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Detection of defects including cracks and spalls on wall surface in high-rise buildings is a crucial task of buildings’ maintenance. If
left undetected and untreated, these defects can significantly affect the structural integrity and the aesthetic aspect of buildings.
Timely and cost-effective methods of building condition survey are of practicing need for the building owners and maintenance
agencies to replace the time- and labor-consuming approach of manual survey. )is study constructs an image processing
approach for periodically evaluating the condition of wall structures. Image processing algorithms of steerable filters and
projection integrals are employed to extract useful features from digital images. )e newly developed model relies on the Support
vector machine and least squares support vector machine to generalize the classification boundaries that categorize conditions of
wall into five labels: longitudinal crack, transverse crack, diagonal crack, spall damage, and intact wall. A data set consisting of 500
image samples has been collected to train and test the machine learning based classifiers. Experimental results point out that the
proposed model that combines the image processing and machine learning algorithms can achieve a good classification per-
formance with a classification accuracy rate � 85.33%. )erefore, the newly developed method can be a promising alternative to
assist maintenance agencies in periodic building surveys.

1. Introduction

During the construction and maintenance of high-rise
buildings, it is very crucial to attain good surface quality
of structures due to safety and esthetics aspects. Because of
the combined effects of aging, weather conditions, and
human activities, the condition of building structures de-
teriorates over time [1]. If left untreated, damages such as
cracks and spalls obviously cause inconvenience for the
building’s occupants, deteriorate the structural integrity, and
lead to a significant reduction of the value of the poorly
maintained asset. )erefore, identifying defective areas that
appear on surface structure is one of the main tasks in
periodic survey buildings.

In high-rise buildings, the components that have large
surface areas typically include walls (both concrete walls and
brick walls covered by mortar) and slabs. )e assessment of
concrete slabs is usually performed during the construction

phase. It is because during the operation phase, the surface of
slab structure is concealed by floor coverings such as ceramic
or stone tiles. )erefore, this study focuses on the visual
assessment of wall structures.

In Vietnam, periodic surveys on building condition
are usually performed by visual assessment of human in-
spectors. )is fact is also common in other countries be-
cause visual changes in structures can directly point out the
potential problems of building structures [2]. For
instances, cracks can be indicators of structural problems
including building settlement and degradation of building
materials; particularly for concrete walls, spalls can be
caused by the corrosion of embedded reinforcement bars
[3–5].

In the current practice of building condition assessment,
the damages on the surface of building structures are usually
inspected by qualified technicians. )ese technicians often
utilize contact-type equipment including profilometer and
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measuring tape for identifying the defective areas [6]. Al-
though the manual procedure can help to obtain accurate
condition of the structure, it also has several disadvantages.
First, the surveying process is strongly affected by the
knowledge, experience, and subjective judgment of human
inspectors; therefore, this issue can lead to inconsistency
of the assessment outcome. Second, the process of visual
assessment, measurement, data processing, and report
can be very time consuming especially for high-rise build-
ings with large surface areas needed to be inspected
periodically.

Accordingly, it is immensely beneficial for the building
owners and maintenance agencies if the manual inspection
process can be replaced by a more productive and consistent
method of surveying [7]. Among automated methods for
building condition evaluation, machine vision based ap-
proaches are widely employed due to their ease of access to
equipment, their fast computing processes, and the rapid
advancements of image processing techniques [8–14].

Hutchinson and Chen [15] presented a statistical-based
method for evaluating concrete damage including cracks
and spalls and relied on a Bayesian method for recognizing
cracks automatically from images. Chen et al. [16] employed
the first derivative of a Gaussian filter to analyze multi-
temporal images for measuring cracks. Zhu [17] put forward
an intelligent method using three circular filters to detect air
pockets appearing on the surfaces of concrete.

)e level set method and morphological algorithms for
image processing have been used by Chen and Hutchinson
[18] to identify and analyze cracks in laboratory environment.
Lee et al. [19] proposed a model that integrates various image
processing operations (brightness adjustment, binarisation,
and shape analysis) to facilitate the accuracy of crack de-
tection; in addition, a neural network-based model was
implemented to classify crack patterns of cracks. Valença et al.
[20] introduced a method based on multispectral image
analysis to evaluate and delineate defective areas.

An image processing-based approach for detecting
bugholes on concrete surface has been established by Liu and
Yang [21]; the employed techniques are contrast enhance-
ment and Otsu thresholding. Kim et al. [22] compared
different image binarisation algorithms for identifying
cracks in concrete structures. Hoang [23] employed the Otsu
method and a gray intensity modification approach for
binarizing images and isolating cracks.

Silva and Lucena [24] demonstrated the capability of
deep learning approach for concrete crack detection. Dor-
afshan et al. [25] has recently compared the performances of
deep convolutional neural networks and edge detection
methods for the task of recognizing concrete cracks. )e
notable advantage of deep learning approaches is that their
feature extraction operators are autonomously constructed
during the model training phase [26]. However, methods
based on deep learning often necessitate a considerable
amount of training samples and require a large computa-
tional cost.

As can be seen from the existing literature, most of the
previous works have dedicated in constructing models for
the classification of crack and noncrack conditions. Few

studies have constructed an integrated image processing
model for detect cracks and spalls. )e objective of the
current study is to combine image processing techniques
and advanced machine learning algorithms into an in-
tegrated model that is capable of detecting and categorizing
the defective areas on wall structures. By using an intelligent
model that can recognize and categorize types of cracks and
spalling areas simultaneously, the task of periodic
building condition survey can be executed in amore effective
manner.

)e feature extraction phase of the new model relies on
image processing algorithms of steerable filters and pro-
jection integrals. It is because these two algorithms of image
processing have demonstrated their usefulness in recog-
nizing defects in pavements [27, 28]. Based on the extracted
features, machine learning algorithms including
support vector machine (SVM) and least squares support
vector machine (LSSVM) are employed to classify input
images into five labels: longitudinal cracks, transverse
cracks, diagonal cracks, spalls, and intact walls. )e reason
for the selection of these machine learning approaches
is that their outstanding performances in classification
tasks have been reported in the literature [29–33].

Based on the aforementioned features, the main con-
tributions of the newly constructed model can be summa-
rized as follows:

(i) Multiple types of cracks (longitudinal cracks,
transverse cracks, diagonal cracks) existing in wall
structures can be detected and categorized in an
integrated model. )is can be considered to be
a significant improvement since most of the existing
models can only produce the prediction outcome of
crack or noncrack conditions [13, 23–25].

(ii) Although projection integrals have been utilized in
structural defect classification [27, 28], diagonal
projection integrals which have been rarely
exploited in concrete surface crack categorization
are employed in this study to specifically deal with
diagonal cracks.

(iii) Cracks and spall damages can be recognized si-
multaneously in an integrated model which has also
rarely been achieved in the current literature.

(iv) Neural networks have been extensively used
in concrete crack categorization [19, 34, 35].
However, the applications of SVM and LSSVM in
this task are still limited and a comparative work
needs to be performed to evaluate the potential of
these two advance machine learning algorithms
in dealing with the problem of wall defect
recognition.

)e rest of the paper is organized as follows: the research
methodology is reviewed briefly in the next section, followed
by the description of the newly constructed automatic ap-
proach for wall defect detection; the fourth section reports
experimental results of this study, followed by the conclu-
sion in the final section.
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2. Research Methodology

2.1. Image Processing Approaches

2.1.1. Steerable Filter (SF). SF [36] is an orientation-selective
convolution kernel used widely used for feature extraction.
In image processing field, oriented filters are often
employed in various vision and image processing tasks
including edge detection and texture analysis [37]. Since
cracks and spalls on wall surface have distinctive edges and
patterns; the utilization of SF can be helpful to recognize
these defects.

SF is based on the computation of directional derivatives
of Gaussians; accordingly, these filters can be used to
construct local orientation maps of a digital image [37]. SF is
essentially a linear combination of Gaussian second de-
rivatives. For an image I (x,y), a 2-D Gaussian at a certain
pixel is computed in the following formula [38]:

G(x, y, r) �
1
���
2πr

√ exp
− x2 + y2( 

2r2
, (1)

where r is a free parameter which denotes the Gaussian
function variance.

)e expression of the SF formulation with an orientation
of θ is given as follows:

F(x,y,r,θ) � Gxx cos
2
(θ) +2Gxy cos(θ)sin(θ) + Gyy sin

2
(θ),

(2)

where Gxx, Gxy, and Gyy denote the Gaussian second de-
rivatives and their expression are given in the following
equations:
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,
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���
2π

√
r5

.

(3)

Notably, if the value of the parameter r which is the
variance of the Gaussian function variance is fixed, the final
response map of an image is obtained by combining the
outcomes of individual SFs with different values of θ. In this
study, the values of θ vary from 0° to 360° with an interval of
30°. )e responses of SFs of images containing defects are
demonstrated in Figure 1 with different values of the
Gaussian function variance.

In addition, the final response map created by SFs for an
image I is calculated using the equation below:

R(x, y) � F(x, y, σ, θ)∗ I(x, y), (4)

where “∗” is the symbol of the convolution operator.

2.1.2. Projection Integral (PI). PI is a widely used method for
image analysis. )is approach is particularly useful for

shape and texture categorization and has been extensively
employed for face and facial recognition [39, 40]. In the
field of civil engineering, this image analysis method has
been successfully applied in pavement crack classification
tasks [27, 38, 41] as well as pavement pothole recognition
[28].

)e two PIs along the horizontal and vertical axes of an
image are denoted as horizontal PI (HPI) and vertical PI
(VPI). )ese two PIs are computed according to the fol-
lowing equations:

HPI(y) � 
i∈xy

I(i, y),

VPI(x) � 
j∈yx

I(x, j),
(5)

where xy and yx are the set of horizontal pixels at the lo-
cation y and the set of vertical pixels at the location x, re-
spectively (Figure 2).

Since HPI and VPI are incapable of detecting diagonal
cracks [42], the two diagonal PIs (DPIs) of an image are
employed. )e directions of the two DPs, denoted as DPI1
and DPI2, are illustrated in Figure 3. )e two DPIs are
calculated as follows:

DPI1(x, y) � 
x,y∈D1

I(x, y),

DPI2(x, y) � 
x,y∈D2

I(x, y),
(6)

where D1 and D2 are the set of pixels along the two diagonal
directions of an image (as illustrated in Figure 3).

As illustrated in Figure 4, images containing diagonal
cracks have PIs in which there are exceptionally high in-
tensities in the two DPIs. In addition, as can be shown in
Figure 5, HPI and VPI have the strongest responses of PI in
images having longitudinal and transverse cracks. On the
other hand, an image containing a spall damage results in PIs
which do not have a significant peak of signal and the av-
erage value of its SF response is higher than that of an image
without defective areas.

2.2. SupportVectorMachine andLeast Squares SupportVector
Machine. Support vector machine (SVM) is a machine
learning based classifier which is established on the basis of
the statistical learning theory [43]. )e aim of this learning
algorithm is to find a predictive function based on the
collected data set. )e standard version of SVM is designed
to cope with binary or two-class pattern-recognition
problems. )rough the model construction phase, SVM
constructs a hyperplane to classify data points so that the
distance from it to the nearest data sample of each class label
is maximized [44].

Moreover, this algorithm relies on the kernel trick to
better deal with nonlinearly separable cases. Using the kernel
trick, the data points are mapped from an original input
space to a high-dimensional feature space so that linear
separability is easier to achieve (Figure 6). Superior
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Original image SF response r = 1.0 SF response r = 1.5 SF response r = 2.0

(a)

Original image SF response r = 1.0 SF response r = 1.5 SF response r = 2.0

(b)

Original image SF response r = 1.0 SF response r = 1.5 SF response r = 2.0

(c)

Original image SF response r = 1.0 SF response r = 1.5 SF response r = 2.0

(d)

Original image SF response r = 1.0 SF response r = 1.5 SF response r = 2.0

(e)

Figure 1: SF responses: (a) longitudinal crack, (b) transverse crack, (c) diagonal crack, (d) spall damage, and (e) intact wall.
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classification performance of SVM has been widely reported
in a large number of previous studies [45–49].

Given a set of training data points xk, yk 
N
k�1 with input

data xk ∈ Rn and a set of class labels yk ∈ −1, +1{ }, the model
construction phase of SVM is equivalent to solving the
following optimization problem:

minimize Jp(w, e) �
1
2
w

T
w + c

1
2



N

k�1
e
2
k,

subject to yk w
Tφ xk(  + b ≥ 1− ek, k � 1, ..., N, ek ≥ 0,

(7)

where w ∈ Rn and b ∈ R denote the model parameters, ek > 0
represents a slack variable, c denotes a penalty constant
which determines severity of learning error, and φ(x) de-
notes a nonlinear mapping from the input space to the
feature space.

One of the advantages of SVM is that it does not require
expressing the mapping function φ(x) explicitly. Due to the
concept of kernel trick, the model identification only ne-
cessitates the computation of the kernel function K(.) which
is the dot product of φ(x). )e kernel function is shown
below:

K xk, xl(  � φ xk( 
Tφ xl( . (8)

Radial basis function (RBF) is often selected to be used in
SVM [30]; its formula is given as follows:

K xk, xl(  � exp −
xk −xl

����
����
2

2σ2
⎛⎝ ⎞⎠, (9)

where σ denotes the kernel function parameter.
To solve the aforementioned constrained optimization,

the Lagrangian is given as follows:

L(w,b,e;α;v) � Jp(w,e)−
N

k�1
αk yk w

Tφ xk(  + b −1+ ek 

−
N

k�1
vkek,

(10)

where αk ≥ 0, vk ≥ 0 denote Lagrange multipliers for k � 1, 2,
. . . , N.

Accordingly, the conditions for optimality are stated as
follows:

zL

zw
� 0⟶ w � 

N

k�1
αkykφ xk( ,

zL

zb
� 0⟶ 

N

k�1
αkyk � 0,

zL

zek

� 0⟶ 0≤ αk ≤ c, k � 1, ..., N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

y xy

(a)

x

yx

(b)

Figure 2: Illustration of PIs of an image: (a) HPI and (b) VPI.

y DPI1 DPI2

x

Figure 3: Illustration of DPIs of an image.
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Based on the equations found by the conditions for
optimality, it is able to attain the following dual quadratic
programming problem:

max
α

JD(α) � −
1
2



N

k,l�1
ykylφ xk( 

Tφ xl( αkαl + 
N

k�1
αk,

Subject to 
N

k�1
αkyk � 0, 0≤ αk ≤ c, k � 1, . . . , N,

(12)

In addition, the kernel function is applied in the fol-
lowing manner:

ω � ykylφ xk( 
Tφ xl(  � ykylK xk, xl( . (13)

Finally, the classification model based on SVM can be
derived as follows:

y(x) � sign 
SV

k�1
αkykK xk, xl(  + b⎛⎝ ⎞⎠, (14)

where SV is the number of support vectors which are
training data points that have αk > 0.

Least squares support vector machine (LSSVM) [50] is
a least square version of the original SVM. Instead of solving
a quadratic programming problem required by SVM, the
model construction phase of LSSVM is equivalent to solving
a system of linear equation. )erefore, the computational
expense of LSSVM can be much lower than that of the
standard SVM.

To construct a LSSVM based classifier, it is needed to
solve the following minimization problem:

minimize Jp(w, e) �
1
2
w

T
w + c

1
2



N

k�1
e
2
k,

subject to yk w
Tφ xk(  + b  � 1− ek, k � 1, ..., N,

(15)

where w ∈ Rn and b ∈ R are also the model parameters;
ek ∈ R denote error variables; c> 0 is called a regularization
constant.
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Figure 4: PIs of diagonal cracks.
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Figure 5: PIs of image samples: (a) longitudinal crack, (b) transverse crack, (c) spall damage, and (d) intact wall.
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Subsequently, the Lagrangian is applied in the following
way:

L(w, b, e; α) � Jp(w, e)− 

N

k�1
αk yk w

Tφ xk(  + b − 1 + ek ,

(16)

where αk is the kth Lagrange multiplier; φ(xk) represents
a nonlinear mapping function.

Relied on the KKTconditions for optimality, it is able to
convert the aforementioned constrained optimization
problem to a linear system [51]. )e classifier based on
LSSVM is compactly expressed as follows:

y(x) � sign 
N

k�1
αkyiK xk, xl(  + b⎛⎝ ⎞⎠, (17)

where αk and b are found by solving a linear system. Similar
to the standard SVM, K(xk, xl) denotes the kernel function.

3. Image Sample Collection

Because the machine learning algorithms of SVM and
LSSVM are supervised learning approach, a set of wall
images with the corresponding ground truth labels must be
prepared in advance of the model construction and classi-
fication phases. To establish the required data set, images of
walls have been collected during field surveys at high-rise
buildings in Da Nang city (Vietnam).

To ease the computational process, the size of each image
sample is fixed to be 200 × 200 pixels. Moreover, there are
five classes of wall condition, namely, longitudinal cracks
(LC), transverse crack (TC), diagonal cracks (DC), spall
damage (SD), and intact wall (IW). )e number of image
samples in each class is 100. )us, the collected image data
set contains 500 samples and is illustrated in Figure 7. It is
also noted that all the image samples have been preprocessed
by the median filter with a window size of 5 × 5 pixels. )is
preprocessing step aims at suppressing the noise existing in
the collected digital image [52]. In addition, the data set is
divided into two folders that contain the training set of
images (90%) and the testing set of images (10%).)e first set

is used in the phase of model construction and the second set
is utilized to verify the generalization capability of the wall
defect classification model.

4. The Proposed Hybrid Approach of Image
Processing and Machine Learning for
Detection of Wall Defects

)is section describes the proposed model used for auto-
matic classification of wall defects. )e overall model
structure is illustrated in Figure 8. )e model can be divided
into two separated modules:

(i) Feature extraction phase that employs the image
processing methods of SFs and IPs

(ii) Machine learning based classification phase that
relies on the SVM and LSSVM algorithms

In the first step of feature extraction, SFs are employed to
compute a salient defect map from a digital image. )e
minimum and maximum angles of SFs are 0° and 360°,
respectively. )e parameter r of SFs is selected from a set of
[1.0, 1.5, 2.0, 2.5, 3.0]. )e value of r which results in the
highest accuracy for the training data set is selected as the
optimal one. Based on the map generated by SFs, PIs in-
cluding HPI, VPI, DPI1, and DPI2 are then computed to
characterize the texture of the captured images. As earlier
mentioned, each image of the data set has the size of 200 ×

200 pixels. )us, each PI contains 200 sampled points and
the total number of features to be analyzed by the machine
learning algorithm is 200 × 4 � 800. Herein, 4 is the number
of PIs.

Obviously, the original PIs can be very rough and have
many peaks and valleys due to local fluctuations of the gray
intensity of an image. Moreover, the large number of input
features can create difficulty for the machine learning al-
gorithms of SVM and LSSVM due to the curse of di-
mensionality [53]. )erefore, it is beneficial to smooth the
original PIs by the use of moving average method [42]. In
detail, the average value ofWPI consecutive values along the
PIs is calculated to create smoothed PIs with fewer data
points. For example, if WPI � 10, then the total number of

x1

Kernel mapping

Φ(xu)

Φ(xv)

Φ(x)

The original input space The high-dimensional feature space
x2 Φ(xl)

Label 1

Label 2

Label 2

Label 1

Hyperplane

Figure 6: )e learning phase of SVM.
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features in the contracted PIs is reduced from 800 to 80; if
WPI � 20, then the machine learning algorithms only have to
deal with a data set having 40 features.

)e process of feature number reduction using moving
average for an image is demonstrated in Figure 9. As can be
seen from this example, the smoothed PIs even with the
window size WIP � 20 still preserve crucial features of rises
and ebbs of the original PIs. )erefore, the value ofWIP � 20
is selected for the feature extraction step. Accordingly, the
set of 40 features extracted from PIs is used as input pattern

to categorize the four labels of wall defect (LC, TC, DC, and
SD) and the label of intact wall (IW).

Furthermore, to obtain the two DPIs of DPI1 and DPI2,
the original map of the SF response has been rotated with the
angles of +45 and −45 [42]. Accordingly, the two DPIs are
derived from the computation of the HPIs of the two rotated
SF maps. )e process of computing DPIs of images con-
taining diagonal cracks is demonstrated in Figure 10. In
addition, the overall feature extraction module is depicted in
Figure 11. Based on the 40 input features (IF) extracted from

(a)

(b)

(c)

(d)

(e)

Figure 7: )e collected image samples: (a) longitudinal crack, (b) transverse crack, (c) diagonal crack, (d) spall damage, and (e) intact wall.
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the PIs, the machine learning algorithms of SVM and
LSSVM are employed to perform the model learning
and classification of images in the second module of the
model.

It is noted that the standard versions of SVM and
LSSVM are designed two-class pattern recognition

problems. Hence, the one-versus-one (OvO) strategy [54]
has been used with SVM and LSSVM to make them capable
of dealing with the five-class recognition tasks at hand.
Previous works have confirmed the advantages of OvO
strategy in coping with multiclass classification problems
[53, 55, 56].
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Wall defect 
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Integral projections
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Figure 8: )e proposed model structure.
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Figure 9: PIs of an image: (a) the original image, (b) the original PIs (WPI � 1), (c) the smoothed PIs (WPI � 10), and (d) the smoothed PIs
(WPI � 20).
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5. Experimental Results

Because the detection of wall defects is formulated as a five-
class pattern recognition problem, classification accuracy rate
(CAR) computed for each individual class and for all of the
classes is employed. CAR for the class i is computed as follows:

CARi �
Ri

C

Ri
A

× 100(%), (18)

where Ri
C and Ri

A denote the number of data samples in class
ith being correctly classified and the total number of data
instances in this class, respectively. It is reminded that that
there are five class labels in the data set: longitudinal crack
(LC), transverse crack (TC), diagonal crack (DC), spall
damage (SD), and intact wall (IW).

)e overall classification accuracy rate (CAR) for all the
five class labels is simply computed as follows:

sFSdetatoRFSegamitupnI

sIPlanigiroehTsIPdehtoomsehT
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Figure 11: )e whole feature extraction process.
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Figure 12: Model performance with different values of the parameter r: (a) LSSVM and (b) SVM.
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Table 1: Result comparison.

Statistics CAR (%)
Classification models

LSSVM SVM BPANN CT LDA NBC

Average

CARLC 85.33 79.00 79.33 67.00 74.33 73.00
CARTC 83.00 75.67 77.33 68.67 74.67 72.67
CARDC 90.00 94.67 63.67 62.67 53.00 54.67
CARSD 78.33 84.33 69.33 55.33 31.33 26.00
CARIW 89.00 88.00 81.33 57.67 74.67 72.33
CARO 85.13 84.33 74.20 62.27 61.60 59.73

Std.

CARLC 10.42 12.69 11.12 16.01 17.94 13.43
CARTC 10.22 15.24 17.21 13.83 12.24 11.43
CARDC 11.74 7.30 14.26 13.11 16.43 17.56
CARSD 13.41 11.35 17.80 16.97 15.02 12.76
CARIW 10.62 8.05 13.58 18.88 12.79 13.05
CARO 5.89 5.28 6.75 5.80 6.53 5.63
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Figure 13: Result comparison based on CARo.
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Figure 14: Classification accuracy comparison based on CAR of each class (LD, TC, DC, SD, and IW).
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CAROverall � 
5

i�1

CARi

5
. (19)

As stated earlier, the data set including 500 samples is
employed to train and test the wall defect classification
model. )is data set is randomly separated into two subsets:
data for model training (90%) and data for testing (10%).
Because a single run of model training and testing may not
help to reveal the true performance of a classifier, this study
performs a repeated subsampling process that includes 20
times of model training and prediction. In each time of
running, 10% of the data set is randomly extracted to form
the testing data subset; the rest of the data set is reserved for
model testing phase.

As described in the formulation of the two machine
learning algorithms of SVM and LSSVM, these two algo-
rithms both require a proper setting of their tuning pa-
rameters. In the case of SVM, the tuning parameters are the
penalty coefficient and the kernel function parameter. In the
case of LSSVM, the regularization and the kernel function
parameters need to be selected appropriately. In this section,
the grid search method described in the previous work of
[57] is employed for automatically setting those tuning
parameters of SVM and LSSVM. In addition, the feature
selection stage requires the setting of the parameter r in the
computation of SFs. )e model performance with different
values of the parameter r for the cases of SVM and LSSVM
is reported in Figure 12. As can be observed from this figure,

r � 2 results in the highest CAROverall values for both SVM
and LSSVM.

Besides the two machine learning algorithms of SVM and
LSSVM, the backpropagation artificial neural network
(BPANN), classification tree (CT), linear discriminant anal-
ysis (LDA), and naive Bayes classifier (NBC) are also
employed as benchmark classifiers. It is also noted that CT,
LDA, and NBC are also equipped with the OvO strategy to
deal with the current five-class recognition problem of wall
defect classification. )e SVM and the benchmark algorithms
implemented in MATLAB with the help of the statistics and
machine learning toolbox [58]. In addition, the LSSVMmodel
is constructed by the built-in functions provided in the
toolbox developed by De Brabanter et al. [59].

In addition, the training phases of BPANN and CT
require a proper setting of their model hyper-parameters.
Similar to the cases of SVM and LSSVM, the model hyper-
parameters of those models that result in the best perfor-
mance for the testing set are selected. In the case of the DT
model, the suitable value of the minimal number of ob-
servations per tree leaf is found to be 2. )e appropriate
structure of the BPANNmodel consists of 35 neurons in the
hidden layers; furthermore, the scaled conjugate gradient
algorithm with the maximum number of training epochs �

3000 is used to train the neural network model. Moreover,
the processes of selecting an appropriate value of the tuning
parameter r used in constructing the SF maps of the
benchmark models of BPANN, CT, LDA, and NBC are

LSSVM SVM BPANN CT LDA NBC
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Figure 15: Box plots of overall CARs.

Table 2: p values of the Wilcoxon signed-rank test.

LSSVM SVM BPANN CT LDA NBC
LSSVM 0.00000 0.60134 0.00001 0.00000 0.00000 0.00000
SVM 0.60134 0.00000 0.00002 0.00000 0.00000 0.00000
BPANN 0.00001 0.00002 0.00000 0.00000 0.00000 0.00000
CT 0.00000 0.00000 0.00000 0.00000 0.06728 0.00444
LDA 0.00000 0.00000 0.00000 0.06728 0.00000 0.02230
NBC 0.00000 0.00000 0.00000 0.00444 0.02230 0.00000

14 Computational Intelligence and Neuroscience



0 10 20 30 40
Pixel interval

0

0.5

1

Av
er

ag
e p

ix
el

va
lu

e

PIs

HPI
VPI

DPI1
DPI2

SF

Image

(a)

(b)

(c)

(d)

(e)

SF responses Projection integrals

Rotated SF 1 Rotated SF 2

Av
er

ag
e p

ix
el

va
lu

e

HPI
VPI

DPI1
DPI2

0 10 20 30 40
Pixel interval

0

0.5

1
PIsRotated SF 1 Rotated SF 2SF

Av
er

ag
e p

ix
el

va
lu

e

HPI
VPI

DPI1
DPI2

0 10 20 30 40
Pixel interval

0

0.5

1
PIsRotated SF 1 Rotated SF 2SF

Av
er

ag
e p

ix
el

va
lu

e

HPI
VPI

DPI1
DPI2

0 10 20 30 40
Pixel interval

0

0.5

1
PIsRotated SF 1 Rotated SF 2SF

Av
er

ag
e p

ix
el

va
lu

e

HPI
VPI

DPI1
DPI2

0 10 20 30 40
Pixel interval

0

0.5

1
PIsRotated SF 1 Rotated SF 2SF

Figure 16: Examples of incorrect classifications.

Computational Intelligence and Neuroscience 15



similar to those of the SVM and LSSVM models. Based on
result comparisons, the suitable value of the tuning pa-
rameter r used with BPANN, CT, LDA, and NBC is also 2.

)e performances of the machine learning classifiers
used for wall damage recognition are summarized in Table 1.
Observed from this table, LSSVM has achieved the best
predictive performance in terms of CARo (85.13%), followed
by SVM (CARo � 84.33%), BPANN (CARo � 74.20%), CT
(CARo � 62.27%), LDA (CARo � 61.00%), and NBC (CARo �

59.73%).)us, it can be seen that classifiers based on LSSVM
and SVM are more suitable for the task of wall defect
classification than other machine learning and statistical
approaches of BPANN, CT, LDA, and NBC.

Figures 13 and 14 graphically compare the results ob-
tained from the prediction models in terms of CARo and
CAR of each individual class label. It is shown that the CARs
of LC (85.33%), TC (83.00%), and IW (89.00%) obtained
from LSSVM are higher than those yielded by SVM (79.00%,
75.67%, and 88.00% for the LC, TC, and IW, respectively).
However, results of SVM for the classes of DC (94.67%) and
SD (84.33%) are better than those of LSSVM (90.00% and
78.33% for the classes of DC and SD, respectively).

In addition, the classification results of all the models in
terms of CARo are displayed by the box plots in Figure 15.
Moreover, to better demonstrate the statistical difference
between each pair of classifiers employed in the task of wall
defect recognition, theWilcoxon signed-rank test (WSRT) is
utilized in this section. WSRT is a nonparametric statistical
hypothesis test that is widely used for verifying the statistical
difference of model performances [57]. With the significance
level of the test � 0.05, if p value computed from the test is
smaller than 0.05, it can be confirmed that the performances
of the two selected classifiers are statistically different. )e p

values obtained from WSRT for each pair of classifiers are
reported in Table 2. )e outcomes shown in this table
confirm that LSSVM and SVM are significantly better than
other benchmark models in the task of recognizing wall
damages. In addition, with p values � 0.60134, there is no
statistical difference between the performances of LSSVM
and SVM.

Although the LSSVM model has delivered the highest
CARs, this model also commits wrong classification cases.
)ese misclassifications are investigated and examples of
them are illustrated in Figure 16. In Figures 16(a) and 16(b),
images with the ground truth label of LC and TC have been
assigned the label of IW. )e reasons for these mis-
classifications are that the crack objects are too thin;
moreover, there is a line of stain existing in Figure 16(b).)e
case in Figure 16(c) shows an image with its ground truth
class of DC which has been categorized as the class of TC.
)e possible reason of this phenomenon is that the crack
object appears too close to corner of the image; therefore, the
signals of the SF responses of the two DPIs are not signif-
icantly stronger than those of other PIs. In Figure 16(d), an
image with complex background texture has caused the
machine to misclassify an image with the ground truth
category of SD. Moreover, an object of stain (Figure 16(e))
leads to the classification of an image into the class of LC
while it actually belongs to the class of IW.

6. Conclusion

)is study has proposed an automatic approach for periodic
survey of concrete wall structures. )e newly constructed
approach mainly consists of the feature extraction step and
the pattern classification step. In the first step, image pro-
cessing techniques of SF and PI have been employed to
characterize the texture and the pattern existing in images.
In the second step, machine learning algorithms of SVM and
LSSVM have been used to analyze the features extracted by
the image processing techniques and to assign input images
into one of the five class labels of LC, TC, DC, SD, and IW.
Experimental results using a repeated random subsampling
with 20 runs show that the predictive performances of
LSSVM (CARo � 85.13%) and SVM (CARo � 84.33%) are
superior to other benchmark models of BPANN, CT, LDA,
and NBC. )ese facts confirm that the proposed approach
can be a time- and cost-effective solution for the task of
building periodic survey. )e future developments of the
current study include the integration of other advanced
image processing methods (e.g., image segmentation,
color/texture analyses) to enhance the CARs via the re-
duction of falsely classified cases.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e author declares that there are no conflicts of interests
regarding the publication of this research work.

Supplementary Materials

)e supplementary file contains the data set used in this
study. In this file, the first 500 columns are the input features
(X1 to X40) of the data (which are the smoothed projection
integrals); the last column is the class labels (1 � longitudinal
crack, 2 � transverse crack, 3 � diagonal crack, 4 � spall
damage, and 5 � intact wall). (Supplementary Materials)

References

[1] W. Zhang, Z. Zhang, D. Qi, and Y. Liu, “Automatic crack
detection and classification method for subway tunnel safety
monitoring,” Sensors, vol. 14, no. 10, pp. 19307–19328, 2014.

[2] Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and
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