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ABSTRACT Here, we report the draft genome sequences of four bacterial isolates
from sediment of the South China Sea. Three of the isolates belong to the class
Alphaproteobacteria and encode complete SoxXAYZBCD gene clusters, related to
thiosulfate oxidation, while one isolate belongs to the class Opitutae and possesses a
total of 397 carbohydrate active enzymes (CAZymes), related to predicted polysac-
charide degradation.

Marine ecosystems are a vast habitat for diverse metabolically active groups of
microbes, including sulfur-oxidizing and polysaccharide-degrading bacteria (1, 2).

In the context of screening and isolating novel and uncultured metabolically active
bacterial strains from marine settings in our laboratory (3–5), four strains have been
isolated from sediment samples of the South China Sea (global positioning system
[GPS] coordinates, 115.830°E, 18.813°N). The sediment cores were collected using a
multicorer, sliced into 2-cm pieces onboard as soon as possible, placed into Nasco sam-
pling bags, and preserved at 4°C.

Isolation of the strains was achieved by serial dilutions of a 1% sediment sample in
artificial sea water (6). Dilutions of 10–6 and 10–7 were inoculated aerobically onto the
isolation agar media listed in Table 1 and incubated at 25°C for several weeks. The
observed selected colonies were purified on marine R2A agar plates; after successful
purification of the colonies, PCR and 16S rRNA gene sequencing and analysis was per-
formed (7). The strains were preserved at 280°C using the glycerol and skimmed milk
method (8, 9).

For DNA extraction, all four strains were grown in Marine R2A broth medium for
5 days at 25°C on a rotary shaker (150 rpm). DNA was extracted using a DNeasy
PowerSoil kit (Qiagen, Germany) according to the manufacturer’s instructions. The
DNA concentration was quantified by the absorbance at 260 nm using a NanoDrop
spectrophotometer. A library was prepared following the workflow of the TruSeq DNA
library preparation kit (Illumina), then sequenced to generate 150-bp paired-end reads
on the Illumina HiSeq 2500 platform.

Raw data for each strain was generated from their respective raw reads, which were
assembled and quality checked using SPAdes v3.11.1 (10) and FastQC v0.11.8 (11), respec-
tively, after filtering the low-quality reads (Q scores, #5) and adaptor sequences using
Trimmomatic v0.38 (12). The assembled contigs were retrieved as draft genomes, with the
respective size and GC content for each strain as shown in Table 1. The final assemblies
were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) within
the best-placed reference protein set and GeneMarkS-21 v5.3 software with annotation
(13). The total number of open-reading frames (ORFs) was predicted using PGAP within
the draft genomes, which were further annotated using KEGG, COG, Pfam, and the NCBI
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nonredundant database with DRAM v1.2.0 (14). The noncoding RNA genes were predicted
using tRNAscan-SE v2.0.9 (15); the draft genome of each strain has one 16S rRNA gene,
one 5S rRNA gene, and one 23S rRNA gene, while the number of tRNA genes varies (listed
in Table 1). Default parameters were used for all software unless otherwise specified. All
genome sequence-related data are summarized in Table 1. Three of these strains, LMO-
S08, LMO-JJ12, and LMO-JJ14, belong to the class Alphaproteobacteria, which encodes the
complete Sox pathway for thiosulfate oxidation, while strain LMO-M01, belonging to the
class Opitutae (phylum Verrucomicrobia), has 397 carbohydrate-active enzymes (CAZymes),
including 37 carbohydrate-binding modules, 83 carbohydrate esterases, 139 glycoside hy-
drolases, 107 glycosyl transferases, 18 polysaccharide lyases, and 13 auxiliary activities.

Data availability. The assembled genome sequences and raw data have been de-
posited at GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS
This study is supported by the National Key R&D Program of China (grant number

2018YFC0310803), the Senior User Project of RV KEXUE (KEXUE2019GZ06), and the
International Center for Deep-Life Investigation (IC-DLI).

REFERENCES
1. Jorgensen BB, Findlay AJ, Pellerin A. 2019. The biogeochemical sulfur

cycle of marine sediments. Front Microbiol 10:849. https://doi.org/10
.3389/fmicb.2019.00849.

2. Sun H, Gao L, Xue C, Mao X. 2020. Marine polysaccharide degrading enzymes:
status and prospects. Compr Rev Food Sci Food Saf 19:2767–2796. https://
doi.org/10.1111/1541-4337.12630.

3. Wang Y, Kamagata Y, Li M, Han F, Wang F, Xiao X. 2021. New approaches for
archaeal genome-guided cultivation. Sci China Earth Sci 64:1658–1673.
https://doi.org/10.1007/s11430-020-9793-5.

4. Hu H, Natarajan VP, Wang F. 2021. Towards enriching and isolation of
uncultivated archaea from marine sediments using a refined combination

of conventional microbial cultivation methods. Mar Life Sci Technol 3:
231–242. https://doi.org/10.1007/s42995-021-00092-0.

5. Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. 2018. Growth
of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad
Sci U S A 115:6022–6027. https://doi.org/10.1073/pnas.1718854115.

6. Zhang J, Liu R, Xi S, Cai R, Zhang X, Sun C. 2020. A novel thiosulfate oxidation
pathway provides a new clue about the formation of zero-valent sulfur in
deep sea. ISME J 14:2261–2274. https://doi.org/10.1038/s41396-020-0684-5.

7. Bergkessel M, Guthrie C. 2013. Colony PCR, p 299–309. In Lorsch J (ed),
Methods in enzymology, vol 529. Academic Press, San Diego, CA. https://
doi.org/10.1016/B978-0-12-418687-3.00025-2.

TABLE 1 Genome assembly details and statistics
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Kingdom Bacteria Bacteria Bacteria Bacteria
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Order Rhodospirillales Rhodobacterales Rhodospirillales Opitutales
Family Thalassospiraceae Rhodobacteraceae Thalassospiraceae Opitutaceae
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Closest cultured strain Magnetospira thiophila

MMST
Octadecabacter antarcticus
307T

Varunaivibrio sulfuroxidans
TC8T

Cephaloticoccus primus
CAG34T

16S rRNA similarity (%) 90.57 96.47 91.03 92.50
ANIc 76.7 76.69 76.29 76.57
a R2A, Reasoner’s 2A.
b CDSs, coding DNA sequences.
c ANI, average nucleotide identity.
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