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Abstract: The ubiquitous presence of nanoplastics (NPs) in natural ecosystems is a serious concern,
as NPs are believed to threaten every life form on Earth. Micro- and nanoplastics enter living
systems through multiple channels. Cell membranes function as the first barrier of entry to NPs,
thus playing an important biological role. However, in-depth studies on the interactions of NPs
with cell membranes have not been performed, and effective theoretical models of the underlying
molecular details and physicochemical behaviors are lacking. In the present study, we investigated
the uptake of polyvinyl chloride (PVC) nanoparticles by Arabidopsis thaliana root cells, which leads
to cell membrane leakage and damage to membrane integrity. We performed all-atom molecular
dynamics simulations to determine the effects of PVC NPs on the properties of the multicomponent
lipid bilayer. These simulations revealed that PVCs easily permeate into model lipid membranes,
resulting in significant changes to the membrane, including reduced density and changes in fluidity
and membrane thickness. Our exploration of the interaction mechanisms between NPs and the cell
membrane provided valuable insights into the effects of NPs on membrane structure and integrity.

Keywords: NPs; molecular dynamics (MD) simulations; plant development; cell membrane integrity

1. Introduction

Plastics are synthetic materials composed of long chains of molecules such as carbon
atoms, hydrogen, nitrogen, oxygen, and sulfur in the form of polymers. Plastics are grouped
into four categories based on particle size: macroplastics (>25 mm), mesoplastics (5–25 mm),
microplastics (MPs) (0.1–5 mm), and nanoplastics (NPs) (<100 nm) [1]. Nanoplastics (NPs)
are typically defined as particles with a diameter between 0.1 and 100 nm, regardless of their
morphological characteristics [2,3]. Due to their extraordinarily small size, NPs usually
show very interesting properties, such as colloidal, bioactivity, and electric properties,
which substantially differ from those of bulk materials [4]. Given the multifaceted nature of
NPs, understanding their interactions with the plasma membrane (PM) is a major concern
for environmental safety and human health.

The PM functions as the first barrier to the entrance of NPs into cells, thereby playing
an important role in cellular interactions with and internalization of the NPs [5]. Therefore,
the role of the PM in the effects of NPs on cells has attracted increasing attention worldwide.
Ample evidence has shown that small microplastic particles, especially NPs, can disperse
throughout various organs, passing through different biological barriers and thereby
accumulating in and affecting these organs [6,7]. Because of their nanoscale size, NPs can
easily enter cells and translocate across cells, tissues, and organs, thus causing greater harm
than larger plastic particles [8]. Smaller polystyrene (PS) MPs can enter the cells of the
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green alga Chlamydomonas reinhardtii and become embedded in the cell membranes [9];
larger (micrometer-sized) plastic particles can also enter the interiors of cells but probably
via endocytosis-like mechanisms [10,11]. Zheng et al. determined that different kinds of
MPs, including PS, polyvinyl chloride (PVC), and polyethylene (PE) MPs, cause varying
levels of damage to the cell membranes of freshwater algae Microcystis aeruginosa [12].
The principal mechanism by which cationic nanoparticles cause cytotoxicity is membrane
rupture, which greatly damages the extracellular matrix and leads to the production of
reactive oxygen species [13]. However, this process does not result in cell death or loss
of cell membrane integrity [14]. Therefore, understanding the underlying mechanisms
involved in the cellular uptake of NPs is crucial for assessing the fate of these particles and
their toxicity.

Several studies have investigated the effects of exposure to MPs and NPs on plants in dif-
ferent ecosystems, with findings ranging from neutral effects to overt phytotoxicity [3,15–17].
Notably, the effects of MPs and engineered nanomaterials on plant growth vary depending
on the plant species, the particle structure, size, chemical composition, and the expo-
sure time [18–20]. Plant roots take up nanoparticles through the apoplast, across cell
membranes by endocytosis, and through the endodermis into root vascular tissue via the
symplast [21,22]. Moreover, Giorgetti et al. identified PS NPs in the nuclei of onions (Allium
cepa), suggesting that small NPs might also cross the nuclear membrane and impair chro-
matin structure and activity [23]. It seems safe to assume that the smaller the particle size,
the greater the cytotoxicity. Several studies have investigated the uptake, accumulation,
and cytotoxicity of micro-nano plastics in plants. However, detailed cellular interaction
and early responses are still very challenging.

Most studies of the interactions between MPs and NPs and plasma membranes per-
formed to date have focused on subsequent phenomena following treatment with plastic
particles. However, elucidating the initial interactions between plastic particles and lipid
membranes is crucial to understanding the physical basis of membrane damage caused
by NPs in vivo. However, the considerable complexities of membranes and the difficulty
of examining NPs smaller than the diffraction limit make systematic research based on
standard experimental methods quite challenging. Due to the rapid development of compu-
tational approaches, studies have increasingly focused on predicting interactions between
macromolecules and cell membranes via molecular dynamics (MD) simulations [24,25].
Wang et al. used MD simulations to examine the effects of nano-sized PE particles on the
performance of a model dipalmitoyl phosphatidylcholine membrane and determined that
these nanoparticles could readily penetrate lipid membranes [8]. MD simulation is an
effective tool for exploring interactions between molecules and lipid bilayer systems at
atomic-level accuracy to reveal the underlying mechanisms of physiological processes that
cannot be uncovered by laboratory experiments [26,27].

In this study, we combined experimental and fully atomistic MD simulation ap-
proaches to investigate the integrity and conformational dynamics of the PM. We also
used MD simulation to track the changes in membrane structure and function after PVC
NPs enter the mixed lipid bilayer. Elucidating the interactions between nanoparticles and
lipid membranes is crucial for understanding the physical basis and in vivo processes
underlying the membrane damage caused by NPs.

2. Results
2.1. Effects of NPs on Seed Germination and Plant Growth

To investigate whether treatment with NPs would have negative effects on plants,
we carried out plant health assessments, including germination and root elongation rate,
in Arabidopsis. We analyzed the germination rate of Arabidopsis seeds following 72 h
of exposure to PVC10 nanoparticles (polyvinyl chloride chains containing 10 monomers)
(Figure 1). We found no statistically significant differences in germination rate between
seeds treated with 0 µg/mL (controls) vs. 50 µg/mL NPs (Figure 1A). However, seeds
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exposed to higher doses of NPs (100 µg/mL and 200 µg/mL) showed germination delays of
approximately 12.5% and 10%, respectively, compared to the 0 µg/mL controls (Figure 1A).
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growth rate between 5 and 7 d after the start of germination was lower by 7.4% in 
seedlings exposed to 200 μg/mL PVC10 NP treatment (Figure 1B). These results suggest 
that both seed germination and root growth are inhibited by long-term exposure to NPs. 

  

Figure 1. Exposure to PVC NPs alters seed germination and plant growth. (A) Seed germination
rate after 72 h of exposure to PVC NPs. (B) Root elongation rate after 7 d of exposure to PVC NPs.
Black dots represent the number of replicates. Seedlings of Arabidopsis thaliana, ecotype Columbia-0
grown on plates were analyzed in (A,B). (C) Integrity assay of root cortex tissues exposed to different
concentrations of PVC NPs. Seedlings expressing GFP-LTi6a, which is an integral plasma membrane
protein, were stained by PI. (D) Plot of intensity values along the white line in (C). The green curve
represents the gray value of GFP fluorescence, and the red curve represents the gray value of PI
fluorescence. Differences calculation using t-test were considered significant at p < 0.05, as indicated
by *. “ns” means “no significant difference”. n ≥ 30 seedlings in A and B. Scale bars = 20 µm.

Root elongation was also significantly inhibited by exposure to PVC10 NPs. The
growth rate between 5 and 7 d after the start of germination was lower by 7.4% in seedlings
exposed to 200 µg/mL PVC10 NP treatment (Figure 1B). These results suggest that both
seed germination and root growth are inhibited by long-term exposure to NPs.

2.2. Analysis of Cellular Integrity after NP Treatment

To investigate the effect of PVC NPs on the membrane integrity of Arabidopsis root
cells, we performed a live-death assay applying propidium iodide (PI) on the roots of
seedlings. PI is a widely used red, fluorescent DNA binding dye. It cannot penetrate
the cell membrane of living cells, and therefore it is commonly used to detect cell mem-
brane damages [28,29]. Damage to the cell membrane can be assessed by examining the
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fluorescence of PI in the intracellular compartment by confocal microscopy (Figure 1C).
The PI fluorescent signals in the intracellular compartments of cells exposed to different
concentrations of NPs revealed that the degree of membrane damage increased with in-
creasing PVC treatment (Figure 1D). Notably, cells in plant cortex tissues showed greater
membrane damage with increasing NP concentration (Figure 1C). These data indicate that
NPs damage the integrity of the PM in a dose-dependent manner.

2.3. Structural and Conformational Properties of the Lipid Bilayer

To investigate the interaction between PVC10 (Figure 2A) NPs and the lipid bilayer in
more detail, we performed all-atom MD simulations. We generated model lipid bilayers
containing 256 lipid molecules using CHARMM-GUI. These simulated structures were
derived from an initial model bilayer comprising a mixture of 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC),
and sitosterol (SITO) (Figure 2B), at a molar ratio 38:34:28 [27] and with dimensions of
9 × 9 nm (Figure 2C,D). This membrane composition and distribution mimic a putative
plant PM. All MD simulations (100-ns simulations for each replicate system) were per-
formed with CHARMM36 all-atom force field to simulate an accurate membrane environ-
ment. At near room temperature (298 K), the root mean square deviation (RMSD) values
demonstrated that after 10 ns of MD simulation, the membrane structure reached a stable
balance, with the background values located at 3.5 nm (Figure 2E). Figure 2F shows a plot
of RMSD vs. 80 ns MD simulation for a bilayer membrane in the presence of PVC10 NPs.
Under these conditions, the membrane reached a stable state after at least 30 ns, with a
decreased value of 3.1 nm (Figure 2F). Thus, the presence of the PVC10 NPs increased the
equilibration time of the membrane.
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Figure 2. All-atom molecular models of PVC nanoparticles and the lipid membrane complex used
in the MD simulations. (A) Chemical structure and electrostatic potential of the PVC10 monomer.
The color scale bar is shown with the corresponding ESP values (a. u.) (B) Structures of the POPC,
DMPC, and SITO lipid molecules in the model membrane. POPC (1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine), DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), and SITO (sitosterol).
(C,D) Lateral view (C) and top view (D) of a typical configuration of PVC10 monomers and a mixed
lipid bilayer in a water box are shown in green, blue, and purple, respectively, and the PVC10
monomers are shown in orange. (E,F) Root mean square deviation (RMSD) plots for the simulation
system in the absence (E) and presence (F) of PVC10 NPs.
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2.4. NPs Insert into the Lipid Bilayer in Numerous Simulations

In the water system, the highly hydrophobic PVC chains rapidly formed compact
aggregates (Figure 3A) in only 1 ns, with a diameter of up to 10 nm (Figure 3B). We also
simulated PVC NPs in the presence of mixed model bilayers containing POPC, DMPC, and
SITO mimicking the plant cell membrane. The NPs were initially placed in the aqueous
phase of the system with an initial distance of 30 Å from the membrane surface. In all
cases, once the PVC chain approached a sufficient gap between lipid head groups, the
nanoparticles entered the carbonyl region of the bilayer on a time scale of a few nanosec-
onds (Figure 3C, 10 ns). Permeation into the hydrophobic core of the membrane (Figure 3C,
20–30 ns) was followed by embedding among the acyl chains of the surrounding phospho-
lipids on a time scale of 1−10 ns. Notably, we observed membrane insertion of the NPs for
several, but not all, of the trajectories (Figure 3C, 50 ns). PVC10 chains were confined to
the centers of the lipid bilayers, as shown by the density and distance profiles of PVC10
and lipids along the z dimension (Figure 3D). As expected, the dynamics and behavior of
PVC10 were physically different in the aqueous and lipid phases.
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Figure 3. The process of PVC10 NP insertion into the lipid bilayer. (A) Snapshots of PVC10 monomers
forming compact spheres in the water phase. (B) Distribution plot of NP cluster size in the water
phase as a function of cluster number. (C) Snapshots of 50 ns MD simulations for the random and
passive distribution of PVC10 NPs in the water phase above the bilayer. (D) Density profiles for the
simulated lipid bilayer system in the presence of PVC10 NPs.

2.5. PVC Chains Alter the Homeostasis of Model Membranes

To gain further molecular insight into the specific interactions and interaction energies
that drive the permeation between NPs and the membrane, we quantified the densities
and areas of the lipids in the model membranes, which were defined as the average P–P or
O–O (sitosterol) atomic distance in the lipid head groups (Figure 4A–D). We observed large
variations in the lipid area and thickness in model membranes containing NPs (Table 1).
For model membranes lacking NPs, the areas of POPC, DMPC, and SITO were 0.47, 0.46,
and 0.37 nm2, respectively. By contrast, in the presence of NPs, the lipid area expanded,
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with an average value of 0.58, 0.57, and 0.45 nm2 for POPC, DMPC, and SITO, respectively
(Table 1 and Figure 4E).
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Figure 4. NPs alter the homeostasis of model membranes and lipids. (A,B) Partial density landscape
for model membranes containing and not containing PVC10 NPs, respectively. (C) The average area
versus time for all steps of model membranes containing (+ PVC10) and not containing (−PVC10)
NPs. (D) The average thickness versus time for all steps of model membranes containing and not
containing NPs. (E) The average area of individual lipids versus time in the presence (+PVC10) and
absence (−PVC10) of NPs. (F) The average thickness of individual lipids versus time in the presence
and absence of NPs. * indicates a significant difference in p < 0.05.

Table 1. Effect of PVC10 NPs on membrane properties.

Membrane in the Presence of NPs

Upside Layer Downside Layer

Tested Lipids Avg. Area
(nm2)

Avg. Thickness
(nm)

Sum. Area
(nm2)

Avg. Area
(nm2)

Avg. Thickness
(nm)

Sum. Area
(nm2)

POPC 0.58 3.87 21.49 0.56 3.83 21.08
DMPC 0.57 3.78 19.18 0.59 3.81 19.92
SITO 0.45 3.53 11.98 0.44 3.52 12.71

PVC10 0.16 1.84 7.87 0.42 3.88 9.58

Membrane Not Containing NPs

POPC 0.47 3.77 17.37 0.45 3.84 16.72
DMPC 0. 46 3.75 15.27 0.49 3.95 16.39
SITO 0.37 3.45 10.69 0.36 3.51 10.49

The presence of NPs in the lipid biolayer increased the area per molecule of individual
lipids in the solid phase (Figure 4C,E), confirming that NPs interact with membrane lipids.
Moreover, the lipid layers in membranes containing NPs were more densely packed and had
a larger thickness than those in NP-free membranes (Figure 4D,F). In contrast, membranes
without NPs tended to show looser packing and lower lipid bilayer thickness (Figure 4D,F).
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2.6. NPs Affect the Lateral Organization of Multicomponent Membranes

Whether the presence of NPs alters the homeostatic dynamics of lipids within bilayers
is potentially crucial to their effects on cells. Therefore, we examined the effects of PVC
chains on the properties of realistic models of biological membranes comprising different
lipid species. We examined three metrics related to membrane structure: lipid density,
membrane thickness, and lipid order. Compared to the neat lipid bilayers observed in
the absence of NPs, we observed a change in the overall dynamic characteristics of the
membrane when NPs were present. In our simulations, performed at room temperature,
the multicomponent lipids formed liquid-ordered (Lo) and liquid-disordered (Ld) domains
with well-defined compositions (Figure 5A). By contrast, in systems with NPs (Figure 5B),
the membrane average order parameters were significantly lower (0.213) than the value in
systems without NPs (0.291, statistical error < 0.05).
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Figure 5. NPs alter the equilibrium properties of lipid bilayers. (A,B) Membrane order landscape for
model membranes containing and not containing PVC10 NPs, respectively. (C,D) Voronoi analysis of
x–y projections of the center of mass of the lipids used to obtain area per lipid values in membranes
containing and not containing PVC10 NPs. (E,F) Voronoi analysis of x–y projections of the center
of mass of the lipids were used to obtain the thickness per lipids in membranes containing and
not containing PVC10 NPs. The colormaps were scaled differently in these images to illustrate the
different values.

Area per lipid is an average value that does not provide information about the distri-
bution of lipid molecules. To examine possible changes in lipid distribution, we performed
a Voronoi analysis on the x-y plane to obtain the probability distributions for area and
thickness per lipid. The areas of Voronoi cells describe the area and thickness distribution of
the lipids’ centers of mass. In the ordered state in the absence of NPs, many lipids occupied
a small area per lipid (Figure 5C–D, shown in blue). Notably, the highly disordered nature
of membranes containing NPs led to increasing membrane thickness (Figure 5E–F, shown
in red).
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2.7. The Interaction Energy between PVC10 and the Lipid Bilayer

To quantify the mechanical properties and interactions between the NPs and lipid
bilayers, we calculated the interaction energy between these components (Figure 6A). We
performed a per-atom decomposition of the binding free energy to identify the residues
with the greatest contributions to self-association free energy. The binding energy is
decomposed into individual components, including molecular mechanics (MM), polar
solvation energy (polar), and nonpolar solvation energy (apolar). The average values
of total binding energy for PVC10 and lipid membrane is −4.8 kJ/mol, which indicates
that PVC10 has easy binding interaction and insertion to the lipid membrane (Figure 6A).
The binding free energy curves for PVC10 molecules crossing the lipid bilayer indicate
that the value of binding free energy reached a minimum when molecules were at the
center of the lipid bilayer (Figure 6B, green line). During permeation from the water phase
to the head of the lipid layer, an apparent barrier (115 kJ/mol) should be overcome at
7000 ps to 8000 ps (Figure 6B). Based on the free energy profile, the PVC10 and lipid bilayer
interaction appears to be more favorable for the permeation of NPs, with a negative value
of −523 kJ/mol. At the end of the 50-ns MD simulation, 7 of the 10 PA molecules were
stably and fully inserted into the middle of the lipid bilayer. These results indicated that
PVC10 NPs spontaneously translocated from the aqueous phase to the center of the bilayer.
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Figure 6. Decomposition and distribution of the binding free energy of PVC10 permeation in the
lipid bilayer. (A) Decomposition of the binding free energy of PVC10-membrane complexes using
g_mmpbsa. Sample sizes are shown as individual dots within each box (MM, molecular mechanics
energy, Polar, polar solvation energy; apolar, nonpolar solvation energy; Total, total binding energy).
(B) Distribution of the binding free energy of the PVC10-membrane system versus time.

2.8. NPs Induce Pore Formation in the Lipid Bilayer

As NP treatment leads to membrane leakage in Arabidopsis root cells, we analyzed the
membrane–water interface of the lipid bilayer. At 10 ns after the start of an MD simulation,
there was no apparent change in the surface of the membrane in the presence of NPs in the
aqueous phase (Figure 7A,B). After 30 ns, NPs had contacted and entered the membrane,
leading to disordered sorting and the formation of pores on the surface of the model bilayer
(Figure 7C). Subsequently, the PVC10 molecules tended to disperse, occupying more space
inside the membrane, which led to the expansion of membrane pores (Figure 7D). In
addition, following pore formation, a few free water molecules outside the lipid bilayer
entered the interior of this structure. At the same time, pore formation might also lead
to the leakage and outflow of substances from the cell, as revealed in membrane leakage
experiments performed by PI staining (Figure 1C).
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3. Discussion

Plastics are versatile materials with a wide range of properties, chemical compositions,
and applications that have become essential to many aspects of human life during the
past half century. Although MPs and NPs are constantly being released, and persist in the
ecosystem, only very recently were these contaminants identified. Since then, an increasing
number of studies have demonstrated the adverse effects of these particles on plant and
animal communities. MPs were found to successfully enter Chlamydomonas reinhardtii cells
and become embedded in cell membranes, whereas larger PS MPs could not enter the
interiors of these cells [9]. Notably, NPs < 100 nm in diameter were found to penetrate
cell membranes more easily than larger particles, becoming distributed throughout the
organism [30–32]. In the present study, we determined that NPs had mixed effects on
Arabidopsis seed germination and root elongation: the highest doses of NPs reduced seed
germination, whereas the lower doses caused increased root elongation. Treatment with
100-nm PS nanoparticles also increased root elongation in wheat (Triticum aestivum) [33].
These data suggest that plants have a complex, dose-dependent response to NPs, with
different sizes and concentrations having different effects.

MPs and NPs enter the cell by passing through biological barriers, thereby affecting
the structure and function of the cell. Cell membranes act as the first barriers to the
entrance of plastic particles into cells and have important biological effects, which are
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inevitably influenced by MPs during this process. Cell membranes are among the most
important barriers in cells, as they selectively control the entry and exit of substances via
diffusion, infiltration, and active transport to maintain normal cellular metabolism. In
general, polar or charged molecules that cannot pass through the hydrophobic PM are
internalized through a form of active transport known as endocytosis. Endocytosis of
NPs has been widely observed in animals, perhaps representing a route for the cellular
uptake of NPs [34]. The interaction between NPs and the PM might also be related to the
accumulation of these particles in intracellular compartments in the root epidermis due to
the small size these particles [17,23]. Regardless of the method employed, there are always
limits on the detection precision of NPs and of their dynamic interactions with PM, mainly
due to the particles’ extraordinarily small size.

How NPs enter a cell is a key factor determining the molecular changes that they trig-
ger and their toxicity to the cell. The interactions between NPs and biological membranes
are difficult to experimentally study in living systems at the molecular level, primarily due
to the limited resolution of conventional optical techniques (~200 nm). MD simulation,
which can quantify the relevant properties of particles and provide detailed atomic infor-
mation, is a powerful tool for exploring the interactions and effects of NPs on the PM [8,27].
Several well-known MD simulation packages can be used to perform dynamics simulations
in a single or multiple graphical processing units (GPUs) with performance that exceeds
that of even the most powerful conventional central processing unit (CPU)-based super-
computers [26,35,36]. The rapid advances in supercomputing techniques and algorithms
make it possible to capture large molecular systems at long temporal and spatial scales
approaching true experimental conditions [37,38].

Here, through all-atom MD simulations of lipid bilayers combined with PCV10 NPs,
we detected a decrease in the lipid order and increase in membrane thickness of a model
membrane comprising three lipid components, which is consistent with previous results
obtained using a dipalmitoyl phosphatidylcholine bilayer [8]. NPs can also noticeably
increase the area per lipid compared to those of membrane systems without NPs. Finally,
the permeation of NPs into membranes appears to be a spontaneous process driven by the
minimization of the binding free energy of NP binding with lipids. Therefore, we conclude
that exposure of the nonpolar hydrophobic core of NPs to the polar water phase drives the
automatic insertion of NPs into the PM.

4. Materials and Methods
4.1. Plant Materials

Arabidopsis thaliana ecotype Col-0 and GFP-Lti6a [39] seeds were surface sterilized in
70% ethanol for 2 min and 5% (w/v) NaClO for 15 min. After being washed three times
with sterile distilled water, the seeds were vertically grown on half-strength Murashige
and Skoog (1/2 MS) medium solidified with 1% agar, pH 5.8, at 22 ◦C under a 16-h/8-h
light/dark cycle.

4.2. Plant Cell Labeling and Treatment with PVC NPs

The PVC NPs were purchase from Shanghai Fengtai Plastic & Chemical Co., Ltd.
Seedlings were treated by adding PVC nanoparticles to solid 1/2 MS medium (The culture
medium was configured with 1/2 MS 1.1 g/500 mL, agar 4 g/500 mL, sucrose 5 g/500 mL),
nanoplastics at a final concentration of 50, 100, or 200 µg/mL. To calculate the relative
elongation ratio of roots, the difference in the root length from 5 to 7 d old were divided
by the length of the lengths of 5 d old. For PI staining, 5 d old Arabidopsis seedlings
were incubated in 1/2 liquid MS medium containing 5 mg/L propidium iodide (PI, Sigma-
Aldrich, St. Louis, MO, USA) for 10 min and visualized under a confocal microscope. A
total of 20 seedlings were analyzed in analysis of difference significance.
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4.3. Confocal Microscopy Detection

The PI-stained roots were observed under a laser-scanning confocal microscope (Leica
SP8, Germany) equipped with a filter (excitation filter, 450–490 nm; barrier filter, 520 nm).
Data were collected from five plants per treatment, and each treatment was replicated
three times. Images were processed using ImageJ software (National Institutes of Health,
Bethesda, MD, USA, Version 1.53r). Available from https://imagej.nih.gov/ij/, accessed
on 8 September 2022. 10 September 2022.

4.4. Atomistic Molecular Dynamics Simulation

Simulated mixed lipid bilayers were generated using the CHARMM-GUI Membrane
Builder [40]. The main simulation system for each model contained 256 lipids evenly
distributed in two leaflets with neutralizing ions and was fully hydrated using TIP3P
water. All atomistic molecular dynamics simulations were performed using GROMACS
2019.3 [41], with CHARMM36 (CGenFF) force field parameters [42]. The simulations were
performed at a temperature of 298 K using a Berendsen thermostat with τp = 0.1 ps. Periodic
boundary conditions and the particle-mesh Ewald algorithm [43] were used to account for
long-range electrostatic effects. Bond lengths were constrained using the LINCS method.
Coordinates were saved every 2 ps for subsequent analysis. Energy minimization was
performed, followed by equilibration (position restraint for 50 ps) using NPT ensembles
with a semi-isotropic coupling constant τP = 1.0 ps and compressibility = 4.5 × 10−5 bar−1.
All MD simulations were conducted using five independent sets for systems in the presence
and absence of PVC10 NPs.

4.5. Molecular Dynamics Simulation Analysis

Mass density: Membrane thickness, and lipid ordering plots were calculated using
analysis software packages developed by the Luca group in IBCP (CNRS), France. All
landscapes were calculated using g_thickness, g_ordercg, and g_mydensity software [44],
which is freely available at http://perso.ibcp.fr/luca.monticelli, accessed on 8 September
2022. The lipid order parameter, defined as p = 1/2 < 3 cos2θ − 1 >, where θ is the angle
between the bond vector and the membrane normal, was calculated for all bonds in the lipid
acyl chains and then averaged within each voxel over the ensemble of bonds and over time.
The binding free energy was calculated using the molecular mechanics Poisson Boltzmann
surface area (MM-PBSA) method [45] with the g_mmpbsa code. Voronoi diagrams of the
individual area per lipid and lipid thickness values in the mixed bilayers were obtained
using the APL@Voro program [46]. The MD trajectories were visualized, and all snapshots
in this article were created using VMD software [47].

5. Conclusions

Taken together, our findings indicate that PVC NPs damage plants and the plasma
membranes of cells. The resulting structural and dynamic changes in the bilayer alter
vital functions of the cell membrane, potentially resulting in cell death. In addition, our
MD simulations of the interactions between PVC NPs and a model membrane indicated
that the PVC chain could easily enter the lipid bilayer. The permeation of NPs altered
several key physical properties of the model membrane, resulting in changes in lipid area,
lipid density, lipid order, and membrane thickness. In addition, the presence of NPs in the
lipid bilayer tended to induce the formation of membrane pores, which might represent
the key factor causing membrane leakage and damage. Further characterization of the
behavior of NPs in the PM will require techniques with higher spatial resolution, such as
single-particle tracking [48,49] and super-resolution microscopy (PALM and STED) [50,51].
Nonetheless, our in-depth studies of the interactions between NPs and the cell membrane
shed light on the physical basis of the membrane damage caused by NPs and should
facilitate experimental studies in this field.

https://imagej.nih.gov/ij/
http://perso.ibcp.fr/luca.monticelli
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