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Inhibitory circuits are critical for shaping odor representations in the olfactory bulb.
There, individual granule cells can respond to brief stimulation with extremely long (up
to 1000 ms), input-specific latencies that are highly reliable. However, the mechanism
and function of this long timescale activity remain unknown. We sought to elucidate
the mechanism responsible for long-latency activity, and to understand the impact of
widely distributed interneuron latencies on olfactory coding. We used a combination of
electrophysiological, optical, and pharmacological techniques to show that long-latency
inhibition is driven by late onset synaptic excitation to granule cells. This late excitation
originates from tufted cells, which have intrinsic properties that favor longer latency
spiking than mitral cells. Using computational modeling, we show that widely distributed
interneuron latency increases the discriminability of similar stimuli. Thus, long-latency
inhibition in the olfactory bulb requires a combination of circuit- and cellular-level
mechanisms that function to improve stimulus representations.

Keywords: olfactory bulb, inhibition, latency, coding

INTRODUCTION
Temporal coding strategies are those in which the timing of
action potentials (instead of, or in addition to mean firing
rate) encodes information (Wellis et al., 1989; Laurent et al.,
1996). The importance of temporal codes is a topic of intense
interest and debate, yet only a few mechanisms for generat-
ing such codes have been proposed (Buonomano, 2000), and
fewer have been identified physiologically (Margrie and Schaefer,
2003). Latency coding is a temporal coding scheme in which the
delay (latency) between stimulus onset and first action poten-
tial encodes information. Evidence for latency coding has been
obtained in many primary sensory areas including visual (Gawne
et al., 1996; Gollisch and Meister, 2008), auditory (Heil and
Irvine, 1996; Furukawa and Middlebrooks, 2002; Chechik et al.,
2006), somatosensory (Panzeri et al., 2001; Petersen et al., 2002;
Johansson and Birznieks, 2004), and olfactory areas (Brody and
Hopfield, 2003; Balu et al., 2004; Kapoor and Urban, 2006;
Spors et al., 2006; Schaefer and Margrie, 2007; Chen et al., 2009;
Shusterman et al., 2011). Latency coding is computationally effec-
tive, enabling rapid stimulus identification (Thorpe and Gautrais,
1997), intensity invariance (Margrie and Schaefer, 2003), and
processing of complex stimuli (Van Rullen et al., 1998).

Typical examples of latency coding involve small (<50 ms)
latency differences across cells. A notable exception is the olfac-
tory bulb, where odors evoke distinct spatiotemporal activity
patterns (including long-latency spiking) that persist for many
seconds (Luo and Katz, 2001; Chen et al., 2009; Junek et al., 2010).
In this circuit, sensory neuron axons converge onto function-
ally segregated spheres of neuropil called glomeruli (Mombaerts

et al., 1996), where they synapse onto dendrites of mitral and
tufted cells. Each mitral and tufted cell receives input from a sin-
gle glomerulus, and forms reciprocal synapses with inhibitory
granule cells before projecting to higher-order cortical areas
(Shepherd, 2004). Multiple cell types contribute to long timescale
activity in the olfactory bulb including peripheral sensory inputs
(Spors and Grinvald, 2002; Lin et al., 2006; Spors et al., 2006)
as well as local circuits. Inhibitory granule cells respond to
brief glomerular stimulation with widely distributed (0–1000 ms)
yet reliable first spike latencies (Kapoor and Urban, 2006).
This long-latency inhibition is mechanistically and function-
ally intriguing because the representations of olfactory stimuli
change on long timescales (hundreds to thousands of millisec-
onds) (Friedrich and Laurent, 2001; Uchida and Mainen, 2003;
Abraham et al., 2004, 2010; Rinberg et al., 2006) and inhibitory
circuits (Stopfer et al., 1997; Nusser et al., 2001; Abraham
et al., 2010) can be behaviorally important for certain olfactory
tasks.

But how does long-latency inhibition arise and contribute
to olfactory coding? Our results indicate that tufted cells play
a pivotal role in controlling granule cell latency. Tufted cells’
ability to fire at highly variable latencies (owing to intrinsic mem-
brane properties) enables them to drive granule cell activity in a
temporally precise, stimulus-specific manner. We show that the
resultant distributed-latency inhibition decorrelates mitral cell
firing patterns across stimuli. These results describe a straight-
forward mechanism that can generate long timescale activity and
improve encoding, suggesting that long-latency inhibition may
provide a computational advantage to olfactory physiology.
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MATERIALS AND METHODS
SLICE PREPARATION
All procedures were done in accordance with the guidelines
for the care and use of animals at Carnegie Mellon University
and as previously described (Galan et al., 2006; Castro et al.,
2007; Arevian et al., 2008). Male and female C57BL/6 mice (age
P11–P18) were anesthetized using isofluorane. Anesthesia was
monitored by responsiveness to tail pinch and animals were
decapitated. Dissection and slicing were both performed in ice-
cold Ringer’s Solution (in mM: 125 NaCl, 25 glucose, 2.5 KCl,
25 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, and 2.5 CaCl2.) Coronal
slices (300–350 μm) were obtained from the olfactory bulb using
a vibratome (VT1200S; Leica). Slices were placed in oxygenated
Ringer solution at 37◦C for 15 min and then allowed to recover
for 30 min before being used for electrophysiology or imaging.

GLOMERULAR STIMULATION
A coiled formvar-insulated nichrome microwire or monopolar
glass stimulating electrode was inserted into a glomerulus (iden-
tified as a spherical structure of neuropil surrounded by small
cell bodies, located near the edge of the slice. A brief pulse
(0.3–3 ms) was applied by connecting the stimulating electrode
to an SIU (stimulus isolation unit) controlled by TTL (transistor-
transistor logic) pulses from an ITC-18 data acquisition board.
Stimulation amplitude was selected phenomenologically as the
minimum amplitude that elicited low probability spiking or LLDs
in granule cells.

ELECTROPHYSIOLOGY
Data were recorded using software written in Igor Pro
(WaveMetrics) with a 700B amplifier (Molecular Devices) and
ITC-18 data acquisition board (InstruTech). Whole-cell patch
pipettes (1–3 M�) with internal solution (in mM: 130 potassium
gluconate, 10 HEPES, 2 MgCl2, 2 MgATP, 2 Na2ATP, 0.3 GTP,
and 4 NaCl) were used to make whole-cell recordings (as well as
cell-attached recordings, when only spiking data was collected).
All data was collected in the Ringer’s Solution described above
at 37◦C. For Figure 4, tufted cells were recorded in the presence
of 25 μM APV, 10 μM CNQX, 10 μM bicuculline, and (where
noted) 20 μM 4-AP. Whole-cell current-clamp and voltage-clamp
recordings were performed, as well as cell attached recordings.
For experiments shown in Figure 3, 50 μl of the fluorescent tracer
AlexaFluor 594 hydrazide (Invitrogen) was added to the internal
solution to allow visualization of cell morphology and apical tuft
location.

Fura-2 LOADING
Olfactory bulb slices were transferred to a chamber contain-
ing 500 μl of Ringer’s solution with 3 μl of 0.01% pluronic
(Invitrogen) and 5 μl of a 1 mM solution of fura-2 AM
(Invitrogen) in 100% DMSO solution. Slices were incubated in
this solution at 37◦C for 90 min while humidified air was passed
above the liquid in the chamber to keep the solution oxygenated.

IMAGING
After fura-2 loading, slices were placed in a submersion record-
ing chamber under an upright microscope using 40 or 60×

water immersion objectives. Images and movies were recorded
at 75 ms per frame using a cooled back-illuminated frame
transfer CCD camera (Cascade 512B; Princeton Instruments).
Images were acquired and stored using software written in Igor
Pro (WaveMetrics and SIDX, Bruxton Scientific). We recorded
1500 ms long movies of the granule cell layer during glomerular
stimulation ± somatic stimulation of a single tufted cell.

DATA ANALYSIS
The rise time of prolonged depolarizations (Figure 1B) was cal-
culated as the time at which the depolarization reached 50% of
its maximum value. Decay time was identified as the time point
at which the depolarization decayed to within 5% of baseline. For
the spike latency data, trials were excluded if they had spikes pre-
ceding glomerular stimulation or latencies longer than 1000 ms,
as these are likely spontaneous and not stimulus-evoked events.
EPSCs times were identified using threshold crossings. We first
subtracted the mean current trace averaged across trials to elim-
inate inward currents that did not have the shape or decay of
EPSCs. Such currents were typical in the first several hundred
milliseconds following stimulation (see Figure 2C) but do not
represent the type of synaptic inputs that we are looking for. We
quantified threshold crossings for both the voltage clamp data
and the derivative of the current traces to ensure that events were
of appropriate amplitude and time course to represent synaptic
excitation. Since noisy fluctuations occurring in the first 100 ms
following glomerular stimulation were insufficient to drive spik-
ing, we selected conservative thresholds so that very noisy or very
small events were excluded. EPSC onset was defined as the mean
of the first two identifiable EPSC times in order to reduce the
impact of errantly identified early noisy events. For comparisons
of means, significance was determined using a t-test (Figure 4B).
For comparisons of distributions, a Kolmogorov–Smirnov test
was used (Figures 1E, 2D, 3A, 4B). A 0.05 significance level was
used for all.

COMPUTATIONAL MODEL
All simulations were performed in Matlab using mex files to inter-
face with C. The model consisted of 100 leaky integrate-and-fire
(LIFs) neurons (simulated mitral cells) described by the following
equation:

τm
dV

dt
= −Istim − Inoise(t) − Ileak(t) − Iinhib(t) (1)

where τm is the membrane time constant (τm = 9.5 ± 0.5 ms).
For all simulations, the time step �t = 0.01 ms and a standard
Euler integration scheme was used. The excitation delivered to
model mitral cells (Istim) was set at a constant for each cell
(Istim = 17 ± 1) on each trial. Noise currents (Inoise) were uncor-
related across cells and were generated as the sum of two 100 Hz
Poisson trains convolved with a decay constant (τnoise = 3 ms).
One train was made excitatory and the other one inhibitory by
scaling them by 1 and –1, respectively. A direct current offset
between 0 and 1 was then added to this noise. Leak current (Ileak)
= gL(Vi(t) − VL), where (gL = 1) is the unitary leak current and
(VL = 0) is the reversal potential of the leak term. When an
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excitatory cell was depolarized to threshold (Vthresh = −44.5 ±
0.5), a spike was identified and the membrane potential was reset
to Vreset = −53.5 ± 0.5 for a refractory period of 6 ms.

Inhibitory synaptic currents (Iinhib) were generated by a pop-
ulation of 1000 interneurons (simulated granule cells). We gener-
ated a template of population spiking using a 2 Hz Poisson rate
for each interneuron. We then used this template to generate
interneuron spikes based on the specified range of interneuron
latencies. We assigned each cell a stimulus-specific latency ranging
from 0 to 200 ms (in the most narrowly distributed model) from
0 to 1000 ms (in the most widely distributed model). Assigned
minimum first spike latencies were uniformly distributed across
the population between 0 and the maximum allowed first spike
latency. Each cell was prohibited from spiking prior to its assigned
latency, but was free to spike anytime thereafter. To generate
spike times for all model variants, we counted the number of
spikes (k) occurring at each millisecond (i) in the template data
(ki). Then, for each time bin, we randomly selected ki cells that
were available to spike [i.e., time had exceeded cell’s assigned
latency and cell was not in a refractory period (40 ms)] and
assigned spikes to those cells for time bin i. Drawing from the
template spiking data in this way ensured that the number of
interneuron spikes per millisecond was identical in all model vari-
ants. Each excitatory cell received input from 5% of the 1000
interneurons. The same connectivity matrix was used for all
model variants.

For the stimulus discrimination analyses, we used spike count
data occurring during the first 500 ms of stimulus presentation
for analysis. This time frame was selected because it represents
a behaviorally relevant timescale for olfactory discriminations
(Abraham et al., 2004, 2010; Rinberg et al., 2006). Importantly,
the relevant timescales for these behavioral decisions vary across
studies, with some examples of discrimination occurring more
rapidly (Uchida and Mainen, 2003). Thus, while the longest
granule cell latencies reported here are perhaps the most mecha-
nistically intriguing, shorter latency granule cell activity may also
be important for certain behavioral tasks, such as simple odor
discrimination. Given this variability in latency and in behav-
ioral timescales, we also analyzed spike count data measured at
time points ranging from 100 to 1000 ms. Classification accuracy
was calculated by training a linear classifier on data from 50%
of trials and using the other 50% of trials as a test set. Accuracy
was defined as the portion of correct classifications for each
stimulus.

RESULTS
GRANULE CELLS CAN RESPOND TO BRIEF STIMULATION WITH
LONG-LATENCY SPIKING
Olfactory bulb inhibition is characterized by long-lasting barrages
of GABAA receptor-mediated inhibitory postsynaptic currents
(Isaacson and Strowbridge, 1998; Schoppa et al., 1998; Urban
and Sakmann, 2002). Previously, we showed that the long dura-
tion of olfactory bulb inhibition is caused by widely distributed
first spike latencies across the granule cell population (Kapoor
and Urban, 2006). To investigate the mechanism controlling long-
latency firing in granule cells, we used patch clamp techniques to
characterize spiking activity and membrane potential preceding

spiking activity (Figure 1A). To activate granule cells, we applied
a brief current pulse to stimulate single glomeruli, activating
the resident mitral and tufted cells while recording membrane
potential responses in nearby granule cells.

Activated granule cells responded to glomerular stimulation
with an initial depolarization that occurred immediately and
decayed slowly (Figure 1B; stimulation time denoted by arrow-
head; τrise = 48 ± 39 ms, �Vm,peak = 19.2 ± 7.4 mV, τdecay =
2, 130 ± 163 ms; n = 11 cells). While the amplitude and time
course of this depolarization were similar across cells, granule cell
first spike latencies were widely variable across cells (ranging from
18 to 681 ms), yet reliable from trial-to-trial (average standard
deviation across trials was 118.6 ± 88 ms). Eight trials from an
example granule cell are shown in Figure 1C. As was the case in
all our granule cell recordings, a large yet subthreshold depolar-
ization occurred immediately following glomerular stimulation
and temporally precise spiking occurred tens to hundreds of
milliseconds later.

FIGURE 1 | Long-latency granule cell activity. (A) Experimental setup:
A brief, 300 μs stimulation pulse was applied via an extracellular stimulating
electrode impaled into a glomerulus. Responses of inhibitory granule cells
were recorded using patch clamp. (B) Average depolarization following
glomerular stimulation. Arrowhead denotes stimulation time. (C) Example
voltage traces from a granule cell following glomerular stimulation
(arrowhead), eight trials shown. (D) Distribution of mean first spike
latencies across granule cell population. (E) Relationship between granule
cell first spike latency and spike probability. (F) Relationship between
granule cell first spike latency and evoked rate.
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Latency of spiking activity in granule cells was similar to
previous reports (Kapoor and Urban, 2006), even though the
data we report here were collected from slices bathed in higher
and more physiologically realistic concentrations of magnesium
(1.0 mM vs. 0.2 mM). Spiking probability varied widely across
activated cells, ranging from 3 to 88% (mean probability = 48%;
n = 18 cells). Latency to first spike was reliable across trials and
mean spike latencies ranged from 0 to 1000 ms (Figure 1D; mean
first spike latency = 252 ± 171 ms, n = 18 cells). We observed
only very weak correlations between first spike latency and spike
probability (Figure 1E) or evoked firing rate (Figure 1F). Thus,
granule cell recruitment following glomerular stimulation was
characterized by a short latency, subthreshold depolarization,
followed by temporally precise long-latency spiking.

LONG-LATENCY GRANULE CELL SPIKING IS DRIVEN BY
LONG-LATENCY EXCITATION
We considered two possible mechanisms for long-latency spik-
ing in granule cells. First, long-latency excitatory inputs could
drive long-latency spiking. Late onset excitation could explain the
temporal precision of long-latency activity, but no such source
of long-latency excitation is known. Alternatively, long-latency
spiking could result from an interaction between synaptic input
and intrinsic cellular properties of granule cells (such as voltage-
gated ion channels), allowing these cells to integrate their inputs
at very long timescales (Storm, 1988; Molineux et al., 2005).
To distinguish between these two possibilities, we recorded in
current clamp during glomerular stimulation (to characterize
spiking activity; Figure 2A) and in voltage clamp (to character-
ize synaptic currents; Figure 2B). As is shown for a single cell in
Figures 2A,B, we observed a remarkable correspondence between
granule cell first spike latency (spiking onset = 287 ± 89 ms) and
the onset of long-latency fast excitatory post-synaptic currents
(EPSCs; onset = 254 ± 88 ms).

In our voltage clamp recordings such as those shown in
Figure 2B, we typically did not observe obvious fast EPSCs
in the 0–200 ms time window, raising questions about the
source of the early depolarization characteristic of granule
cell recordings. However, when the voltage clamp traces are
averaged (Figure 2C; lower), clear inward currents were observed
immediately following glomerular stimulation in a pattern that
closely matches the average time course of membrane potential
depolarization (Figure 2C; upper). Thus, the initial slow depo-
larization may be due to a large pool of asynchronous and rela-
tively weak excitatory inputs, making individual EPSCs difficult
to identify. Alternatively, the prolonged subthreshold depolar-
ization may be facilitated by slow calcium buffering in granule
cells that promotes long-timescale depolarization. Prolonged sub-
threshold depolarizations have been observed in both granule
cells (Egger, 2008) as well as mitral cells (Carlson et al., 2000)
of the olfactory bulb. While a variety of mechanisms could
account for this prolonged depolarization, we focused instead
on the source and mechanism of late depolarizations because we
wanted to understand the forces shaping spike timing in granule
cells.

Across cells, EPSC onsets were widely distributed (mean EPSC
onset = 282 ± 90 ms, n = 14 granule cells with identifiable

FIGURE 2 | Long-latency granule cell activity is driven by late onset

excitatory inputs. (A) Membrane voltage and (B) membrane currents of a
single granule cell following brief glomerular stimulation (arrowhead). Six
trials shown. (C) Membrane potential (upper) and somatic currents (lower)
averaged across trials. (D) Distribution of EPSC onset across cells.
(E) Correlation between first spike latency and EPSC latency across cells.

EPSCs; Figure 2D) and correlated to first spike latency (r = 0.81,
Spearman-rho test, n = 8 cells with identifiable EPSCs and spikes;
Figure 2E). These findings provide support for the hypothesis
that reliable, long-latency EPSCs cause precisely-timed long-
latency spikes in granule cells.

TUFTED CELLS DRIVE LONG-LATENCY ACTIVITY IN GRANULE CELLS
What is the source of long-latency synaptic excitation to gran-
ule cells? Two types of excitatory neurons have been described
in the mouse olfactory bulb: mitral and tufted cells, with tufted
cells coming in several subtypes (Shepherd, 2004). We began by
recording from mitral cells that were activated by stimulation of
a single glomerulus (Figure 3A; black). Consistent with our pre-
vious work (Kapoor and Urban, 2006), mitral cell spikes were
observed at short latency following glomerular stimulation, mak-
ing these cells an unlikely source of late excitation to granule cells
(mean first spike latency = 68 ± 53 ms, n = 14 cells; Figure 3B;
black).
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Next, we looked for late onset spiking in tufted cells, focusing
on middle tufted cells whose somata are located in the plexi-
form layer. In contrast to mitral cells, some tufted cells exhibited
long first spike latencies following brief glomerular stimulation
(Figure 3A; blue). The first spike latencies observed in the tufted
cell population were widely distributed and ranged from 15 to
600 ms, with an average latency of 181 ± 146 ms and aver-
age standard deviation of 81 ± 78 ms (Figure 3B; blue n = 19
cells). The distribution of first spike latencies observed in tufted
cells closely matched the observed distribution in granule cells
(Kolmogorov–Smirnov test, p = 0.15). Thus, following glomeru-
lar stimulation, tufted cells are activated at widely distributed
latencies. As such, they could provide distributed-latency excita-
tion to granule cells, while mitral cells are restricted to providing
relatively short-latency excitation.

We next sought to probe the relationship between tufted and
granule cell firing more directly. We began by stimulating a
single tufted cell via somatic current injection and searching for
activated granule cells in a slice bulk-loaded with the calcium
indicator dye Fura-2 AM. However, as might be expected from
previous work (Isaacson and Strowbridge, 1998; Schoppa et al.,

FIGURE 3 | Long-latency excitation comes from tufted, but not mitral

cells. (A) Example of a mitral cell (black) and tufted cell (blue) response to
glomerular stimulation (arrowhead). (B) Distribution of first spike latencies
following glomerular stimulation in mitral (black) and tufted cells (blue).
(C) Optical imaging setup. A stimulating electrode was impaled into a
glomerulus and a nearby (but not connected) tufted cell was patched. The
glomerulus was stimulated on every trial, while the tufted cell was made to
fire on every other trial. Responses from three granule cells (D–F) to
glomerular stimulation with (blue) and without (gray) additional tufted cell
input were monitored optically. Black dash denotes timing of glomerular
stimulation, blue dash denotes onset of tufted cell activity for tufted
stimulation trials (blue).

1998; Christie et al., 2001) we never observed granule cell activity
following stimulation of single tufted cells (9 tufted cells, mon-
itored 55 granule cells, 20–25 trials each). Since activity in a
single tufted cell was insufficient to drive granule cell spiking,
we hypothesized that granule cell activation may require con-
vergent synaptic input from multiple sources: for example, one
input that depolarizes granule cells to a subthreshold level (as
seen in Figure 1B) and a long-latency source of suprathreshold
excitation which determines spike timing (as seen in tufted cells;
Figure 3B).

To look for examples of tufted cell activity driving granule
cell spiking, we instead examined granule cell recruitment by
single tufted cells following glomerular stimulation (Figure 3C).
We placed an extracellular stimulation electrode into a glomeru-
lus, and patched a nearby tufted cell that did not receive input
from the stimulated glomerulus. We positioned the microscope
over the granule cell layer and recorded fluorescence triggered to
glomerular stimulation. On half of the trials, late onset action
potentials were initiated in the tufted cell via strong somatic
current injection 200 ms after glomerular stimulation, and on
the other half of trials the tufted cell was kept at its resting
potential, preventing firing. Because tufted cells only respond to
glomerular stimulation with spiking on a subset of trials, this
approach allowed us to closely control when tufted cells were
active versus silent. In this way, we were able to observe how the
timing of granule cell activity depended on the activity of a single
tufted cell.

Using calcium imaging, we compared granule cell activity
when the patched tufted cell was held at rest versus driven to
spike. We searched for granule cells whose firing onset coin-
cided with tufted cell stimulation and found several examples. In
some granule cells (such as the granule cell shown in Figure 3D;
gray traces), glomerular stimulation alone was insufficient to
drive spiking, but reached threshold with the additional input
from a single tufted cell (Figure 3D; blue traces). In other cases,
granule cells exhibited reliable long-latency firing in response to
glomerular stimulation alone. In these cells (like the one plotted
in Figure 3E), adding tufted cell input prior to the glomerulus-
specific latency shifted latency earlier to coincide with tufted cell
stimulation. Lastly, in some granule cells, glomerular stimula-
tion elicited short latency firing (like the granule cell shown in
Figure 3F; gray traces). Thus, with glomerular stimulation alone,
the activity of these granule cells was characterized as either short
latency firing, or failure to fire. In these cells, the addition of late
onset tufted cell input converted some of the trials (which would
have been “failure” trials with no spiking) into long-latency tri-
als (Figure 3F; blue traces). These examples demonstrate that the
activity of a single tufted cell can determine first spike latency in
granule cells.

In our data, we observed the three examples shown in Figure 3
out of 48 well-imaged granule cells. However, this is likely a sig-
nificant underestimate of the prevalence of this effect because
several factors limit our ability to identify these connections in
slice. First, these interactions are only identified during post-hoc
analysis. Given the low response probabilities of individual gran-
ule cells, it was not feasible to identify putative pairs from a few
test trials and then ensure that these cells were in focus. Thus, we
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were limited to identifying pairs that happen to be in the selected
plane of view. The low response probability also poses a problem
because we cannot confidently identify a connected pair if a gran-
ule cell only responds on 1 trial. We restricted our analysis to cells
that responded on at least three trials to avoid identifying spon-
taneous or unrelated activity as connections. Third, the number
of identified pairs is reduced by our slice preparation, which sev-
ers dendrites and thus connections between tufted and granule
cells. Lastly, our identification of connected tufted-granule pairs
requires that the connected granule cell be sufficiently loaded with
fura-2. Bulk loading only fills a random subset of neurons, which
also limits the number of identified connections. Given these
serious limitations in identifying tufted-granule pairs, we were
quite pleased that we were able to identify the few connections
that we did.

INTRINSIC BIOPHYSICAL PROPERTIES OF TUFTED CELLS DRIVE
LONG-LATENCY ACTION POTENTIAL GENERATION
Our results support a model in which long-latency firing of gran-
ule cells is driven by the timing of synaptic excitation primarily
from tufted (rather than mitral) cells. We wondered whether
the observed differences in mitral and tufted cell latencies arose
from cellular or circuit-level differences. We began by observing
mitral cell responses to somatic step current injection rather than
glomerular stimulation (Figure 4A, black). Spike latency varied as
a function of firing rate with longer latencies for low firing rates
and shorter latencies for higher firing rates (Figure 4B; black,
n = 10 cells). We compared this relationship to the responses of
tufted cells (Figures 4A,B blue, n = 12 cells) and observed that
tufted cells had significantly longer latencies for matched firing
rates (p < 0.05, K–S test). Mitral cell latencies were on average
36.7 ± 15% shorter than tufted cell latencies (p < 0.05 for fir-
ing rates between 1 and 18 Hz, t-test). Since latency differences
between mitral and tufted cells persist without synaptic input,
these results suggest that mitral and tufted cells differ in their

FIGURE 4 | Long-latency activation is an intrinsic property specific to

tufted cells. (A) Example mitral (black), tufted (blue) and tufted cell + 4-AP
responses to four amplitudes of injected current. (B) Firing rate/latency
relationship in response to somatic current injection across the population
of mitral cells (black triangles) and tufted cells (blue). Red circles denote
tufted cells in the presence of 20 μM 4-AP; maroon triangles denote mitral
cells in the presence of 20 μM 4-AP. Bars indicate s.e.m.

intrinsic cellular properties, enabling long-latency firing in tufted
but not mitral cells.

Numerous studies have implicated inactivation of voltage-
gated potassium channels in regulating first spike latency using
the potassium channel blocker 4-aminopyridine (4-AP). We won-
dered whether the latency differences between mitral and tufted
cells could be altered with this drug, which blocks a number
of potassium channels, mostly of the Kv1 family, at concentra-
tions <100 μM (Storm, 1988; Schoppa and Westbrook, 1999;
Balu et al., 2004). We found that when we repeated our experi-
ment in the presence of 20 μM 4-AP (Figures 4A,B; red), tufted
cell latencies were reduced to mitral cell levels (p = 0.5; K–S test).
First spike latency reduction was frequency dependent, with max-
imum 4-AP-induced latency reductions occurring between 5 and
10 Hz (43 ± 3% reduction in latency, p<0.05, t-test, n = 12 cells).
Thus, a 20 μM concentration of 4-AP was sufficient to rectify
the latency differences between mitral and tufted cells. We also
observed a reduction in first spike latency when we applied 4-AP
to mitral cells (Figure 4B; maroon triangles). This suggests that
both mitral and tufted cells express potassium channels sensitive
to micromolar concentrations of 4-AP, but that their expression
or sensitivity is higher in tufted cells.

These findings suggest that long-latency activation is at least
in part an intrinsic property of tufted cells that relies on inac-
tivation of a 4-AP-sensitive current. This is consistent with pre-
viously reported results that application of 4-AP significantly
reduces granule cell latencies (Kapoor and Urban, 2006). Our
data suggest that 4-AP application might reduce granule cell
latencies by shortening the temporal distribution of tufted cell
inputs to granule cells. However, additional mechanisms may
also participate. For example, application of 4-AP might pro-
mote long-latency spiking in a previously silent cell. Alternatively,
4-AP may act in part by reducing the intrinsic latencies of
mitral and tufted cells. In either case, our results provide sup-
port that reductions in tufted cell latency also participate in this
phenomenon. Intrinsic long-latency responses distinguish the
responses of tufted cells from mitral cells and provide a mechanis-
tic substrate for promoting long-latency spiking in the olfactory
bulb.

LONG-LATENCY INHIBITION IMPROVES STIMULUS DISCRIMINATION
Thus far, we have described how long-latency inhibition is gen-
erated in the olfactory bulb network. We next sought to ask
how long-latency inhibition might confer advantages for etholog-
ically relevant behaviors like olfactory discrimination. To address
this question, we built a computational model that allowed us
to investigate how population coding is affected by altering the
distribution of interneuron latency. Our model consisted of 100
leaky integrate-and-fire neurons (LIFs; simulated mitral cells)
and 1000 inhibitory interneurons. Each model mitral cell was
connected to inhibitory neurons with 5% probability.

To mimic granule cell responses for many different stim-
uli (Kapoor and Urban, 2006), each interneuron was randomly
assigned a stimulus-specific response latency for 100 stimuli.
Thus, a given interneuron responded with one stereotyped
latency for stimulus A, and a different latency for stimulus B, etc.
In this way, each stimulus generated a pattern of inhibition that
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was equal in magnitude, but unique in the temporal patterning of
interneuron latency.

The range of granule cell latencies that we observed here were
consistent with previous reports of granule cell latencies rang-
ing between 0 and 1000 ms (Kapoor and Urban, 2006). These
data were collected in a slice preparation, where excitability and
the number of intact connections is less than might be observed
in vivo. Because the range of granule cell latencies might dif-
fer in the intact animal, we wished to investigate other latency
ranges as well. To probe the effects of latency distribution, we
generated these stimulus-specific interneuron responses for a
variety of latency ranges (spike rasters of interneuron popu-
lation for a single stimulus plotted in Figure 5A). The model
with the narrowest distribution restricted interneuron latencies
to between 0 and 200 ms (Figure 5A; black bar) while in the
most widely distributed model (based on granule cell physiol-
ogy) latencies ranged from 0 to 1000 ms (Figure 5A; red bar).
Importantly, the firing rate of each interneuron was identical
across models (i.e., if a model granule cell emits three spikes
in the narrowly distributed case, it also emits three spikes in
the widely distributed case). Further, the population activity
across time was kept identical (i.e., all model variants gener-
ate the same total number of interneuron spikes/ms). All model
variants had equal granule cell inter-spike interval distribu-
tions. This setup allowed us to investigate very specifically how
the distribution of interneuron latency affects mitral cell firing
while keeping the total amount of inhibition and connectivity
identical.

Mitral cells receiving narrowly distributed inhibition
(Figure 5A; upper) tended to fire more regularly (Figure 5B;
upper), while widely distributed inhibition caused gaps in firing
at various points throughout stimulus presentation (Figure 5B;
lower). Notably, this type of firing—with epochs of high and
low firing—is typical of odor-evoked responses (Margrie et al.,
2001; Wilson and Laurent, 2005). In our widely distributed
models, temporal variability in spiking arose because some mitral
cells received inhibition primarily during one portion of a trial
(for example, if by chance most inputs are early onset granule
cells). Despite these differences in temporal variability, each
mitral cell received the same total amount of inhibition in each
model and mean mitral cell firing rates were equal in all model
variants.

Given this transfer of temporal variability, we were inter-
ested in how it may impact population coding (Kunsting and
Spors, 2009). To investigate population-level encoding, we first
visualized stimulus-evoked activity patterns using principal com-
ponent analysis of model mitral cell firing. This gave us a
low-dimensional representation of population responses (exam-
ple of two stimuli shown in Figure 5C). Each point denotes
the population response to stimulus 1 (+) or stimulus 2 (•)
on a single trial. Since there is some variability in population
responses from trial-to-trail, each stimulus occupies a “cloud”
of space. When two clouds are overlapping (as can be seen
in the most narrowly distributed network, Figure 5C; upper),
the population responses are ambiguous and discrimination is
difficult. As the range of interneuron latencies was increased
to olfactory bulb levels (Figure 5C; lower), the same pair of

FIGURE 5 | Inhibition with widely distributed latency improves

stimulus discrimination. (A) Generating inhibition. For each stimulus, a
population spiking template is generated (shown here in black). Model
granule cell spike times are assigned such that the sum of all spikes is
equal to the peri-stimulus time histogram template. While the total spiking
is equal across model variants, they differ in the range of first spike
latencies (shown with colored bars, below). First spike latencies ranged
between 0 and (from bottom to top) 200, 400, 500, 600, 800, or 1000 ms.
(B) Example of mitral cell spike trains receiving inhibition from each model
variant shown in A. (C) First two principal components of mitral cell
population firing for one pair of stimuli. Stimulus 1 = +; stimulus 2 = •. For
each model variant, 100 trials are plotted per stimulus. (D) Classification
accuracy of 100 stimuli as a function of population size. Colors correspond
to model variants plotted in A–C. Bars denote s.e.m.

stimuli become readily separable. Together, these results illus-
trate that widely-distributed latency is a simple and intuitive
mechanism for increasing temporal variability and improving
discriminability.
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We used a linear discriminant analysis on the unprocessed
data (spike count vectors without reducing dimensionality) to
quantify the encoding performance. We examined the classifi-
cation accuracy as a function of mitral cell population size for
each model (Figure 5D). While the classifier reached near perfect
accuracy with as few as 30 cells in the most widely distributed
latency condition (red), it performed at chance levels in the nar-
rowest latency network, even when all of the mitral cell data was
available.

We wanted to verify that the advantage of latency coding does
not depend critically on the specific timescales of inhibition or
behavior that we chose to model olfactory bulb physiology. The
analyses shown in Figure 5 were calculated using spike count vec-
tors over a 500 ms time window. We selected this time frame based
on certain behavioral studies indicating that difficult discrimi-
nations can require these long time frames to be accomplished
(Abraham et al., 2004; Rinberg et al., 2006). However, the rel-
evant timescales for olfactory discrimination remain debated,
with evidence that in some cases, difficult binary discrimina-
tions may not in fact require these extended time frames, but
are instead accomplished within the duration of a single sniff
(150–200 ms) (Uchida and Mainen, 2003; Uchida et al., 2006).
Since the timescales of perceptual decisions appear to range
widely in different conditions, we wanted to understand how
latency distribution would affect classification accuracy across
short, medium, and long timescales. To this end, we measured
classification on the spike count vectors after a wide range of
time points (Figure 6A). While classification accuracy varies as
a function of time intervals in the behaviorally relevant range,
accuracy improves when longer latencies are available (lighter
colors toward top of plot). Thus, widely-distributed inhibition
may be advantageous across a wide range of behaviorally relevant
timescales.

Our model was designed to mimic the stimulus-specific
interneuron latency patterns observed in the olfactory bulb
(Kapoor and Urban, 2006). That is, each stimulus evokes a dis-
tinct temporal sequence on interneuron recruitment. We selected
this method of stimulus generation because it allowed us to
directly probe the influence of latency distribution on stimu-
lus discrimination. However, olfactory stimuli evoke stimulus-
specific subsets of interneurons in addition to stimulus-specific
latency patterns. To verify that our results were robust to differ-
ent methods of stimulus generation, we modified our model so
that only 50% of the 1000 model granule cells were active for each
stimulus. As before, each interneuron was assigned a stimulus-
specific latency for each stimulus, and we tested latency ranges
from 0 to 200, 400, 500, 600, 800, and 1000 ms. Additionally,
a stimulus-specific subset of 500 interneurons was designated
to be silent for each stimulus. In this way, we were able to
mimic both stimulus-specific latency and stimulus-specific sub-
sets of active interneurons. All of the models showed better
classification accuracy when both latency and the activated subset
of interneurons were stimulus-specific (Figure 6B, compared to
Figure 5D). However, the advantage of widely distributed inhi-
bition is still clear—while all latency ranges reach near perfect
accuracy when the full population is available, accuracy still varies
as a function of latency range for smaller population sizes. These

FIGURE 6 | Latency-induced improvements are robust to changes in

parameters and stimulus generation. (A) Heatmap of classification
accuracy for varying ranges of latency spread at different behavioral time
points. (B) Alternate stimulus generation. Each stimulus has a
stimulus-specific latency pattern (as seen in Figure 5), as well as a
stimulus-specific subset of active interneurons. Here, each stimulus
recruits only 50% of model granule cells. Classification accuracy as a
function of mitral cell population size. Colors correspond to latency ranges
in Figure 5 (200, 400, 500, 600, 800, 1000 ms).

results suggest that stimulus-specificity with respect to interneu-
ron recruitment and interneuron latency both act to improve
encoding.

DISCUSSION
Long-latency inhibition in the olfactory bulb arises from a sim-
ple circuit mechanism whereby glomerular stimulation drives
two types of output: short latency spiking in mitral cells, and
variable onset spiking from tufted cells. These two types of exci-
tation provide a mechanistic substrate for long-latency spiking
in granule cells, which is driven by early onset subthreshold
depolarization followed by late onset excitatory inputs that drive
precise spiking. The results reported here make an important
advance over our previous work by highlighting the role of middle
tufted cells as a source of long-latency excitation in the olfactory
bulb. Interestingly, the mechanism driving long-latency activity
is intrinsic for tufted cells, and synaptic for granule cells. This
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mechanism accounts for the distribution of first spike latencies
observed in granule cells, as well as their striking glomerular
specificity (Kapoor and Urban, 2006). Here, we focus on the
impact of widely distributed interneuron latencies from the per-
spective of mitral cells receiving this type of inhibition. However,
tufted cells also project to cortex (Ekstrand et al., 2001; Shin
Nagayama et al., 2010), adding additional complexity to the
temporal properties of odor-evoked activity.

Although physiological differences between mitral and tufted
cells have been reported previously (Nagayama et al., 2004; Griff
et al., 2008), to our knowledge our results are the first to suggest a
specialized role of tufted cell in the recruitment of inhibitory cir-
cuits. The reliance of this mechanism on the intrinsic properties
of tufted cells raises additional possibilities for temporal pat-
terning via network state, neuromodulatory inputs, or simply
by residual changes in the resting potential from prior activity.
The differences in first spike latency that we observe between
mitral and tufted cells are somewhat surprising, given the fact
that tufted cell activity has been observed to precede mitral cell
activity in a number of studies (De Saint Jan et al., 2009; Gire
et al., 2012). Importantly, these studies typically report the activ-
ity of external tufted cells, whereas we recorded from middle
tufted cells. Our examination of the intrinsic properties of middle
tufted cells suggests that they can scale their latency more lin-
early with firing rate (Figure 4B), independent of inputs. Whether
the strength or timing of peripheral inputs differs between mitral
and tufted cells would be a very interesting issue for future
study.

While our results suggest that granule cell recruitment often
involves a combination of mitral and tufted cell-mediated inputs,
they do not exclude the possibility that other combinations of
inputs could drive granule cell activity. For example, our previ-
ous work demonstrated that stimulation of a single mitral cell (in
the presence of low magnesium solution) was sufficient to elicit
long-latency firing in granule cells (Kapoor and Urban, 2006).
One possibility is that stimulation of a single mitral cell causes
dendritic glutamate release within the glomerulus, which may
cause slow depolarization and long-latency spiking of tufted cells
terminating within the same glomerulus to drive late spiking in
granule cells. Alternatively, given sufficient mitral cell inputs and
a low firing threshold (perhaps facilitated by the low magnesium
condition used in our previous study), a granule’s latency might
be determined by mitral cell firing alone. By the same token,
having many tufted cell inputs to a granule cell could provide
both early, subthreshold excitation, as well as late, suprathreshold
excitation.

Long timescale activity in granule cells may also be influ-
enced by their slow calcium-dependent depolarization mecha-
nisms (Stroh et al., 2012). Calcium influx is a critical step in
action potential generation, and these calcium transients typi-
cally decay rapidly following spiking activity. However, granule
cell calcium signals decay slowly due to slow calcium extrusion
(Egger and Stroh, 2009) and TRPC channels (Stroh et al., 2012).
The long lasting calcium transients in granule cell dendrites and
individual spines may foster long timescale activation of granule
cells. This may be important for granule cell physiology by giving
rise to asynchronous recruitment of large populations of granule

cells or even asynchronous release from individual spines within
a granule cell. Unfortunately, the role of these additional mech-
anisms is difficult to estimate because paired recordings between
granule cells and mitral or tufted cells have not been feasible. In
the future, a more detailed knowledge of the connectivity and
synaptic strengths between granule cells and mitral cells as well
as between granule cells and tufted cells would help clarify these
issues. However, the striking correspondence of first spike latency
distributions between granule cells and tufted cells suggests that
for a wide range of timescales, tufted cell input can account for
granule cell first spike latency.

Our computational model demonstrates that latency coding
in inhibitory interneurons can improve stimulus discriminability.
Here, we have based simulations on a highly simplified represen-
tation of the olfactory circuit. While this model lacks detailed
features of olfactory bulb physiology, it has the advantage of
allowing us to evaluate the benefits of latency coding in isola-
tion from other potential effects on inhibition. Several aspects of
interneuron latency patterns, such as the width and shape of gran-
ule cell latency distributions, may be different in awake, behaving
animals. Importantly, the classification improvements mediated
by widely distributed interneuron latencies do not depend crit-
ically on these details. As shown in Figure 6A, this strategy is
effective at improving classification accuracy across a wide variety
of behavioral timescales, as well as across diverse latency ranges.
These same effects can be accomplished by much smaller popu-
lations of model granule cells. Thus, interneuron latency patterns
are a simple and flexible mechanism that can be used to improve
classification accuracy across a wide range of conditions.

The observed improvements in stimulus encoding are a sur-
prising consequence of long-latency inhibition. Inhibition is
believed to improve olfactory encoding by a variety of mech-
anisms including tuning curve sharpening, lateral inhibition,
and shaping pattern correlations (Laurent, 2002; Wiechert et al.,
2010). One might anticipate that a network would benefit from
enacting any of these mechanisms immediately following stim-
ulus presentation. Our results suggest that inhibitory latency
coding can work in concert with these known mechanisms
to further decorrelate stimulus representations and that dis-
tributed latency inhibition actually increases the magnitude of
decorrelation. Just as a symphony orchestra can play a more
complex piece of music when different sections of the orches-
tra are cued at different times, the olfactory bulb can encode
more complex stimuli when granule cells vary in their first spike
latency.

The results described here are based on data collected from
olfactory bulb slices. This preparation is extremely useful in that
the activity of single cells can be closely controlled and mon-
itored, yielding useful insight into the physiological properties
governing olfactory bulb responses. However, the limitations of
this preparation are worth noting, as slicing olfactory bulb tis-
sue alters and omits several aspects of olfactory processing. First,
slicing alters cell morphology by severing neuronal processes.
Severing of dendrites might be particularly common in the olfac-
tory bulb preparation because the lateral dendrites of mitral
and tufted cells can span very long distances (up to 1000 μm)
from the cell body. Secondly, this preparation does not take into
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account the temporal patterning established by primary sensory
inputs (from respiration-coupled oscillations and olfactory recep-
tor neuron latency patterns) or centrifugal inputs from cortex. In
the present study, we have focused elucidating the mechanisms
responsible for the distributed-latency phenomenon previously
described in an in vitro preparation. To this end, we have stud-
ied responses to isolated, rather than rhythmic stimulation of
the olfactory bulb. However, these inputs could shape temporal
patterning in additional—and perhaps stimulus-specific—ways.

In particular, the respiratory cycle may act as an important
influence on further shaping the granule cell latency patterns
observed in slice. The timescales of depolarization in mitral,
tufted, and granule cells are quite long, taking many hundreds
to thousands of milliseconds to return to baseline. This timescale
is significantly longer than the sampling periods dictated by the
respiratory cycle, even during passive breathing (Wesson et al.,
2008). The potential utility of this phenomenon is that each sniff
may not be a repeat of the previous sniff, but rather a relatively
new sample. The ability of the olfactory bulb to generate long-
lasting activity patterns following brief stimulation might also
facilitate the generation of temporally rich responses following

limited sampling of odors (Karpov, 1980; Laing, 1986; Uchida and
Mainen, 2003; Abraham et al., 2004).

Importantly, the improvement in encoding reported in our
model is likely an underestimate of the improvement in vivo
because there, latency is subject to additional forms of modu-
lation. For example, latency differences have been reported at
the level of olfactory receptor neuron inputs to the olfactory
bulb (Spors et al., 2006). These two forms of latency could work
together to drive even more complex and dynamic activity pat-
terns. Further, the activity-dependent recruitment of inhibitory
circuits can likely magnify latency differences (Arevian et al.,
2008). Together, these multiple stages of temporal patterning
could work together to generate temporal patterning at a behav-
iorally relevant timescale.
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