). This review outlines how label-
free MPM metrics have been employed to assess key events of
CAVD progression, in valvular and non-valvular cells, tissues,
and disease models. We then summarize the challenges and
future directions for MPM as a tool to study valve disease.

MPM-BASED DETECTION OF MARKERS
FOR VALVE DISEASE IN OTHER
PATHOLOGIES

Multiple events contribute to CAVD progression. Some
known hallmarks or markers of CAVD include endothelial
damage, endothelial-to-mesenchymal transformation, oxidative
stress, lipid deposition and oxidation, inflammation, collagen
remodeling, and mineralization (4–7, 46–48). Multiple studies
have employed label-free MPM techniques and metrics to assess
similar events and biomarkers in other diseases and models as
discussed below.

Monitoring of Inflammation and Reactive
Oxygen Species
Multiple studies as described here have employed multimodal
MPM approach by combining CARS, TPEF, and SHG to assess
inflammation. NAD(P)H imaging via TPEF has been shown
to be useful in identifying macrophages and CARS has been
used to detect foam cells during spinal cord injury (38, 49,
50). MPM has also been used to assess inflammation in blood
vessels to identify morphological differences between healthy
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and tumor tissues, lymphocytes, collagen fiber bundles, and
endothelial damage (51, 52). Reactive oxygen species (ROS) are
a primary cause of endothelial damage and tissue injury leading
to inflammatory diseases (53), and are key modulators of cell
metabolism (54). Correlation between cell metabolism and ROS
has been well-characterized in cancers (55). Given ROS-mediated
inflammation and lipid oxidation are key drivers of early
CAVD initiation (56–58), imaging metabolic and morphological
changes of cells as well as oxidized lipids via MPM to infer
inflammation (24, 59), may serve as a powerful early detection
tool to detect CAVD initiation.

Monitoring of Extracellular Vesicles and
Apoptotic Calcification
Immune signaling, apoptosis, and Ca2+ ion flux are closely
associated with mitochondrial dysfunction and CAVD
progression (60). Apoptotic VICs have been shown to present
ectonucleotide pyrophosphatase/phosphodiesterase-1 (eNPP1)-
containing extracellular vesicles (EVs) on their cell membrane,
where these EVs are thought to promote mineralization (61).
Recently, label-free FLIM has been utilized to image EVs isolated
from macrophages and cancer cells (62). NAD(P)H lifetime
determined by FLIM has also been used to assess apoptosis
and shown to change before cleaved caspase-3 activation and
mitochondrial dysfunction (27, 63). These results suggest a
potential avenue for using FLIM to characterize apoptosis,
and therefore EV-mediated dystrophic mineralization during
CAVD progression.

Monitoring of Extracellular Matrix
Structure and Phenotypic Differentiation
MPM has been used to monitor the osteogenic, adipogenic
and chondrogenic differentiation of human mesenchymal stem
cells (hMSCs) using various MPM-based metrics, including
ORR, mitochondrial organization within the cell, collagen
SHG, and FLIM of NAD(P)H and FAD (19, 20, 64). These
studies suggest that the assessment of the heterogeneity of
the cell population, their capability for collagen synthesis and
remodeling, and variation in their differential potential can be
assessed via MPM techniques (20, 64, 65). Considering the
utility of TPEF and CARS to detect adipogenic differentiation
of hMSCs and assess lipid amount, organization, orientation,
and concentration (20, 25, 26, 36, 64), MPM-based imaging of
lipid deposition may be useful in monitoring CAVD progression.
MPM imaging has already been used to visualize elastin and
collagen microstructures in heart valves using TPEF and SHG,
respectively (17, 30, 45, 66).

MPM IN AORTIC VALVE PATHOLOGY AND
PHYSIOLOGY

Ex vivo Characterization of Calcification
TPEF autofluorescence at 800 nm excitation and 460 and 525 nm
emission was associated with mineralization in ApoE−/− mice,
calcified human valves, and calcific nodules generated in vitro,
using a ratiometric approach, a result also corroborated by

CARS imaging (39). While the fluorescence emission at 525 nm
was associated with mineralization, spectral analysis revealed
that fluorescence emission at 460 nm was associated with
collagen (39).

Recently, we have evaluated multiple ratios of
autofluorescence intensity at various stages of disease in a
mouse model of CAVD (44). In that study, autofluorescence
intensities at specific two-photon excitation and emission
wavelengths, represented as Aexcitation/emission, were considered,
including A810/525, A810/460, A860/525, and A755/460. We found
that the [A860/525/(A755/460+A860/525)] autofluorescence ratio
rather than [A810/525/(A810/460+A810/525)] was more sensitive
to CAVD progression (44). These TPEF autofluorescence
ratios correlated negatively with proliferation, osteogenic
differentiation, collagen remodeling, and calcium deposition.
Indeed, reduced autofluorescence ratio at 16 weeks served as a
predictor for increased calcification in the valve at 28 weeks (44).
In another study, assessment of collagen remodeling via SHG
revealed that during CAVD, collagen fibers in the spongiosa layer
increased in number, width, and density while collagen fibers of
the fibrosa became relatively shorter (45) (Figures 1A,B). SHG
imaging also revealed decreased collagen amount and altered
fiber alignment in different regions of aortic valve leaflets in an
ApoE−/− mice based CAVDmodel (66). In the same study, lipid
droplets (Figure 1C) and cholesterol crystals were identified
within cells (Figure 1D) and plaques (Figure 1E) in aortic valve
leaflets via CARS imaging (66).

In vitro Characterization of VIC
Pathophysiology
Our lab has previously reported that when VICs underwent
a pathogenic phenotype shift, they experienced a decrease in
ORR, suggesting a possible link between VIC pathology and
its metabolic state (21, 42, 43, 67). TPEF imaging of VICs
under quiescent and osteogenic conditions revealed that the ORR
decreased during early osteogenic differentiation (Figure 1F)
and correlated with gene expression of osteogenic markers.
However, FD, a marker inversely proportional to mitochondrial
clustering, increased at later time points and correlated with gene
expression of osteogenic and structural markers as assessed by
qRT-PCR. FD also correlated with nuclear morphology which
was assessed via TPEF fluorescence maps (43). In another
study, VICs subjected to conditions mimicking hypertensive
pressures exhibited decreased ORR (21). Even in a more valve
mimetic three-dimensional environment with physiological
and pathological stretch, VIC ORR correlated negatively with
proliferation (42). These studies demonstrate the in vitro utility of
TPEF in assessing VIC structure, function, and phenotype during
CAVD progression.

BIOLOGICAL RELEVANCE OF
MPM-BASED METRICS TO VALVE
DISEASE

During disease, stress, differentiation, or other
pathophysiological conditions, cells undergo increased
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FIGURE 1 | Collagen microarchitecture in (A) healthy and (B) diseased aortic valve leaflets imaged via SHG imaging. Scale bar = 50µm. These figure panels were

adapted from Hutson et al. (45) under an open access Creative Commons CC BY license. Aortic valve (acoronary) leaflet regions of ApoE−/− mice imaged via CARS

(red; lipids and cholesterol), TPEF (green; cells) and SHG (blue; collagen) showing (C) lipid droplets and (D) cholesterol crystals within the cells and (E) lipid droplets

and cholesterol crystals in the plaques. These figure panels were adapted from Jannasch et al. (66) under an open access Creative Commons CC BY license. (F) ORR

maps for VICs cultured under quiescent and osteogenic conditions for 1, 14, and 28 days. ORR decreased in osteogenic VICs by 14 days. The color bar represents

the value of unitless ORR ranging between 0.2 and 0.8. These figure panels were modified from Tandon et al. (43) under an open access Creative Commons CC BY

license.

glycolysis resulting in increased production of NAD(P)H
(11, 14, 20). Under physiological conditions, it has been
observed that cells are preferential to the process of oxidative
phosphorylation for meeting their energy demands, which
results in an increase in NAD+ concentrations (11, 14, 20).

This ratio of NAD+ and NADH is correlated with the ratio
of FAD and NADH autofluorescence as measured by ORR
(11, 20). NAD(P)H fluorescence can also be used to assess
mitochondrial organization, which has been associated with
multiple cardiovascular disorders (20, 23, 63, 68–73).
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Mitochondrial Organization in Calcified
Valves
Dynamin-related protein-1, a protein responsible for
mitochondrial fission was upregulated in stenotic valves,
inhibition of which attenuated calcification (60, 74).
Mitochondrial fission is known to induce autophagy (75),
and inhibiting fission reduced mitochondrial clustering (72).
Interestingly, osteogenic VICs showed higher FD implying
less mitochondrial clustering as assessed by TPEF imaging of
NAD(P)H fluorescence (43) but the specific functional role
of mitochondrial clustering in valve pathophysiology is yet to
be elucidated.

CAVD Metabolic Profiling via Multi-Omics
Approach
The role of cellular metabolism has been widely explored in
various cardiovascular disorders (71, 73, 76, 77) and metabolic
regulators like osteocalcin, pyruvate dehydrogenase kinase, and
adenosine monophosphate-activated protein kinase pathway
have been implicated (78–81). These factors and pathways are
known to be differentially regulated in diseased aortic valves (82–
84). In turn, aortic stenosis has been a known modulator of
cardiac metabolism (85). Few studies exist that directly aimed
at understanding metabolic changes and their role in CAVD
progression (21, 42, 43, 67), while others employed proteomics
and found differentially regulated metabolism-related proteins
and/or protein clusters associated with aortic valve disease (86–
90). Researchers have also employed transcriptomics (83, 91)
and multi-omics (92) approaches and revealed differentially
expressed factors, which affect cellular metabolism during aortic
valve disease.

Metabolic Changes During VIC
Pathophysiology
VIC and hMSC osteogenic differentiation showcased similar
trends with respect to ORR and FD (20, 43), an observation
supported by the recently elucidated stemness characteristics of
VICs (65). A glycolytic shift of metabolism during osteogenic
differentiation has been speculated to occur due to the increased
biosynthetic demand for collagen synthesis and remodeling
(20, 67). However, other factors like pyruvate availability in
media may also determine the tendency of cells to prefer
glycolysis vs. oxidative phosphorylation (19, 20, 64). In our in
vitro study, increased proliferation associated with decreased
ORR in VICs was regulated by the Akt/mTOR signaling
pathway (42), which has also been observed in other studies
(55, 93). These signaling pathways were also involved in the
regulation of ROS-mediated oxidative stress and its effects on
cell metabolism and proliferation (54). Reduced ORR suggested
increased glycolysis and/or reduced oxidative phosphorylation
during VIC proliferation and osteogenesis (11, 20, 42, 43).
Indeed, VICs undergoing mineralization were enriched in
proteins responsible for maintaining glycolysis and mediators for
phosphate metabolism (94). Additionally, peripheral blood gene
signatures associated with CAVD revealed increased proliferation
and reduced oxidative phosphorylation (95). Additionally,

ATPase, an enzyme important for oxidative phosphorylation, was
found to be downregulated in stenotic valves (83). Differences
observed in the substrate utilization and glycolytic shifts in
cardiovascular development and disorders (77, 85), and the
extensive MPM-based assessment of hMSCs (19, 20, 64), should
inspire further exploration of metabolic imaging in VICs.

Cause-effect relationships between metabolic alterations and
VIC pathophysiology and their correlation with disease require
further inquiry. On that front, mechanisms, regulators, and
diagnostic strategies for vascular inflammation and calcification
are at a more advanced stage of being assessed via imaging
techniques (59, 79, 80, 96, 97), and efforts to incorporate
these associations with valvular calcification may help to get a
better understanding of metabolic imaging in CAVD. Further
understanding of how metabolic regulators affect MPM metrics
with respect to disease stage and severity, in the context of the
aortic valve, is required to fully understand the extent of the
biological relevance of MPMmetrics in the context of CAVD.

CHALLENGES ASSOCIATED WITH
CLINICAL TRANSLATION AND FUTURE
DIRECTIONS

Despite several advantages, MPM is not devoid of associated
limitations. Challenges exist in terms of specificity and resolution
for a given fluorophore, dependency of depth penetration on the
absorbing and scattering fluorophores, and minimal but existent
photobleaching (11, 98). Some of the challenges associated with
heart valve imaging are summarized below.

Intrinsic sources of contrast from NAD(P)H, FAD, lipids,
collagen, elastin, and mineralization can facilitate MPM-
based imaging of CAVD progression (11, 39). However, their
overlapping spectra within the visible range can pose challenges
in relating measurements to a specific source of contrast (39, 40).
Unmixing the fluorescence spectra of each of the aforementioned
components within the valve will be important in understanding
how these optical signatures relate to disease stage and severity.
Additional studies are needed for rigorous in vitro and ex
vivo screening of optical signatures correlated with each CAVD
hallmark, including but not restricted to endothelial damage,
infiltration of inflammatory cytokines, oxidization of lipids,
apoptosis, and collagen remodeling. It should be noted that while
some ex vivo characterization has been performed (39, 44, 45), in
vivo analysis is yet to be realized.

MPM-based intravital imaging of the ventricular wall has
been performed (15, 16, 99, 100); however, in vivo imaging of
valves faces challenges due to accessibility, tissue movement,
and blood flow (28, 97, 101–104). Limitations of tissue
accessibility are being addressed by enhancing flexibility and
miniaturization of microendoscopy tools, which will help
facilitate preclinical and clinical translation of MPM (28, 101–
103, 105). Work is also focused on developing strategies to
overcome motion-based artifacts introduced by heartbeat or
physiological geometry changes (104). Additionally, researchers
have developed algorithms to account for the NIR signal
attenuation by blood (97). Indeed, there remain several
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TABLE 1 | Summary of label-free MPM techniques and metrics associated with CAVD progression.

CAVD stage CAVD event MPM techniques and metabolic metrics

Aortic valve disease Non-valve disease models

Initiation

(Inflammation)

Endothelial damage – Blood vessels: Overlay of TPEF (Ex: 810 nm, Em:

428–695 nm) and SHG (Ex: 810 nm, Em: 395–415 nm) (51),

CARS (119)

Macrophages – TPEF (presumably FAD and Lipofuscin, Em: 500–550 nm)

(50), Lipid-laden Macrophages—CARS (52)

Lipid deposition – Macrophages—CARS (52), Adipogenic MSCs—TPEF (ORR;

Lack of endogenous autofluorescence with autofluorescent

cells) (20) Blood vessels—CARS (51)

Oxidative stress – FLIM (Ex: <760 nm, Em: 440–470 nm) (Long lifetime species

in oxidized lipids) and CARS (24, 120)

Progression (VIC

dedifferentiation,

Fibrosis, Calcification)

Apoptosis – Neurons and astrocytes—TPEF (ORR increased) (11), FLIM

(Ex: <760 nm, Em: 440–470 nm; Increase or decrease of

NAD(P)H lifetime dependent on cell type) (11, 27, 63)

Extracellular vesicles – EVs from macrophages and breast cancer cell lines—FLIM

(Ex: <760 nm, Em: 440–470 nm) (62)

Hypoxia – TPEF (ORR decreased) and FLIM (Ex: <760 nm, Em:

440–470 nm; free/bound NAD(P)H increased) (11, 120)

Proliferation TPEF (ORR decreased) (21, 42–44) TPEF (ORR decreased) and FLIM (Ex: <760 nm, Em:

440–470 nm; NAD(P)H lifetime decreased) (11, 14)

VIC dedifferentiation TPEF (ORR decreased early, FD increased

later time points) (43, 44)

N/A

Extracellular matrix

remodeling

Collagen—SHG (Ex: 890 nm, Em:

425–465 nm), Elastin—TPEF (Ex: 760 nm,

Em: 420–460 nm), (17, 30, 45, 66)

TPEF and SHG (25, 34, 52, 105, 119)

Calcification Mineralization—TPEF (Ex: 800 nm, Em:

460 and 525 nm), and CARS (39)

–

challenges before MPM-based techniques can be applied to the
valve leaflets in vivo.

Recent advances in FLIM and CARS-based imaging of lipid
bilayers, oxidized lipids, extracellular vesicles, and oxidative
stress (24, 37, 62) have opened new avenues for exploring
label-free signatures in CAVD. Lipid infiltration, oxidation, and
biosynthesis are associated with CAVD initiation and progression
(106, 107), in addition to being key regulators of metabolism
(11, 20). Furthermore, hypoxia-mediated collagen remodeling
and cell metabolism in CAVD (11, 108–110), can also potentially
be assessed by MPM imaging (17, 30, 45, 66). MPM may
also prove useful in further assessing the correlation between
metabolism and mineralization by imaging cellular metabolism
of VICs, EVs, and mineralization of apoptotic bodies (60, 61,
111). Understanding metabolic changes and their mechanisms
during heart valve pathophysiology, may therefore open new
avenues for therapeutic interventions as well, as it has in other
cardiovascular disorders such as heart failure, hypertrophy, and
arterial inflammation (71, 73, 76, 77).

CONCLUSION

MPM offers distinct advantages such as label-free detection,
quantitativemeasurements, reduced phototoxicity, and increased
depth penetration (10–13) relative to confocal microscopy.While
multiple different techniques and biochemical assays have been

utilized to assess CAVD progression, most techniques require
the use of exogenous labels and dyes, cellular fixation, and
lysis which restrict the longitudinal monitoring of live cells
and tissues, unlike MPM based imaging (58, 112, 113). MPM
offers a label-free non-destructive alternative that will allow
conservation of the sample, time, and resources yet providing
quantitative data along with spatial mapping of these biomarkers
(10, 11, 13, 25, 34). MPM-based metrics have been widely
employed in cancer research (18, 114–116), stem cell research
(19, 20, 64, 93), wound healing studies (14, 29, 114, 117),
other cardiovascular disorders (35, 97, 118, 119) (Table 1) and
have been explored for clinical translation as well (29, 115,
121, 122). While MPM-based optical signatures and quantitative
metrics may hold potential in streamlining in vitro and ex
vivo CAVD detection and monitoring (Table 1), much work is
required in elucidating distinct optical signatures that correlate
with individual disease markers. Additionally, understanding the
biological relevance of these biomarkers and their associated
regulators is equally important in furthering the therapeutics and
diagnostics of CAVD, a disease with no drug-based therapies,
or early diagnostic tests (4–7). Advancements in probe design
for accessibility and challenges associated with imaging moving
objects withmultiple confounding autofluorescent and absorbing
sources must be overcome for the successful adoption of
MPM techniques and metrics for clinical imaging of aortic
valves (28, 97, 101–105).
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