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Most ocular diseases observed with cataract, chlamydia trachomatis, diabetic

retinopathy, and uveitis, have their associations with environmental exposures,

lifestyle, and habits, making their distribution has certain temporal and spatial

features based essentially on epidemiology. Spatial epidemiology focuses on

the use of geographic information systems (GIS), global navigation satellite

systems (GNSS), and spatial analysis to map spatial distribution as well as

change the tendency of diseases and investigate the health services status

of populations. Recently, the spatial epidemic approach has been applied

in the field of ophthalmology, which provides many valuable key messages

on ocular disease prevention and control. This work briefly reviewed the

context of spatial epidemiology and summarized its progress in the analysis of

spatiotemporal distribution, non-monitoring area data estimation, influencing

factors of ocular diseases, and allocation and utilization of eye health

resources, to provide references for its application in the prevention and

control of ocular diseases in the future.
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Introduction

According to the first World Report on Vision issued by the World Health

Organization in 2019, it is estimated that ∼2.2 billion people suffer from vision

impairment or blindness worldwide (1). Notably, this number will be still increased due

to the growth of the global population (2). Therefore, preventing and controlling the

occurrence and development of eye diseases is of great significance to protect people’s

visual health. Traditional epidemiology researches provide etiology evidence for disease

control, but it does not provide sufficient variable outcomes such as spatial distribution

and temporal distribution visualization.

Spatial epidemiology plays a crucial role in the analysis of spatiotemporal

distribution, non-monitoring area data estimation, exploring the influencing factors of

ocular diseases in specific regions, and providing strategies and measures for ocular

disease prevention and control (3). Several ocular diseases have the characteristics of
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local incidence, and their presence and incidence are closely

related to factors such as economy, population density, health

care status, lifestyle, and environmental exposure in various

regions (4). Recently, due to the rapid development of

geographic information systems (GIS) and spatial analysis

science, it has become easy to access information involving

environmental and socio-demographic features, and big data

on eye disease distribution, further improving the accuracy of

spatial information. Therefore, spatial epidemiology has been

widely performed in ocular disease prevention and control (5).

This mini-review summarized the current progress of spatial

epidemiology applied in the field of ophthalmology, particularly

in disease prevention and control, and provided perspectives for

its further application in this field.

Search strategy and selection criteria

The literature selected for this review was sourced from

Embase, PubMed/MEDLINE, Cumulative Index of Nursing and

Allied Health Literature (CINAHL), Cochrane Library, and

Web of Science databases. The keywords used in the search

were (“spatial epidemiology” OR “spatial distribution” OR

“spatiotemporal epidemiology”) AND (“ophthalmology” OR

“ocular disease”). No language restrictions were applied. Eligible

studies had to meet the following criteria: geospatial techniques

were used in the analysis, and articles had to provide epidemic

information on spatial distribution characteristics, spatial and

temporal trends, or influencing factors of ocular diseases.

Searches were performed independently by both CL and

LL, where after results were compared and discussed. Multiple

publications of the same study were compared and the study

most updated or complete was retained. In case of disagreement,

XHY was consulted for a final decision.

Overview of spatial epidemiology

Spatial epidemiology, which belongs to a branch of

epidemiology, aims to descript and analyze geographic

variations in disease with respect to demographic,

environmental, socioeconomic, inherent, and influencing

factors by using the geographic information system and other

spatial technologies (6). Specifically, spatial epidemiology is

concerned with the description and examination of disease

and its geographic variations. The focusing issues of spatial

epidemiology can be summarized as following: (i) cluster

epidemiology; (ii) complete spatial randomness; (iii) geographic

information system; (iv) geographic information science;

(v) modifiable Areal Unit Problem; (vi) spatial analysis; and

(vii) spatial autocorrelation. In terms of analysis method,

spatial epidemiology relies on spatial analysis technology

based on computer and information technology. It can

complete the spatial data collection, analysis, exploration, and

visualization (mapping) of health, disease, and health service

events, and directly complete the electronic management of

disease, and health service information including consultation,

inquiry, and calculation (7). The massive storage and analysis

capabilities of disease make data analysis more accurate, and

it is possible to discover information that cannot be found by

traditional epidemiology from a big data and multi-dimensional

perspective. The development of spatial analysis technology

will be the key to the development of spatial epidemiology,

and the development of the discipline must be a process from

qualitative to quantitative. Spatial statistical analysis can elevate

the qualitative analysis of data to the level of quantitative

description, directly measure the spatial statistical correlation

between various disease data, and understand diseases from

the perspective of spatial morphology, spatial location,

spatial topological relationship, and spatial multidimensional

dynamics (8–10). Spatial epidemiology is inseparable from

spatial statistical techniques. Disease data marked by geospatial

characteristics, advanced computer technology, GIS technology,

and statistical technology make it possible to study disease risk

on a small scale with spatial data variables. In recent years,

with the rapid development of information-related modern

technology, improvement of accessibility to health-related

services, natural environment, social and economic big data,

etc., spatial epidemiology has made considerable progress in

both theory and practice and plays a more important role in the

public health of ophthalmology.

Advantages in spatial epidemiology

(i) Spatial epidemic analysis gives a spatio-temporal

visualization of epidemiological data, applies spatial

positioning and map visualization to visualize the

spatial variation or spatiotemporal variation of disease

description on the maps, and provides clues for further

etiological research.

(ii) Spatial epidemiology offers a mean to extract spatial

data and quantitative analysis, and it can extract real-time

dynamic remote sensing image data related to diseases,

such as physical geography, climate, socioeconomic and

demographic information, to achieve superimposed

analysis, buffer analysis, topological relationship analysis,

cluster analysis and quantify influencing factors for

disease pandemic.

(iii) Spatial epidemiology integrates the technical advantages

of different disciplines to solve epidemiological problems,

such as environmental science, ecology, and econometrics.

For example, it can integrate genetics and molecular

biology to study the geographical distribution of

pathogen lineages.

(iv) Spatial epidemiology is demonstrated to be a feasible and

advantageousmethod in spatial data storage, update, query,
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FIGURE 1

The process of the initial assessment of the data in spatial epidemiology.

analysis, and visualization by GIS, and it can establish

disease monitoring, early warning, and auxiliary decision-

making system, and improve the efficiency of public health

data integration.

Main procedure in spatial
epidemiology

Spatial epidemiology data can be divided into three main

types as follows, mapping data, imaging data, and project

data (11, 12). Usually, the process of the initial assessment

of the data was shown in Figure 1 (6). A map consists of

points, lines, and areas, and these points, lines, and areas

can be defined by positional and non-positional properties

in spatial reference coordinates. The map data collected by

spatial epidemiology often include administrative divisionmaps,

population distribution maps, meteorological maps, or other

vector maps of environmental factors (water system distribution

maps, land use maps, and soil type maps). Image data are

commonly from multiple sources such as aerial photography,

remote sensing pictures, and digital photography. Project data

are mainly from various special censuses, sampling surveys,

monitoring, and hospitals.

Moreover, spatial epidemiology in the field of healthcare

can be commonly divided into three main areas, including

disease mapping, geographic correlation studies, and clustering

of disease clusters as well as surveillance (6). Disease mapping

can provide information about individualized disease clusters,

quickly visualize complex geographic information, and present

data that is difficult to display in traditional tables. They

are applied to disease descriptions, to propose etiological
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hypotheses, highlight high-risk areas, and aid in policy

development and resource allocation. Furthermore, disease

mapping puts the results of specific disease clusters and

point-source studies into an appropriate context. Geographic

correlation studies examine geographic variations across

population groups in exposure to environmental variables,

socioeconomic and demographic measures, or lifestyle factors

in relation to health outcomes measured on a geographic scale.

Investigations of disease clusters and surveillance near point

sources typically assume that the background risk surface is

flat, against a peak of contamination sources being tested. If

the background surface is uneven, there are peaks and troughs

of the at-risk surface, which indicates a generalized or broad

clustering of the disease.

Application in ophthalmology

A summary of several reports implementing different spatial

analyses to explore the spatial epidemiology characteristics of

ocular diseases is included in Table 1.

Analysis of the spatial and temporal
distribution of ocular diseases

Disease reports, sentinel surveillance, and epidemiological

investigations on several eye health such as visual impairments,

corneal lesions, cataracts, and occupational eye disease are

mostly presented in the spatial form of administrative divisions

or surveillance locations. GIS canmap eye disease cases and their

influencing factors and reveal the correlation between them (30).

Furthermore, the thematic map intuitively displays the locations

where the distribution of eye diseases is relatively concentrated,

demonstrates temporal and spatial dynamic changes of eye

diseases, and reveals the hidden spatial information in the

chronic epidemic process.

Exploring the spatial distribution
characteristics of ocular diseases

Spatial distribution characteristics refer to the global,

national or local scale spatial correlation. Global scale spatial

correlation is often measured by the entire Moran’s I value

or high/low clustering to measure whether there is an

agglomeration of ocular diseases in the study area. For local

spatial correlation, it is determined by the local Moran’s I value

or hot spot analysis to evaluate the correlation of ocular disease

distribution in a spatial unit, and even determine the aggregation

area. The location of providers plays an essential role in planning

an accessible service. The distribution of services across the

United Kingdom was mapped using the GIS and showed that

low vision consultations were unevenly distributed across the

country. Specifically, the scarcity of services was in coastal and

rural areas where the proportion of the population living there

with visual impairments was high (19). Kozioł et al. used GIS

with spatial analytical methods to determine the distribution of

diabetic retinopathy (DR) prevalence and suggested that there

were significant differences in the proportion of DR with a score

of the Moran Index of 0.18 (P < 0.01). Specifically, the high

prevalence of DR was concentrated in the southwest part of

Poland but the low prevalence was particularly located in the

center of the Country in the years 2013–2017 (20). In addition,

Wu et al. established that GIS uses its spatial analysis to show

spatial clustering of cataract surgeries in China, with Anhui

province being a low-high clustering region. Furthermore,

spatial autocorrelation analysis indicated that the distribution

status of cataract surgery rates (CSR) in different regions of

China also showed some spatial heterogeneity (21). The spatial

map clearly demonstrated the high-risk areas with low CSR in

China and provided a reference for the government or blindness

prevention organizations to conduct targeted prevention and

control measures to strengthen the prevention and treatment of

cataract blindness.

Analysis of spatial and temporal trends of
ocular diseases

In spatial epidemiology, spatial and temporal trends

of disease can be dynamically described by the SaTScan

software. In order to compensate for the shortcoming of

spatial autocorrelation analysis lacking the size and extent of

agglomeration, Wu et al. applied staged spatial and temporal

scan analysis to registered cases of cataract surgery in 2013–2017

in China and found there were 18 areas of aggregation in two

stages (2013–2015 and 2016–2017), and statistically significant

differences in each area of aggregation with a particularly clear

scope of aggregation (21). From 2013 to 2017, a gradual decrease

in area aggregation was observed in the staged spatiotemporal

scans, which showed cataract surgery prevention and control

work has made some progress in China (21).

Explore the influencing factors of ocular
disease

The geographical detector model was widely used to identify

the main factors driving the spatial-temporal variations of

disease. In methodology, it is used to measure the consistency

of the spatial distribution pattern of the dependent variable

and the independent variable, that is, the correlation between

exposure and outcomes by the Pearson correlation coefficient or

nonparametric test (31). Yang et al. used normalized difference
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TABLE 1 Methods for spatial analysis with examples of applications and findings in ophthalmology.

Authors Geographic

unit and

location

Years Data resource Geospatial techniques Ocular disease Key findings

Azzam et al. (13) United States 2004–2019 DED-related queries estimating

users’ intent

Internet epidemiological tools

along with geographic information

system data from the environment

as a mapping technique plus

Multivariable regression models

Dry eye disease Urban living and seasonality were stronger risk factors of dry

eye disease searches than temperature, humidity, sunshine,

pollution, or region

Um et al. (14) Republic of Korea 2010–2012 The 5th Korea National Health and

Nutrition Examination Survey

Serial multiple logistic regression

plus ArcGIS

Dry eye disease The prevalence of dry eye disease was higher in south Korea,

which can be influenced by the degree of urbanization and

environmental factors such as humidity and sunshine

duration

Yohannan et al. (15) Tanzania NA Partnership for the Rapid

Elimination of Trachoma (PRET)

Trial

Global positioning system plus A

Galaxy Tab 2.0 7-inch Android

device

Chlamydia trachomatis

infection and active trachoma

Chlamydia trachomatis infection clusters after multiple

rounds of mass treatment with azithromycin

Broman et al. (16) Tanzania NA Pilot survey on trachoma Global positioning system plus A

k-function analysis

Ocular chlamydial infection Ocular chlamydia spreads between households with children

or that nearby households share the same risk factors for

infection

Wong et al. (17) Hong Kong 2000/2001 to

2016/2017

The annual health checks

conducted at Student Health

Service Centers

Spatial autocorrelation Visual impairment The difference in prevalence of reduced visual acuity

between Hong Kong and mainland China has decreased in

recent years. Cross-border students living in mainland China

were associated with a lower risk for reduced visual acuity

Virgili et al. (18) 16 European

countries

1983–1994 The European Cancer

Registry-based study

Multilevel Poisson regression Uveal melanoma Standardized incidence rates increased from south to north

across registries, from a minimum of <2 per million in

registries of Spain and southern Italy up to >8 per million in

Norway and Denmark

Culham et al. (19) United Kingdom 1997–1998 A telephone questionnaire Geographic information system Visual impairment The distribution of low vision consultations was

geographically uneven and there appears to be scarcity in

some areas

Kozioł et al. (20) Poland 2017 The National Health Fund database Moran’s I statistics and Spatial

Autoregressive

Diabetic retinopathy The analyses of social, demographic, and systemic factors

co-existing with DR revealed that level of income and access

to ophthalmologic and diabetic services are crucial in DR

prevalence in Poland

(Continued)
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TABLE 1 Continued

Authors Geographic

unit and

location

Years Data resource Geospatial techniques Ocular disease Key findings

Wu et al. (21) China 2013–2017 Cataract Revision Surgery

Information Reporting System

from 2013–2017

ArcGIS10.0 software plus spatial

autocorrelation analysis plus

SaTScan 9.5 software

Cataract surgery Cataract surgery rates in China showed increasing trend year

by year and were randomly distributed, with spatial

clustering, and Anhui was reported as a low-high clustering

region

Yang et al. (22) China 2016–2019 Environmental Health and Myopia

Prevention and Control Project

Normalized difference vegetation

index

Myopia There is a negative association between green space exposure

and myopia

Dadvand et al. (23) Spain 2012–2015 The BRain dEvelopment and Air

polluTion ultrafine particles in

scHool childrEn (BREATHE)

project

Land-use regression models Use of spectacles There is an increased risk of spectacles use associated with

exposure to traffic-related air pollution

Chung et al. (24) Taiwan 2012 The Taiwan Biobank Hybrid kriging/land-use regression

model

Dry eye syndrome Significant associations of ambient NO2 concentration,

relative humidity and temperature with dry eye syndrome

indicated the importance of increased environmental

protection in the female population

Chua et al. (25) United Kingdom 2006–2010 UK Biobank Land use regression models Cataract surgery There was a 5% increased risk of future cataract surgery

associated with an exposure to PM2.5 , NO2 , and Nox

Shah et al. (26) Canada 2013–2014 and

2016

Canadian Community Health

Survey

Cross-classification mapping Optometry services A nationwide overview of vision care provided by

optometrists identifying gaps in geographic availability

relative to “supply” and “need” factors

Vu et al. (27) United States 2018–2019 American Glaucoma Society and

American Association for Pediatric

Ophthalmology and Strabismus

ArcGIS Pro (Esri) Primary congenital glaucoma

care

Approximately 14–94 new primary congenital glaucoma

cases/year may be at risk of delayed diagnosis as a result of

living in a potential service desert

Tan et al. (28) China 2006–2017 The largest database of uveitis cases Choropleth maps Uveitis A 10 µg/m3 increase in PM2.5 concentration was associated

with a one-case per 10 individuals increase in uveitis onset

Tan et al. (29) China 2006–2017 The largest database of uveitis cases Choropleth maps Uveitis Rising temperature can affect large-scale uveitis onset

NA, not applicable.
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vegetation index (NDVI) as a measure of green space exposure,

which was defined as the ratio of the difference between near-

infrared reflectance and red visible reflectance to their sum,

which ranges between −1 and 1, with a higher value indicating

more greenness (22). They found that there was a negative

association between green space exposure and myopia, giving a

guide for the development of prevention strategies targeting the

onset of myopia.

The Land-use Regression (LUR) model is one of the

commonly usedmethods for simulating the spatial and temporal

differentiation of urban-scale air pollution. With LUR, statistical

methods use a range of GIS–derived predictor variables, such

as traffic intensity, population, topography, and land use, to

offer fit-for-purpose predictions on long-term concentration at

a fine spatial scale (32, 33). Particularly, researchers combine

LUR with ground-based measurements, and satellite remote

sensing (SRS) to generate high-resolution pollution maps for

air pollutants (34). Notably, LUR models consider the land use

conditions and can improve accuracy in predicting the variation

of various air pollutants with high explanatory power (R2 >

0.85) (35). For example, Dadvand et al. (23) established the

LUR model to predict nitrogen dioxide (NO2) and ambient

fine particulate matter (PM2.5) light absorbance at home, and

further found there was an increased risk of spectacles use with

exposure to traffic-related air pollution. In order to estimate

ground-level concentrations of multiple air pollutants such

as PM2.5, sulfur dioxide (SO2), ozone (O3), and NO2 based

on the municipality, a hybrid kriging/LUR model was used,

and the results indicated female exposure to high levels of

NO2 had significantly increased risk of dry eye syndrome

(24). In a recent prospective, observational study to examine

the relationship between ambient air pollution exposure and

incident cataract surgery in the UK, those outdoor air pollution

included particulates, NO2, and nitrogen oxides (NOx) was

estimated based on LUR models developed by the European

Study of Cohorts for Air Pollution Effects (ESCAPE) project

(36), and their impacts on the risk of future cataract surgery were

increased (25).

Although the LUR model explains the spatial and temporal

variability levels, which are dominated by traffic, meteorology,

and construction, the performance of this model is decreased in

some areas around the local center. This discrepancy may be due

to the excessive development gap between central and peripheral

areas. Herein, the performance of the LUR model in prediction

across different regions should be further improved (37).

Explore the allocation and utilization of
eye health resources

In many countries and regions, health resources,

especially eye health services, are unevenly distributed.

Some underdeveloped locations, particularly in rural and

remote areas, do not have the same access to a range of primary

eye care professionals. In some countries, although eye health

resources are set up in areas serving nearby target populations,

their actual utilization levels are often unbalanced. Through

spatial epidemiology, it is possible to understand the real

utilization of eye health resources by different groups of people,

which is conducive to the optimization of resources.

Based on spatial analysis, Shah et al. evaluated the

distribution of eye care health relative to population needs

and utilization of vision services in Canada. Cross-classification

mapping compared optometrist distribution to self-reported use

of vision care services in relation to need. Eye care distribution

to the use of vision care services in relation to population

needs was compared by cross-classification mapping. According

to this spatial analytic study, the nationwide distribution of

eye care services is variable across Canada and predominantly

concentrated in cities (26). Even though generalization of the

findings should be cautious with data quality on health service

location, utilization status, and potential geographical factors,

these spatial epidemic outcomes offer a better understanding

and evaluation of accessed health care resources and help policy-

makers, and care providers to consider facilitating the use of eye

care services at national, provincial, and health region levels.

Moreover, according to geospatial service coverage analysis

involving 60min drive time regions to providers generated by

ArcGIS Pro, ∼14–94 infants with primary congenital glaucoma

(PCG) per year may acquire the consequences of delayed

diagnosis and failure to obtain timely intervention due to living

in a potential service desert (27). This study indicated that

geospatial service coverage analysis may be a useful tool for

identifying underserved regions for referrals and evaluation of

infants with PCG and assist in targeting screening programs in

low-access areas for PCG prevention.

Tan et al. (28) estimated the role of PM2.5 exposure on

uveitis burden using choropleth maps to precisely characterize

geographical variations. Additionally, their recent report visually

showed spatial uveitis variations in mainland China by

choropleth maps and found that there was a significant

association between rising temperature and an increase in the

incidence of uveitis (29).

Summarize and challenges

In sum, with the development of GIS, global positioning

system, remote sensing technology, and spatial analytic

methods, some novel implementation technologies have been

developed for spatial epidemiology, which has promoted

spatial epidemiology widely used. In ophthalmology, spatial

epidemiology has played an essential role in exploring the

distribution of eye diseases, their characteristics of temporal and

spatial changes, as well as the macro- and micro-influencing
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factors, providing more references for implementing prevention

and control strategies tailored to local conditions. Notably, when

using spatial epidemiology, as the scale of the investigation

becomes narrowed to a particular small area or group of areas,

the reduced size of the population at risk will lead to small

numbers of events and unstable risk estimates. Specifically, at

the broader scale, purely local variations in data quality are likely

to essentially cancel out, whereas, at the small-area scale, these

variations could lead to severe biases if not detected.

There are some challenges needing further improvements.

(i) Spatial epidemiology opens a new way to form a

more unified paradigm by integrating epidemiology with

genetics, geography, and informatics. In the future, more

disciplines such as molecular biology, and genomics should

be integrated with spatial epidemiology and performed in

the field of clinical medicine to promote disease prevention

and control.

(ii) Although there are many epidemiological databases on

eye diseases, some spatial attribute data such as geocoding,

socio-demographic, and behavioral information that are

not related to the disease are relatively rough or lacking,

making in-depth spatial analysis difficult to achieve.

Thus, there is a need to ensure the comprehensiveness

and accuracy of the geocoded, socio-demographic

and behavioral information collected. In addition,

researchers may consider adding questions such as “address

code/coordinates” when designing the questionnaire.

(iii) The application of different spatial analytic methods has

its own features. For example, the spatial autocorrelation

method is good at identifying the location of high-

prevalence clusters of eye diseases, while the SaTScan

software can keenly capture areas that are currently at a low

prevalence level together with a fast growth rate of cases.

Furthermore, the relationship between local epidemic

trends and the overall epidemic trend can be estimated

by the Bayesian hierarchical model. Spatial interpolation

technology incorporates geographic location which is

attributed to the model for estimation. Confounders such

as social-economic, cultural, environmental, population,

and individual behavior characteristics are difficult to

obtain comprehensively and accurately, resulting in a

certain deviation between the estimated and actual value.

Meanwhile, the exploration of the influencing factors on

eye disease also faces the same problem, suggesting that it

is necessary to further strengthen themulti-source database

link and its integration with potential confounders and be

beneficial to disease prevention.
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