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To elucidate the complex physiological process of testis development and

spermatogenesis in Sika deer, this study evaluated the changes of miRNA and

mRNA profiles in the four developmental stages of testis in the juvenile (1-year-old),

adolescence (3-year-old), adult (5-year-old), and aged (10-year-old) stages. The results

showed that a total of 198 mature, 66 novel miRNAs, and 23,558 differentially expressed

(DE) unigenes were obtained; 14,918 (8,413 up and 6,505 down), 4,988 (2,453 up and

2,535 down), and 5,681 (2,929 up and 2,752 down) DE unigenes, as well as 88 (43

up and 45 down), 102 (44 up and 58 down), and 54 (18 up and 36 down) DE miRNAs

were identified in 3- vs. 1-, 5- vs. 3-, and 10- vs. 5-year-old testes, respectively. By

integrating miRNA and mRNA expression profiles, we predicted 10,790 mRNA–mRNA

and 69,883 miRNA–mRNA interaction sites. The target genes were enriched by GO and

KEGG pathways to obtain DE mRNA (IGF1R, ALKBH5, Piwil, HIF1A, BRDT, etc.) and DE

miRNA (miR-140, miR-145, miR-7, miR-26a, etc.), which play an important role in testis

development and spermatogenesis. The data show that DE miRNAs could regulate

testis developmental and spermatogenesis through signaling pathways, including the

MAPK signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, Hippo

signaling pathway, etc. miR-140 was confirmed to directly target mutant IGF1R-3
′
UTR

by the Luciferase reporter assays. This study provides a useful resource for future

studies on the role of miRNA regulation in testis development and spermatogenesis.
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INTRODUCTION

Testis development and spermatogenesis are the major processes in male reproduction. Germ
cells are the direct participants in spermatogenesis, which is the key in reproduction (1).
Spermatogenesis is a complex process of cellular divisions and developmental changes in testicular
seminiferous tubules (2). However, there are few studies on gene regulation of testis development
in Cervidae family. It was only reported that MT1, MT2, VEGF, INSL3, LGR8, aFGF, bFGF,
IGF-1, IGF-2, TGF alpha genes of roe deer, and steroidogenic enzymes (P450scc, P450c17,
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3betaHSD, and P450arom) of Sika Deer were involved in the
regulation of testis development and spermatogenesis (3–7). In
addition to mRNA encoding proteins, many ncRNAs are also
involved in regulation, including miRNAs.

miRNA specifically binds to the 3
′
UTR sequences of mRNA

to degrade target genes or inhibit the translation of target
genes, thereby regulating gene expression and participating in
biological processes (8). miRNA presents a major effect during
the testis development and spermatogenesis (9). miRNA is
involved in three distinctive phases of spermatogenesis, which
include mitosis of spermatogonia, meiosis of spermatocytes, and
maturation of spermatids (9). For example, miR-34c and miR-
221 regulate spermatogonial stem cells self-renewal by target
gene Nanos2 and c-Kit (10, 11); miR-17-92 cluster regulates
spermatogonial differentiation by target gene Stat3, Socs3, Bim,
and c-Kit (12); miR-34b/c regulates meiosis of spermatocytes
by target gene FoxJ2 (13); miR-34 and miR-122 regulate sperm
development by target gene GSK3a and TNP2 (14, 15). However,
there are no reports aboutmiRNAs regulating spermatogenesis in
deer. With the continuous in-depth study of miRNAs regulating
spermatogenesis, it is important to understand the mechanism of
deer miRNAs regulating spermatogenesis through target genes,
which in turn affects male deer reproduction.

The expression of miRNA in the testis is species-specific
and stage-specific. So far, many miRNAs have been identified
in different species, but there are obvious differences in these
miRNAs. For example, Yang et al. used miRNA microarray to
analyze the testicular tissues of rhesus monkey and human.
The results showed that 26.4% of miRNAs were differentially
expressed in rhesus monkeys (such as mir-493-3p, mir-376b,
miR-222, etc.), and 31.3% of miRNAs were differentially
expressed in humans (such as miR-181c, let-7e, mir-219,
etc.) (16). In addition, miRNA expression changes with testis
development and spermatogenesis. Gao et al. found that 223
miRANs were differentially expressed in bovine testes at neonatal
(3 days after birth) and mature (13 months) stages by RNA-
seq (17). Bai et al. found that 137, 106, and 28 miRNAs were
differentially expressed in sheep testes in 2 vs. 6, 6 vs. 12, and 2
vs. 12 months, respectively (18). Ran et al. found that 93, 104,
and 122 miRNAs were differentially expressed in pig testes in 90-
dpc (days post coitus) vs. 60-dpc, 30 days vs. 90-dpc, and 180
days vs. 30-day, respectively (19). However, there is still a lack of
research on the expression patterns and mechanisms of miRNAs
at different developmental stages in the testis of deer family.

There were no reports on types of germ cells in different stages
in Cervidae, but Sertoli cells, primary spermatocytes, secondary
spermatocytes, round spermatids and long spermatids were
observed in the juvenile bovine testis closely related to Cervidae.
All classes of germ cells were observed in the adolescent cattle
testis, although the numbers of germ cells were small. Complete
spermatogenesis was observed on adult stage and the number of
sperm was large (20). Therefore, in this study, we selected the
four developmental stages (juvenile, adolescent, adult, and aged)
of the Sika Deer testis as the research object, and used Illumina
sequencing technology to establish a comprehensive mRNA and
miRNA expression profile of testis of sika deer in the whole life
stage for the first time. We further constructed a miRNA–mRNA

interaction network related to Sika Deer testis development and
spermatogenesis. The results of this study will help to determine
the molecular markers that affect the reproductive efficiency of
male Sika Deer and provide a reference for finding molecular
markers that regulate the reproductive ability of male Sika Deer.

MATERIALS AND METHODS

Tissues Collection
In this study, 12 Sika Deer were divided into four groups, namely
the juvenile group: 1-year-old (Tst_1), the adolescence group:
3 years old (Tst_2), the adult group: 5 years old (Tst_3), and
the aged group: 10 years old (Tst_4). After manual slaughter,
testicular tissues were taken, frozen, and stored in liquid nitrogen
until RNA extraction. All operations of Sika Deer in this
study strictly followed the guidelines approved by the Ethics
Committee of Jilin Agricultural University.

mRNA and miRNA Sequencing and Data
Analysis
Total RNA was isolated from testis with TRIzol reagent. The
Agilent 2100 bioanalyzer and NanoDrop 2000 were used to
measure the quality, concentration, and integrity of RNA.
Total RNA pool was collected from testes of three individuals
to construct an mRNA library or a small RNA library for
each growth period. According to the method we described
earlier, mRNA library and small RNA library were generated
and sequenced on an Illumina HiSeq2500 platform (21). The
unigenes (the longest transcript of each gene) with Padj < 0.05
and |log2(fold change)| >0 were taken as DE unigenes (22).
The DE miRNAs were identified by threshold [q < 0.005 and
|log2(fold change) | >1].

miRNA–mRNA Network Integration
miRanda and TargetScan were used to predict the target mRNAs
of known and novel miRNAs. The putative target mRNAs were
crossed with DEmiRNAs in Tst_2 vs. Tst_1, Tst_3 vs. Tst_2, Tst_4
vs. Tst_3, respectively. Then the Pearson correlation coefficient
was used to determine the candidate target mRNA the expression
level of which was negatively correlated with miRNA. Finally,
the regulatory networks of DE miRNA and target mRNA were
modeled in Cytoscape 3.5.1.

GO and KEGG Pathway Analyses
All the DE mRNAs and DE miRNA target mRNAs were
analyzed using the GO (http://geneontology.org) and KEGG
(www.genome.jp/kegg) databases. The GO enrichment was
used to analyze the functions of mRNAs. The p-value of GO
terms <0.05 was significantly enriched. Similarly, the KEGG
enrichment was used to analyze the pathways in which the
mRNAs were involved. The p-value of KEGG terms <0.05 was
significantly enriched.

Real-Time Fluorescent Quantitative PCR
Nine DE mRNAs (PPP2R4, Calm1, SLC7A5, DST, GSTM1,
TIMP2, USF2, ITPKB, and GDI2) and nine DE miRNAs (miR-7,
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miR-124a, miR-145, let-7b, miR-214, miR-196a, miR-26a, miR-
125a, and miR-574) were selected for analysis of differential
expression levels. For each sample, mRNAs and miRNAs were
reverse-transcribed using PrimeScriptTM RT reagent Kit with
gDNA Eraser (Takara, Shiga, Japan) and miScript II RT Kit
(Qiagen, Hilden, Germany), respectively. Q-PCR analyses on the
mRNAs and miRNAs were confirmed using TB Green R© Premix
Ex TaqTM II (Takara) andmiScript SYBRGreen PCRKit (Qiagen)
in the ABI Prism 7900 System (Ambion, Carlsbad, CA, USA).
GAPDH and U6 snRNA were selected as internal control of
mRNA andmiRNA, respectively. The 2−11CTmethod was used
to evaluate relative expression levels between surveys.

Dual-Luciferase Reporter Assays
The 3

′
-UTR fragments of IGF1R containing the wild-type

(WT-IGF1R) or mutant (Mut-IGF1R) were cloned into the
psiCHECK-2 vector. The vectors were co-transfected with
miR-140 mimic into HEK-293T cells by Lipofectamine 2000
transfection reagent (Invitrogen, Carlsbad, CA, USA). Luciferase
activities were measured using a Dual-Luciferase Reporter
Assay System (Promega Corporation, Madison, WI, USA) after
transfection for 48 h.

Data Availability
All the sequencing data of this study have been submitted to
the NCBI Gene Expression Omnibus. The accession number
was GSE188370.

RESULTS

Overview of mRNA Library
A total of 34,792,106; 34,728,704; 27,299,920; and 29,437,362
raw reads were generated in the Tst_1, Tst_2, Tst_3, and
Tst_4 libraries, respectively. Removing the adaptors and low-
quality sequences, a total of 34,199,251 (98.30%), 34,183,418
(98.43%), 26,940,428 (98.68%), and 29,030,291 (98.62%) clean

reads were obtained for further analysis (Supplementary File 1).
A total of 56,698 (59.26%), 57,243 (57.91%), 58,169 (60.69%),
55,461 (58.72%) unigenes which FPKM >0.3 were obtained
(Supplementary File 2). The results showed that as the testis
matured, the number of unigenes increased significantly. On
the contrary, for testicular aging, the number of unigenes
decreases significantly.

DE Unigenes and Functional Annotation
Analysis
In the present study, a total of 23,558 DE unigenes among 80,133
expressed unigenes existed in the testis of Tst_1, Tst_2, Tst_3,
and Tst_4 groups by calculating the |log2(fold change) | >0 and
pAdj < 0.05 as the cut off. Among them, 8,413 up- and 6,505
downregulated, 2,453 up- and 2,535 downregulated, 8,544 up-
and 6,752 downregulated, 2,929 up- and 2,752 downregulated,
2,638 up- and 2,619 downregulated, and 9,015 up- and 7,872
downregulated unigenes were detected in Tst_2 vs. Tst_1, Tst_3
vs. Tst_2, Tst_3 vs. Tst_1, Tst_4 vs. Tst_3, Tst_4 vs. Tst_2, and
Tst_4 vs. Tst_1, respectively (Figure 1A, Supplementary File 3).

In GO enrichment analysis, 112, 263, and 205 GO BP terms
were found from Tst_2 vs. Tst_1, Tst_3 vs. Tst_2, and Tst_4
vs. Tst_3, respectively (p < 0.05; Supplementary File 4). In
Tst_2 vs. Tst_1, the most enriched GO BP terms were mainly
involved in the synthesis and metabolism of sugar, protein, and
lipids, such as: carbohydrate derivative biosynthetic process,
cellular carbohydrate biosynthetic process, cellular carbohydrate
metabolic process, cellular lipid metabolic process, cellular
polysaccharide biosynthetic process, cellular polysaccharide
metabolic process, and cellular protein metabolic process. In
Tst_3 vs. Tst_2, the most enriched GO BP terms were mainly
involved in the localization and transport of cellular and
protein, such as cellular localization, intracellular transport,
intracellular protein transport, and cellular protein localization.
In Tst_4 vs. Tst_3, the most enriched GO BP terms were

FIGURE 1 | Statistics for DE unigenes and miRNAs in each comparable group. (A) q value < 0.005 and | log 2 (fold change) | >1 were used as thresholds of

significance for DE unigenes. (B) q value < 0.01 and |log2 (fold change) | >1 were used as thresholds of significance for DE miRNAs.
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mainly involved in the microtubule, such as microtubule-
based process and microtubule-based movement. The top 20
enriched GO terms were shown in Supplementary Figure 1.
In pathway analysis, 77, 61, and 75 enriched pathways were
detected in Tst_2 vs. Tst_1, Tst_3 vs. Tst_2, and Tst_4 vs.
Tst_3, respectively (p < 0.05; Supplementary File 5). In Tst_2
vs. Tst_1, the most significant pathway was enriched in the
Hedgehog signaling pathway, Cell adhesion molecules (CAMs),
MAPK signaling pathway, insulin signaling pathway, estrogen
signaling pathway, and glycerophospholipid metabolism.
In Tst_3 vs. Tst_2, the most significant pathway was
enriched in the phagosome, hedgehog signaling pathway,
and glycerophospholipid metabolism. In Tst_4 vs. Tst_3, the
most significant pathway was enriched in the phagosome,
thyroid hormone signaling pathway, and glycerophospholipid
metabolism. The top 20 significantly enriched pathways are
shown in Supplementary Figure 2.

Interaction Network Analysis of DE
Unigenes
A total of 7,658, 1,533, and 1,599 mRNA–mRNA pairs in
Tst_2 vs. Tst_1, Tst_3 vs. Tst_2, Tst_4 vs. Tst_3 contrasts
were predicted in our study. In addition, DAVID was also
used to examine which mRNA-mRNA interaction networks
were enriched (Supplementary File 6). In Tst_2 vs. Tst_1, we
detected that most interaction networks were involved in the
MAPK signaling pathway, Wnt signaling pathway, oxytocin
signaling pathway, hedgehog signaling pathway (Figure 2A,
Table 1), and, especially, members of Wnt signaling pathway,
the GSK3B, PRKACB, CTNNB1, and PLCB1, were the core
of this network. In Tst_3 vs. Tst_2, we detected that most
interaction networks were involved in the adherens junction,
insulin signaling pathway, intracellular signal transduction,
calcium (Figure 2B, Table 1), and especially, insulin signaling

pathway, including SHC4, PTPN1, GSK3B, PDPK1, PRKCZ,
PPP1CB, AKT2, and CALM1. In Tst_4 vs. Tst_3, we detected
that most interaction networks were involved in arrhythmogenic
right ventricular cardiomyopathy, adherens junction, calcium,
and positive regulation of apoptotic process (Figure 2C,Table 1).
The result indicated that the pathways of the adherens junction
and calcium might play important roles both in Tst_3 vs.
Tst_2 and Tst_4 vs. Tst_3. The members of the adherens
junction pathway CTNNA1 and CTNNB1 were the core of
these networks.

Overview of Small RNA Library
Sequencing of four libraries produced 11,297,281; 13,817,801;
12,142,852; and 10,566,461 raw reads, respectively. A total
of 11,057,680 (97.88%), 13,457,309 (97.39%), 11,808,585
(97.25%), and 10,353,783 (97.99%) clean reads were
obtained after removing the contaminant and adaptor reads
(Supplementary File 7). These sequences were further mapped
to the bovine reference genome (Supplementary File 8).
In addition, an average of 1.7% of clean reads were
mapped to miRNA, rRNA, tRNA, snRNA, and snoRNA
(Supplementary File 9). A total of 183, 137, 120, and 100
known miRNAs and 45, 26, 32, and 27 novel miRNAs
were identified from four development stages, respectively
(Supplementary File 10). Among them, 92, 17, and 32 miRNAs
were co-expressed in four stages, three stages, and two stages,
respectively. It was worth noting that 43, 6, 6, and 2 miRNAs
were specifically expressed only in the juvenile, adolescence,
adult, and the aged group, respectively. The length distributions
of small RNA are shown in Supplementary Figure 3. The ranges
of 20–24 nt small RNAs were the main sizes and accounted for
at least 89.5% of the population in Tst_1, while Tst_2, Tst_3, and
Tst_4 were mainly 25–32 nt in size.

FIGURE 2 | Interaction networks of top DE unigenes in each comparable group. (A) Tst_2 vs. Tst_1. (B) Tst_3 vs. Tst_2. (C) Tst_4 vs. Tst_3. The up-regulated

unigenes were displayed as red circles, and the down-regulated unigenes were displayed as green circles.
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TABLE 1 | Summary of the represented networks generated by pathway analysis.

Data Molecules in networks Score p-Value Top functions

Tst_2 vs. Tst_1 AKT1, GRB2, ATF2, PTPRR, ZAK, FGF1, ELK1, PPP3CB,

PPP3CC, DUSP10, MECOM, RAC2, RAC1, IKBKG, PRKACB,

MAP3K7, PDGFRB, DUSP4, PDGFRA, DAXX, DUSP3, PLA2G4E,

DUSP6, TNFRSF1A, PPM1A, PPM1B, CACNB4, MAPKAPK3,

TRAF6, RAPGEF2, MAPT, TP53, ATF4, MAX, RELA, RAP1B,

NRAS, PAK1, MKNK1, MAP2K7, MAP4K3, NTRK2, JUN,

MAP3K1, BDNF, NFATC3, BRAF, GNG12, MAPK14, NFKB1,

NFKB2, NR4A1, FGF14, NF1, MAP3K13, PTPN5, MAP3K14,

FGFR1

108 0.003 MAPK signaling pathway

SMAD4, GSK3B, CAMK2D, CTBP2, CTBP1, ROCK2, LEF1,

CUL1, PRICKLE1, PSEN1, LRP6, CCND3, PPP3CB, PPP3CC,

CCND2, WIF1, RUVBL1, DVL1, RAC2, TBL1X, RAC1, BTRC,

PRKACB, MAP3K7, FZD3, JUN, CSNK2A1, FBXW11, CSNK1A1,

NFATC3, SENP2, RHOA, NFATC4, RBX1, SFRP2, APC,

TBL1XR1, CTNNB1, PLCB1, TP53

0.003 Wnt signaling pathway

CDKN1A, CAMK2D, ROCK1, SRC, ROCK2, ITPR1, GNAI3,

ITPR3, ADCY2, ELK1, ADCY6, ACTG1, MYLK, GNAI2, PPP1CB,

PPP1CC, NRAS, PPP3CB, PPP3CC, PRKACB, JUN, PPP1R12A,

PLA2G4E, NFATC3, RHOA, PPP1CA, NFATC4, CACNB4, GNAQ,

GNAS, CALM1, PLCB1

0.023 Oxytocin signaling pathway

GSK3B, CSNK1A1, FBXW11, CSNK1D, BTRC, PRKACB 0.003 Hedgehog signaling pathway

Tst_3 vs. Tst_2 PTPN1, PARD3, LEF1, CTNNA1, CTNNB1, IQGAP1, NECTIN3,

ACTB, NECTIN2, IGF1R

23 0.003 Adherens junction

SHC4, PTPN1, GSK3B, PDPK1, PRKCZ, PPP1CB, AKT2, CALM1 0.031 Insulin signaling pathway

PDPK1, PSEN1, PRKCZ, BCR, AKT2, PRKCQ, SGK1 0.035 Intracellular signal transduction

CDH13, CHP1, CALM1 0.033 Calcium

Tst_4 vs. Tst_3 ITGB1, TCF7L2, CDH2, CTNNA1, CTNNB1, ITGAV, ITGA9,

ACTG1

17 0.044 Arrhythmogenic right ventricular cardiomyopathy

TCF7L2, CTNNA1, CTNNB1, FYN, IQGAP1, RHOA, IGF1R,

ACTG1

0.011 Adherens junction

THBS4, COMP, CDH2, CDH13, ITGAV 0.008 Calcium

APC, CTNNB1, PSEN1 0.028 Positive regulation of apoptotic process

DE miRNAs and Their Target Genes
Functional Annotation Analysis
According to DESeq analysis between the four libraries by
calculating the log2-ratio with q < 0.005 and |log2(fold change)|
>1 as the threshold, 88, 102, 98, 54, 96, and 85 miRNAs were
different in Tst_2 vs. Tst_1, Tst_3 vs. Tst_2, Tst_3 vs. Tst_1,
Tst_4 vs. Tst_3, Tst_4 vs. Tst_2, and Tst_4 vs. Tst_1, respectively
(Supplementary File 11). In Tst_2 vs. Tst_1, 43 miRNAs were
upregulated, and 45 miRNAs were downregulated. In Tst_3
vs. Tst_2, 44 miRNAs were upregulated, and 58 miRNAs were
downregulated. In Tst_3 vs. Tst_1, 34 miRNAs were upregulated,
and 64 miRNAs were downregulated. In Tst_4 vs. Tst_3, 18
miRNAs were upregulated, and 36 miRNAs were downregulated.
In Tst_4 vs. Tst_2, 28 miRNAs were upregulated, and 68 miRNAs
were downregulated. In Tst_4 vs. Tst_1, 26 miRNAs were
upregulated, and 59 miRNAs were downregulated (Figure 1B,
Supplementary File 11). Moreover, the hierarchical clusters of
DE miRNAs between four stages indicated there were a large
number of DE miRNA in the development of Sika Deer testis
(Figure 3).

In order to identify the potential functional of miRNAs,
miRanda was used to predict the target gene of DE miRNAs.

In total, 36,571; 19,504; and 13,808 target genes of DE
miRNAs were predicted in Tst_2 vs. Tst_1, Tst_3 vs. Tst_2,
and Tst_4 vs. Tst_3, respectively. We further analyzed the
function of target genes during the development of Sika
Deer testis according to GO and KEGG analysis. There was
no significant difference in the GO enrichment among four
comparisons, mainly including substance and energy synthesis,
protein modification, metabolic process, cell mitosis, etc.
(Supplementary Figure 4). Similarly, there was no significant
difference in the KEGG pathway enrichment among four
comparisons, mainly including, PI3K-Akt signaling pathway,
Focal adhesion, protein digestion and absorption, ECM-receptor
interaction, etc. (Supplementary Figure 5).

Identification of DE Unigenes Involved in
Testis Development and Spermatogenesis
and Their Interacting miRNAs
The interaction network of DE unigenes and DE miRNAs,
which regulated the testis development and spermatogenesis of
Sika Deer, was predicted by STRING website and visualized
by Cytoscape 3.5.1. Integrating the miRNA-gene interaction
network and previous reports, we found that there were
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FIGURE 3 | Hierarchical clustering of DE miRNAs.
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18 miRNAs involved in the regulation of testis development
and spermatogenesis (Table 2). Among them, 189 pairs of
miRNA-gene were negatively related to testis development,
and 331 pairs of miRNA-gene were negatively related to
spermatogenesis (Figures 4, 5). Figure 4A shows that miR-7
and miR-145 were upregulated which targeted HMGB1, HSPA8,
CYP11A1, ALKBH5, etc., associated with testis development.
In contrast, Figure 4B shows that miR-26a, miR-574, miR-140,
miR-125a, miR-202, and miR-215 were downregulated, which
targeted IGF1R, Piwil, StAR, TSPYL1, etc., associated with testis
development. Similarly, Figure 5A shows that let-7b, miR-214,
miR-124a, miR-106a, miR-449a, and miR-7 were upregulated,
which targeted HIF1A, CSF1, TCP11, SPAG17, PEBP1, AKAP3,
CNOT7, PHB, etc., associated with spermatogenesis. On the
contrary, Figure 5B shows that miR-135a, miR-196a, miR-
10b, miR-21-5p, miR-15a, miR-26a, miR-140, and miR-202
were downregulated, which targeted DPY19L2, HSPA4L, PELO,
Piwil1, TSGA10, IP6K1, MNS1, BRDT, CEP55, SMC6, etc.,
associated with spermatogenesis. The abovemiRNAs contributed
significantly to the regulation of mRNA expression during the
testis development and spermatogenesis of Sika Deer.

RNA-seq and miRNA-seq Data Validation
Nine mRNAs (PPP2R4, Calm1, SLC7A5, DST, GSTM1, TIMP2,
USF2, ITPKB, and GDI2) and nine known miRNAs (miR-7,

miR-124a, miR-145, let-7b, miR-214, miR-196a, miR-26a, miR-
125a, and miR-574) were randomly selected to verify the RNA-
seq and miRNA-seq data by Q-PCR. As shown in Figures 6, 7,
Q-PCR data were basically consistent with sequencing data in the
four stages. The results indicated that our sequencing data were
reliable, although the fold change was not completely consistent.

miR-145 Targets IGF1R
IGF1R was observed to be a major target of miR-140-5p
based on bioinformatics databases. To verify their targeted
regulatory relationship, we performed the Luciferase reporter
assays and confirmed that, compared with the negative control,
the luciferase activity of IGF1R receptor decreased by 75.6% after
co-transfection of mir-140 mimics for 48 h. The results showed
that miR-140 can directly target IGF1R-3

′
UTR (Figure 8).

DISCUSSION

The improvement of the reproductive efficiency of Sika Deer,
especially in the male deer, was essential for livestock production.
The testis development and spermatogenesis, which were mainly
regulated by uniquely expressed genes at different developmental
stages, were key factors affecting the reproductive efficiency of
male deer. In this study, we analyzed mRNAs and miRNAs
expression in the testes from 1-, 3-, 5-, and 10-year-old testis,
which represent the juvenile, adolescence, adult, and aged stages,

TABLE 2 | miRNAs identified in testis associated with testis development and spermatogenesis.

miRNA ID Testis development miRNA ID Spermatogenesis

miR-145 Regulating the tight junctions of the

epididymis by targeting Cldn10 (23)

let-7b Regulating the glycolysis in asthenozoospermia by targeting AURKB (24)

miR-7a Regulating the FSH and LH synthesis and

secretion by pituitary prostaglandin and

BMP4 signaling (25)

miR-214 Regulating the meiosis by targeting WD and WDTC1 (26)

miR-26a Regulating the testis steroidogenesis by

targeting FGF9 (27)

miR-124a Regulating the proliferation of immature sertoli cells by targeting AR (28)

miR-574 Regulating the testis development and

reproduction by targeting AURKA (29)

miR-106a Regulating the renewal and differentiation of spermatogonial stem cells by

targeting STAT3 and Ccnd1 (30)

miR-140 testis differentiation (31) miR-449a Regulating the proliferation of spermatogonia by targeting CEP55 (32)

miR-125a Regulating the testis degeneration by

targeting SOD-1 (33)

miR-7 Regulating the differentiation of germ stem cells into primary spermatocytes by

targeting Bam (34)

miR-202 male differentiation and development (35) miR-135a Regulating the proliferation and renewal of spermatogonial stem cells by

targeting Foxo1 (36)

miR-215 Regulating the testis early developmental

stage by targeting p53 (37)

miR-196a Regulating the proliferation and apoptosis of immature sertoli cell by targeting

RCC2 and ABCB9 (38)

miR-10b Regulating the proliferation of spermatogonial stem cells by targeting KLF4 (39)

miR-21-5p Regulating the renewal of spermatogonial stem cells by targeting ETV5 (40)

miR-15a Regulating the differentiation of spermatogonial stem cells by targeting Ccnt2 (41)

miR-26a Regulating the proliferation and promotes apoptosis of sertoli cells by targeting

PAK2 (19)

miR-140 Regulating the transformation from spermatogonia cells to primary

spermatocytes (42)

miR-202 (1) Regulating the proliferation, apoptosis, and synthesis of sertoli cells by

targeting LRP6 and Cyclin D1 (43)

(2) Regulating the renewal and differentiation of spermatogonial stem cells by

targeting GDNF and RA (44)
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FIGURE 4 | miRNA-mRNA interaction network related to testis development of Sika Deer. (A) Up-regulated miRNAs and down-regulated target genes related to testis

development. (B) Down-regulated miRNAs and up-regulated target genes related to testis development. The up-regulated miRNAs or genes were displayed as red

circles, and the down-regulated miRNAs or genes were displayed as green circles.

FIGURE 5 | miRNA-mRNA interaction network related to spermatogenesis of Sika Deer. (A) Up-regulated miRNAs and down-regulated target genes related to

spermatogenesis. (B) Down-regulated miRNAs and up-regulated target genes related to spermatogenesis. The up-regulated miRNAs or genes were displayed as red

circle, and the down-regulated miRNAs or genes were displayed as green circles.

using high throughput deep sequencing. The aim of this study
was to identify crucial miRNAs andmRNAs in testis development
and spermatogenesis of Sika Deer. This analysis will help
reveal biomarkers related to the reproductive efficiency of male
Sika Deer.

In this study, the DE unigenes in Sika Deer testes at four
development stages were enriched by GO. It was found that
testicular development at different stages was regulated by
different genes and biological functions, which was a complex
biological process. In pathway analysis, for Tst_2 vs. Tst_1
contrast, the most significant pathway was enriched in cell
adhesion molecules (CAMs), MAPK signaling pathway, insulin
signaling pathway, and estrogen signaling pathway. These signal

pathways were closely related to testicular development and
spermatogenesis. For example, the pathway of CAMs can control
the sexual and asexual development (45). MAPK signaling
pathways were involved in mediating the mitogenic effect of IL-1
on Sertoli cells in vitro (46). Insulin signaling pathway played the
essential role in regulating the final number of Sertoli cells, testis
size, and daily sperm output (47). Estrogen signaling pathway had
an important influence on the proliferation, apoptosis, survival,
and maturation of sperm (48). It could be seen that these
signaling pathways play an important role in the early stages
of sexual maturity. Furthermore, Hedgehog signaling pathway
was an overlapping pathway in Tst_2 vs. Tst_1 and Tst_3 vs.
Tst_2. The Hedgehog signaling pathway has been reported to
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FIGURE 6 | Q-PCR validation of mRNA-seq data.

FIGURE 7 | Q-PCR validation of miRNA-seq data.

regulate the development of testicular cord and spermatogonial
stem cells (49, 50). Phagosome was an overlapping pathway in
Tst_3 vs. Tst_2 and Tst_4 vs. Tst_3. Phagosome was involved
in the regulation of spermatogenesis (51). Glycerophospholipid
metabolism was an overlapping pathway in three groups.
It has been reported that glycerophospholipid metabolism
was predicted to have dramatic effects on the male sexual
differentiation and development (52). The results suggested
that these pathways play a vital role in the testis development
and spermatogenesis.

The core mRNA–mRNA network was constructed to
reveal the regulatory relationship of testis development and
spermatogenesis. In Tst_2 vs. Tst_1, the top DE unigenes
interaction networks participated in MAPK signaling pathway,
Wnt signaling pathway, oxytocin signaling pathway, and
hedgehog signaling pathway. Among them, Wnt signaling
pathway played a suppression role in mouse and human
spermatogonia, which was a prerequisite for the normal
development of primordial germ cells (53). The CTNNB1 and
GSK3B were the core of this network. CTNNB1 could participate
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FIGURE 8 | Detection of interactions between miR-140 and IGF1R by dual luciferase reporter system. (A) Binding site sequence of miR-140 and target gene IGF1R.

(B) miR-140 mimic was cotransfected with IGF1R 3 ’UTR WT or IGF1R 3 ’UTR MUT to detect the luciferase activity for 48 h. *p < 0.05.

in the Wnt signaling pathway by encoding the β-catenin gene.
Overexpression of CTNNB1 led to gender reversal, which was
essential for male reproduction (54). GSK3B could precisely
control the testis development of tambaqui by regulating Wnt
signaling pathway and/or sox9 expression (55). Furthermore,
the top DE unigene interaction networks participated in the
adherens junction signaling pathway and calcium signaling
pathway both in Tst_3 vs. Tst_2 and Tst_4 vs. Tst_3. Adhesive
junctions mainly occur at the seminiferous epithelium (Sertoli–
Sertoli and Sertoli–germ cell interfaces), so that the developing
germ cells can migrate from the basal compartment of the
seminiferous epithelium toward the adluminal compartment for
further development (56). CTNNA1 and CTNNB1 were the
core members of the Adherens junction signaling pathway. As
we all know, CTNNA1 was a member of the catenin protein
family, which was crucial for cell adhesion. It was located
on the plasma membrane and binds to cadherin (57). In
addition, calcium signaling pathway was necessary for many
physiological processes such as spermatogenesis, sperm motility,
capacitation, acrosome reaction, and fertilization (58). CDH2
was an important member of calcium signaling pathway. The
lack of Cdh2 in Sertoli cells caused damage to the blood–testis
barrier, which in turn led to meiosis and spermatogenesis failure
(59). Taken together, through interaction network analysis of DE
unigenes, we have screened the core regulatory unigenes for Sika
Deer testis development and spermatogenesis, such as CTNNA1,
CTNNB1, GSK3B, and CDH2.

It was known that miRNA played an important regulatory
role in testis development and spermatogenesis, but there was
no related research on its regulation of Sika Deer testis. We
integrated the changes ofmiRNAprofiles in testis at four different
developmental stages. The ranges of 20–24nt small RNAs were
the main size of the population in Tst_1, while Tst_2, Tst_3,
and Tst_4 were mainly 25–32 nt in size. This result suggested
that reads longer than 25 nt were mainly from piRNA. As a
newly discovered small regulatory RNA, piRNA was abundantly
enriched in mature testis (60). In our research, the expression
profile of miRNAs had obvious growth stage specificity, in which
miRNAs associated with testis development and spermatogenesis
were expressed at specific growth stages. For example, miR-
106b, miR-19b, miR-27a-3p, miR-27b, miR-31, andmiR-335 were
expressed specifically on the juvenile stage (61–66); miR-449a was

expressed specifically on the adolescence stage (32); miR-296-3p
was expressed specifically on the adult stage (67). The results
suggested that the growth period-specific miRNAs have an
important influence on testis development and spermatogenesis.

This study tried for the first time to determine the key miRNA
targets by integrated analysis and the expression profiles of
miRNA andmRNA in the testes of Sika Deer. In Figure 4A, miR-
7 and miR-145 related to testis development were upregulated.
The target mRNAs of these miRNAs included HMGB1, HSPA8,
CYP11A1, ALKBH5, etc., as the central node genes. Among
them, HMGB1, as a paracrine host defense factor in the testis,
was translocated from testicular cells and blocking its action
by ethyl pyruvate regulated inflammatory reactions in testes
and spermatogenic damage (68, 69). Testis-specific HSPA8 gene
was confirmed to decrease with the development of goat testis,
which may be due to dilution by the maturing germ cell
population (70). Lower concentrations of HSPA8 were associated
with subfertility in men (71). CYP11A1, as a steroidogenic
enzyme gene, induced gonadal differentiation and development
by regulating steroidogenesis (72). CYP11A1 was fetal Leydig
cell marker genes (73). Kim et al. found that CYP11A1 was
responsible for C21-steroid hormone metabolism and played an
important role in the recovery of testicular aging in rats (74).
Baker et al. found that there was a significant correlation between
the rate of ALKBH5 protein-coding substitutions and the rate of
testis size evolution. ALKBH5 drives the evolution of testis size in
tetrapod vertebrates (75). In our study, with the development of
Sika Deer testes, upregulation of miR-7 and miR-145 inhibited
the expression of HMGB1, HSPA8, CYP11A1, and ALKBH5,
respectively, thereby regulating testicular maturation.

In Figure 4B, miR-26a, miR-125a, miR-140, miR-202,
miR-215, and miR-574 related to testis development were
downregulated. The target mRNAs of these miRNAs included
IGF1R, Piwil, StAR, TSPYL1, etc., as the central node genes.
Among them, IGF1R was required for the appearance of male
gonads and thus for male sexual differentiation (76). IGF1R has
also been confirmed to decrease in expression with increasing
age in goat testes, presumably due to maturation of cells and
cessation of testis growth (70). Piwil mainly appeared in the early
stage of gonadal development, and its expression in testis first
increased and then decreased. It was an important regulatory
gene of germ cell division during gonadal development (77).
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StAR was mainly expressed in Leydig cells of mammalian testis
and played an imperative role in testosterone biosynthesis
and male fertility (78). The interstitial lipid deposits worsened
considerably in StAR knockout mice testes, and the germ cells
showed the histological characteristics of apoptosis, which was
consistent with the unsatisfactory androgen secretion (79).
TSPYL1 specifically recruited ZFP106 through amino acids
412–781, which was considered to be a key pathway involved
in testes development (80). It was first reported in 2004 that
the loss of function mutations of TSPYL1 gene caused Sudden
Infant Death with Dysgenesis of the Testes syndrome (81). Taken
together, it was speculated that the downregulation of miR-140
promoted the expression of the IGF1R, Piwil, and TSPYL1
during the development of Sika Deer testes, thereby promoting
testicular maturation. In conclusion, these DE miRNAs might
play an important role in the regulation of the development of
Sika Deer testes through target genes.

In Figure 5A, let-7b, miR-214, miR-124a, miR-106a, miR-
449a, and miR-7 related to spermatogenesis were upregulated.
The target mRNAs of these miRNAs included HIF1A, CSF1,
TCP11, SPAG17, PEBP1, AKAP3, CNOT7, PHB, etc., as the
central node genes. Among them, the upregulation of miR-
7 inhibited the expression of target genes HIF1A and CSF1.
HIF1 was a highly specific nuclear transcription factor, which
was closely related to the apoptosis of spermatogenic cells
(82). After silencing the HIF1A gene in the testis of varicocele
rats, the apoptosis of spermatogenic cells was reduced and the
spermatogenic function of the testes was significantly improved
(83). CSF1 was an extrinsic stimulator of spermatogonial stem
cells self-renewal (84). The protein level of CSF1 was the highest
in the testis of 1-week-old mice and decreased significantly
with age (2–12 weeks). CSF1 was also involved in inducing
the proliferation and differentiation of spermatogonial cells to
meiotic and postmeiotic stages (85). Therefore, it was speculated
that the upregulated miR-7 promoted spermatogenesis through
target genes HIF1A and CSF1. Similarly, the upregulation
of miR-214 inhibited the expression of target genes TCP11,
SPAG17, PEBP1, AKAP3, CNOT7, and PHB. TCP11 was a
testis-specific gene, which played a role in elongated spermatids
to confer proper motility in mature sperm (86). In addition
to affecting sperm motility, SPAG17-deficient mice were sterile
due to prevention of the normal manchette structure, protein
transport, and formation of the sperm head and flagellum (87).
PEBP1 was specifically expressed in the head of the elongated
spermatids and mature spermatozoa. PEBP1 could affect the
function of mature sperm in pachytene primary spermatocytes
and spermatids by activating the expression of ERK1/2 (88).
AKAP3 was one of the main components of sperm tail fibrous
sheath formed during spermatogenesis. In the elongating stage
of mice spermiogenesis, the protein complexes of AKAP3,
PKA, and RNA binding proteins can be synthesized under the
regulation of PKA signaling to participate in the process of
spermatogenesis (89). CNOT7 was a CCR4-related transcription
cofactor, which is essential for spermatogenesis. The maturation
of spermatids in seminiferous tubules of CNOT7 deficient mice
was asynchronous and damaged (90). PHB was mainly located
in mitochondria during spermatogenesis, which regulated the

proliferation of spermatogonia, mitochondrial morphology, and
function in spermatogenic cells (91). PHB-deficient mice resulted
in infertility due to meiotic pachytene arrest, mitochondrial
morphology, and function impairment (92). In conclusion,
it was speculated that upregulated miR-214 was involved in
spermatogenesis through target genes TCP11, SPAG17, PEBP1,
AKAP3, CNOT7, and PHB.

In Figure 5B, miR-135a, miR-196a, miR-10b, miR-21-5p,
miR-15a, miR-26a, miR-140, and miR-202 were downregulated.
The target mRNAs of these miRNAs included DPY19L2,
HSPA4L, PELO, Piwil1, TSGA10, IP6K1, MNS1, BRDT, CEP55,
SMC6, etc., as the central node genes. Among them, Piwil1 was
crucial for spermatogenesis because it used different domains
to interact with several spermiogenic mRNAs after meiosis,

and partially participated in translation regulation through 3
′
-

UTRs (93). TSGA10-deficient mice had significantly reduced
sperm motility due to the disorder of mitochondrial sheath
formation during spermatogenesis (94). The spermatids of
IP6K1-deficient mice express TNP2 and PRM2 prematurely,
resulting in abnormal elongation of spermatid and inability to
complete spermatid differentiation (95). MNS1 was located in the
sperm flagella and played an important role in spermatogenesis,
the assembly of sperm flagella, and ciliary movement (96). Thus,
the downregulated miR-140 promoted spermatogenesis through
target genes Piwil1, TSGA10, IP6K1, andMNS1. Similarly, BRDT
was a key regulator of transcription in meiotic and post-meiotic
cells. The loss of BRDT function destroyed the epigenetic state
of meiotic sex chromosome inactivation in spermatocytes (97).
CEP55 gene silencing could inhibit the proliferation of mouse
spermatogonia and play a key role in spermatogenesis (98).
SMC6 played a role in preventing aberrant recombination events
between pericentromeric regions in the first meiotic prophase
(99). These findings suggested that miR-26a low-expression
partially regulated spermatogenesis by promoting the expression
of BRDT, CEP55, and SMC6. In addition, the defect of DPY19L2
gene was the main genetic cause of human globozoospermia,
which may be related to the defect of chromatin compaction
during spermatogenesis and sperm DNA damage (100). HSPA4L
was highly expressed from late pachytene spermatocytes to
postmeiotic spermatids. The germ cells of HSPA4L deficient
mice were apoptotic, resulting in a decrease in the number of
sperm count (101). PELO gene mutation led to cell cycle arrest
in the G2/M transition period before the first meiosis during
spermatogenesis (102). DPY19L2 was the target gene for miR-
135a, miR-202, miR-196a, miR-21-5p, andmiR-140. HSPA4L was
the target gene for miR-21-5p, miR-26a, miR-135a, miR-140, and
miR-202. PELO was the target gene for miR-196a, miR-21-5p,
miR-26a, and miR-140. It was speculated that these miRNAs
might promote spermatogenesis by upregulating the target genes
DPY19L2, HSPA4L, and PELO.

In addition, IGF1R was a widely expressed tyrosine kinase that
regulated cell proliferation, differentiation, and survival (103). As
one of the sex differentiation genes, IGF1R played an important
role in regulating Sertoli cell number, testis size, and daily sperm
output (47). Pintus et al. found that the Sertoli cell number
affected testis size, sperm quantity, and sperm quality in red
deer (104). It could be seen that IGF1R was crucial to regulate
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testis development in Cervidae. Bioinformatics analysis and dual

luciferase reporter analysis showed that the 3
′
UTR of IGF1R

matched the seed sequence of miR-140. miR-140 could reduce
the expression of IGF1R. However, the hypothesis that miR-140
is involved in Sika Deer testis development and spermatogenesis
by targeting IGF1R needs to be further verified.

CONCLUSION

This study first reported the important miRNA–mRNA network
derived by the global analysis and integration of the changes
of miRNA and mRNA levels in Sika Deer testis. Some mRNAs
and miRNAs were found to be common, which means that they
could be necessary for testis development and spermatogenesis.
At the same time, some differential expressions of mRNAs
and miRNAs were found in testis at different developmental
stages (1-, 3-, 5-, and 10-year-old), which means that they could
play different but important roles in testis development and
spermatogenesis. In particular, the binding sites of miR-140 with
IGF1R was validated. In the future, we will focus on studying
the role of individual miRNA in testicular development and
exploring relevant pathways to reveal the mechanism of Sika
Deer spermatogenesis.
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