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Abstract

Using an unbiased high‐throughput microRNA (miRNA)‐silencing screen combined

with functional readouts for mitochondrial oxidative capacity in C2C12 myocytes,

we previously identified 19 miRNAs as putative regulators of skeletal muscle mi-

tochondrial metabolism. In the current study, we highlight miRNA‐204‐5p, identified
from this screen, and further studied its role in the regulation of skeletal muscle

mitochondrial function. Following silencing of miRNA‐204‐5p in C2C12 myotubes,

gene and protein expression were assessed using quantitative polymerase chain

reaction, microarray analysis, and western blot analysis, while morphological

changes were studied by confocal microscopy. In addition, miRNA‐204‐5p expression

was quantified in human skeletal muscle biopsies and associated with in vivo mi-

tochondrial oxidative capacity. Transcript levels of PGC‐1α (3.71‐fold; p < .01),

predicted as an miR‐204‐5p target, as well as mitochondrial DNA copy number

(p < .05) and citrate synthase activity (p = .06) were increased upon miRNA‐204‐5p
silencing in C2C12 myotubes. Silencing of miRNA‐204‐5p further resulted in mor-

phological changes, induced gene expression of autophagy marker light chain 3

protein b (LC3B; q = .05), and reduced expression of the mitophagy marker

FUNDC1 (q = .01). Confocal imaging revealed colocalization between the autopha-

gosome marker LC3B and the mitochondrial marker OxPhos upon miRNA‐204‐5p
silencing. Finally, miRNA‐204‐5p was differentially expressed in human subjects

displaying large variation in oxidative capacity and its expression levels associated

with in vivo measures of skeletal muscle mitochondrial function. In summary,

silencing of miRNA‐204‐5p in C2C12 myotubes stimulated mitochondrial biogenesis,

impacted on cellular morphology, and altered expression of markers related to

autophagy and mitophagy. The association between miRNA‐204‐5p and in vivo
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mitochondrial function in human skeletal muscle further identifies miRNA‐204‐5p as

an interesting modulator of skeletal muscle mitochondrial metabolism.
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1 | INTRODUCTION

Mitochondria play critical roles in the regulation of important bio-

logical processes such as energy production (Kasahara & Scorrano,

2014), reactive oxygen species generation (Di Meo, Iossa, & Venditti,

2017), cell growth (Di Meo et al., 2017), and insulin response

(Di Meo et al., 2017). Consequently, the mitochondrial dysfunction

is associated with several disorders, such as cardiovascular disease

(el Azzouzi et al., 2013), cancer (Chourasia, Boland, & Macleod,

2015), neurodegenerative disorders (Pickrell & Youle, 2015), and

metabolic abnormalities such as Type 2 diabetes (Bollinger, Powell,

Houmard, Witczak, & Brault, 2015; Munasinghe et al., 2016). Even in

the absence of disease, maintaining a healthy functioning pool of

mitochondria is essential for cellular/tissue/organismal homeostasis

(Price et al., 2012; Russell, Foletta, Snow, & Wadley, 2014). Sustained

physical activity is considered as one of the most potent interven-

tions to maintain a healthy mitochondrial function and is associated

with several cardiovascular and metabolic health effects. Interest-

ingly, physical activity stimulates mitochondrial function by promot-

ing mitochondrial biogenesis (Montero & Lundby, 2017), but also

by actively inducing the degradation of damaged dysfunctional

mitochondria through mitophagy, the selective degradation of

mitochondria by the autophagic machinery, a process recognized as

essential to maintain mitochondrial function (Lira et al., 2013).

However, the exact molecular mechanisms linking physical exercise

and mitochondrial adaptations in skeletal muscle are incompletely

understood.

In this context, increasing amounts of evidence indicate that

microRNAs (miRNAs) can modulate different aspects of the regula-

tion of mitochondrial function (M. Cheng et al., 2016; Mohamed,

Hajira, Pardo, & Boriek, 2014). MiRNAs are short oligonucleotides of

18–20 nucleotides in length that posttranscriptionally regulate many

biological processes by binding protein‐coding transcripts (Bartel,

2004), adding a new player on an already complex network of gene

regulation. It has been demonstrated that most of the transcriptome

is in fact regulated by miRNAs, including both nuclear‐ and

mitochondria‐encoded messenger RNAs (mRNAs) coding for mi-

tochondrial proteins (Duarte, Palmeira, & Rolo, 2014). Moreover,

miRNAs have been shown to regulate proteins involved in mitochon-

drial maintenance, such as mitochondrial biogenesis (Mohamed

et al., 2014), protein quality control mechanisms (Dahlmans, Houzelle,

Schrauwen, & Hoeks, 2016), mitochondrial dynamics (Dahlmans

et al., 2016), and autophagy (M. Cheng et al., 2016).

Previously, we conducted unbiased hypothesis‐free miRNA‐
silencing screens in C2C12 muscle cells and identified 19 miRNAs as

regulators of skeletal muscle mitochondrial function (Dahlmans

et al., 2017). In a subsequent experiment, we individually silenced these

19 candidate miRNAs in differentiated C2C12 myotubes and quantified

the transcripts of 27 genes involved in different aspects of mitochon-

drial function (Dahlmans et al., 2019). This series of experiments iden-

tified several interesting candidate miRNAs, but here we focus on

miRNA‐204‐5p since silencing of this miRNA clearly increased the ex-

pression of the mRNA encoding the peroxisome proliferator‐activated
receptor‐gamma coactivator‐1α (PGC‐1α) in C2C12 myotubes, both

24 and 48 hr posttransfection. PGC‐1α is a major regulator for mi-

tochondrial biogenesis and oxidative metabolism, plays an important

role in exercise adaptation in muscle, and has been reported to be

downregulated in skeletal muscle of insulin‐resistant and Type 2

diabetic subjects (Patti et al., 2003), whereas its overexpression in mice

resulted in an endurance‐trained phenotype (Lin et al., 2002).

On the basis of these earlier data, the aim of the present study is

to test the hypothesis that miRNA‐204‐5p is involved in the reg-

ulation of skeletal muscle mitochondrial biogenesis and to study its

role in skeletal muscle mitochondrial metabolism in more detail.

2 | MATERIALS AND METHODS

2.1 | Cell culture, reagents, and antibodies

Mouse skeletal muscle C2C12 myoblasts were cultivated in growth

medium consisting of high‐glucose Dulbecco's modified Eagle's

medium (DMEM; Gibco, Carlsbad, CA) supplemented with 10% fetal

bovine serum (Batch Number 1693362), 1% non‐essential amino

acids (Gibco), and 20mM N‐2‐hydroxyethylpiperazine‐N‐2‐ethane
sulfonic acid (HEPES; Gibco). Upon reaching 80–90% confluence,

cells were seeded in 12‐well CellBIND plates (Coring Life Science,

Lowell, CA) or staining slide flasks (Nunc Lab‐Tek Flask on Slide;

Thermo Fisher Scientific, Waltham, MA) at a density of 100,000 cells/

well or 240,000 cells/slide flasks, respectively. Following seeding,

cells were allowed to grow for 24 hr in growth medium. Then, C2C12

myoblasts were differentiated into myotubes for 5 days in high‐
glucose DMEM supplemented with 2% horse serum (Gibco), 1% non‐
essential amino acids (Gibco), and 20mM HEPES (Gibco).

2.2 | In silico analysis

TargetScanMouse, miRanda, and microT‐CDS algorithms were used to

predict the targets of miRNA‐204‐5p. Predicted targets were only
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considered when they were predicted by at least two of the databases.

In addition, all predictions present at least a 7mer site‐matching,

meaning that the entire seed sequence of miRNA‐204‐5p matches the

3′‐ untranslated region (3′‐UTR) sequence of the gene of interest.

2.3 | C2C12 transfection

At Day 5 of differentiation, C2C12 myotubes were transfected with

either a specific miRCURY LNA™ miRNA inhibitor targeting miRNA‐
204‐5p (Exiqon A/S, Vedbæk, Denmark), or a specific locked nucleic

acid (LNA) inhibitor, was used as a negative control. This control LNA

(sequence: TAACACGTCTATACGCCCA) does not target any known

mature miRNA.

Transfection was performed using lipofectamine RNAiMAX

(Invitrogen, Carlsbad), according to the manufacturer's instructions.

Shortly, lipofectamine complexes were stabilized in OptiMEM (Gibco)

for 5min and incubated with the LNAs, diluted to 500 nM in Opti-

MEM, for 20min. Finally, the lipofectamine/LNA complexes were

diluted 1:5 in differentiation media (Dahlmans et al., 2017).

2.4 | RNA preparation and gene expression analysis
in C2C12 cells

Cells were washed with 1ml cold 1X phosphate‐buffered saline (PBS)

and harvested in 700 µl TRIzol reagent (Invitrogen) and kept at

−80oC for subsequent analyses. RNeasy Mini Kits (Qiagen, Venlo,

The Netherlands) were used to extract RNA. RNA quantity and

quality were measured using a nanodrop microvolume spectro-

photometer (ND‐1000; NanoDrop Technologies, Wilmington, DE)

and complementary DNA (cDNA) was synthesized using the High‐
Capacity RNA‐to‐cDNA Kit (Applied Biosystems) according to man-

ufacturer's guidelines. Quantitative polymerase chain reaction

(qPCR) was performed using the SensiMix SYBR Hi‐ROX Kit (Bioline,

London, UK) and specific primer sets (Sigma‐Aldrich, St. Louis, MI) to

quantify the abundance of mRNAs of interest. The qPCR analyses

were performed on the CFX384 Touch™ Real‐Time PCR Detection

System (Bio‐Rad, Hercules, CA).

2.5 | Mitochondrial DNA copy number
quantification

For the determination of mitochondrial DNA (mtDNA) copy number,

DNA was isolated at 24, 36, and 48 hr posttransfection using the

DNeasy Blood & Tissue Kit (Qiagen). DNA was quantified and the

integrity was checked by spectrophotometry using the Nanodrop.

Relative amounts of nuclear and mtDNA were quantified by qPCR, in

which nuclear DNA was represented by the UCP2 gene and mtDNA

by the COX2 gene. qPCR was performed on the ABI Prism 7900HT

Real‐Time PCR System (Applied Biosystems, Foster City, CA).

MtDNA copy number was calculated using the ΔCt method.

2.6 | Luciferase reporter assay

C2C12 cells were cultured in DMEM (4.5 g/L D‐glucose) supple-

mented with 10% fetal bovine serum, 2% HEPES, and 1% minimum

essential medium non‐essential amino acids solution and seeded in

24‐well plates at a density of 50,000 cells/well. The next day, cells

were transfected with hsa‐miRNA‐204‐5p or Neg control #1

(Ambion; Life Technologies, Waltham) precursor molecules and

cotransfected with the LightSwitch_PPARGC1A_3′UTR vector

(Active Motif, Carlsbad) using Lipofectamine 2000 (Invitrogen,

Waltham). After 24 hr, the luciferase activity was determined

using the LightSwitch Luciferase Assay Reagent (SwitchGear

Genomics, Carlsbad) according to the manufacturer's instructions

using a GLOMAX Microplate Luminometer (Promega Corporation,

Madison, WI).

2.7 | Microarray analysis

Purified RNA was labeled with the Ambion WT Expression Kit

(Carlsbad) and hybridized to an Affymetrix Mouse Gene 1.1 ST

array plate (Affymetrix, Santa Clara, CA). Hybridization, washing,

and scanning were carried out on an Affymetrix GeneTitan plat-

form according to the manufacturer's instructions. Normalized

expression estimates were obtained from the raw intensity values

applying the robust multiarray analysis preprocessing algorithm

available in the Bioconductor library affyPLM with default settings

(Bolstad, Irizarry, Astrand, & Speed, 2003; Irizarry et al., 2003).

Probe sets were defined according to Dai et al. (2005). In this

method, probes are assigned to Entrez IDs as a unique gene

identifier. In this study, probes were reorganized based on the

Entrez Gene database, build 37, Version 1 (remapped CDF v22).

q values were calculated using an intensity‐based moderated

T‐statistic (Sartor et al., 2006). Genes were defined as significantly

changed when q < .05.

2.8 | Protein extraction and western blot analysis in
C2C12 muscle cells

Cells were washed with 1ml cold 1X PBS and scraped in 150 µl Bio‐
Plex cell lysis buffer (Bio‐Rad), and processed according to the

manufacturer's instruction. Protein loading for each sample was first

determined using InstantBlue Coomassie (Expedeon, San Diego, CA).

Equal amounts of protein were loaded in precast sodium dodecyl

sulfate‐polyacrylamide gel electrophoresis (Mini TGX AnyKD or

Criterion TGX AnykD; Bio‐Rad). Next, LC3B‐I and LC3B‐II were de-

tected using an antibody directed against LC3B, diluted 1:1000

(L7543; Sigma‐Aldrich). Furthermore, an antibody directed against

β‐actin was diluted 1:25,000 (A5316; Sigma‐Aldrich), and was used

as a loading control. Finally, membranes were quantified at the

appropriate wavelengths using an Odyssey CLx Imaging System

(Li‐COR, Lincoln, NE).
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2.9 | Live cell imaging in C2C12 cells

C2C12 myoblasts were seeded in 12‐well CellBIND plates (Corning)

at 100,000 cells/well and allowed to settle overnight in the growth

medium. Then, the medium was replaced to differentiation medium

and cells were transfected as previously described. Continuous cell

monitoring was performed for 10 days using the IncuCyte ZOOM

(Essen Bioscience, Ltd., Hertfordshire, UK). The differentiation med-

ium was replaced every 48 hr to maintain the cells for the duration of

the experiments.

2.10 | Immunocytochemistry in C2C12 cells

C2C12 myoblasts were seeded in slide flasks (Nunc Lab‐Tek Flask on

Slide; Thermo Fisher Scientific) at 240,000 cells/flask and differ-

entiated for 5 days. Then, myotubes were transfected and fixated

48 hr posttransfection. To fix the cells, myotubes were washed three

times in PBS and incubated for 1 hr in 3.7% formaldehyde at room

temperature. Finally, fixed myotubes were washed three times in PBS

and stored in PBS at 4°C until immunocytochemistry was performed.

Before staining, slides were rinsed for 5min in PBS and directly in-

cubated with primary antibodies diluted in 0.05% Tween‐20 in PBS.

Mitochondria were stained by an anti‐OxPhos antibody cocktail

(MS604; MitoSciences, Eugene, OR), targeting structural subunits of

all OxPhos complexes. Autophagosomes were visualized by using an

anti‐LC3B antibody (L7543; Sigma‐Aldrich). Image acquisition was

performed using a Nikon Eclipse E800 fluorescent microscope

equipped with ×40 oil immersion objective (Nikon Instruments,

Amsterdam, The Netherlands) or a Leica TCS SP8 confocal micro-

scope equipped with a ×63 1.40NA oil immersion objective (Leica,

Amsterdam). The confocal images were processed using deconvolu-

tion software (Huygens Professional; Scientific Volume Imaging B.V.,

Hilversum, The Netherlands).

2.11 | Subject selection and human muscle biopsies
collection

The subjects included in this study participated in previous studies

(Phielix, Meex, Moonen‐Kornips, Hesselink, & Schrauwen, 2010;

Phielix et al., 2012; Vosselman et al., 2015; van de Weijer et al., 2015)

that were approved by the institutional medical ethics committee,

registered at ClinicalTrials.gov (NCT00943059 and NCT01298375)

and in the Dutch trial register (NL1888) and for which all participants

provided their written informed consent in accordance with the de-

claration of Helsinki. From these studies, we selected four groups of

male, weight‐stable individuals for the analysis of miRNA‐204‐5p
expression in skeletal muscle and its relation to parameters for

in vivo oxidative capacity. These four groups included: (a) Type 2

diabetic patients (n = 12); (b) overweight/obese nondiabetic subjects

(n = 12); (c) young lean individuals (n = 12), and (d) young endurance‐
trained athletes (n = 12). The primary selection was based on the

availability of muscle material and the presence of reliable data for in

vivo oxidative capacity (maximal aerobic capacity [VO2 max] and

phosphocreatine [PCr] recovery rate). Second, subjects were also

selected with the intention to create age‐ and body mass index‐
matched groups (i.e., Group 1 vs. Group 2 and Group 3 vs. Group 4).

All Type 2 diabetes patients were on metformin treatment and

the use of statins was permitted. Obese nondiabetic individuals were

considered healthy, that is, they did not use medication, did not

present any pathology (hypertension, cardiovascular disorders, and

liver dysfunction), and did not have any first‐degree relatives with

Type 2 diabetes.

Lean sedentary (LS) subjects were included if their VO2 max was

below 45ml−1·min−1·kg and did not participate in more than 1 hr of

organized exercise per week for the previous 2 years. Endurance‐
trained athletes were enrolled in the study if their VO2 max was

higher than 55ml−1·min−1·kg and if they participated in endurance

training at least three times per week for the last 2 years.

All biopsies were collected after an overnight (≥10 hr) fast and

before any intervention. Subjects were instructed to avoid (stren-

uous) physical exercise in the 3‐day period preceding the muscle

biopsy.

2.12 | Subject characterization

All subjects included in this study were thoroughly phenotyped in

term of body composition and aerobic capacity. Body composition

was determined either via dual X‐ray absorptiometry (Discovery A;

Hologic, Bedford, MA) or hydrostatic weighing (Siri, 1993). Maximal

aerobic capacity was determined through an incremental cycling test

until exhaustion, as described previously (Kuipers, Verstappen,

Keizer, Geurten, & van Kranenburg, 1985). In vivo mitochondrial func-

tion was assessed via quantification of PCr resynthesis rates using a

31P magnetic resonance spectrometry approach on a 3 T whole‐body
scanner (Achieve 3T‐X; Philips Healthcare, The Netherlands), as

previously described (Lindeboom et al., 2014).

2.13 | MiRNA quantitative PCR in muscle biopsies

A 10–15mg piece of frozen muscle tissue was homogenized in 700 µl

of TRIzol with an Ultra‐Turrax (IKA, Staufen, Germany) for 1min at

17,000 rpm. RNA isolation was then performed using a miRNeasy

Mini Kit (Qiagen) according to the manufacturer's instructions. The

yield was improved by reloading the final eluate onto the column

membrane twice. RNA concentrations were measured using a mi-

crovolume spectrophotometer (Nanodrop), whereas RNA quality was

determined using a Bioanalyzer System (Agilent Technologies, Santa

Clara, CA). Then, cDNA synthesis was performed using the Universal

cDNA Synthesis Kit II (Exiqon) according to the manufacturer's

protocol. Finally, cDNA samples were analyzed using predesigned

384‐well Pick‐&‐Mix microRNA PCR Panel plates (Exiqon), according

to the manufacturer's guidelines using a CFX384 Touch Real‐time
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PCR Detection System (Bio‐Rad). Relative miRNA expression levels

were determined using the ΔΔCt method. Synthetic UniSP6 spike‐in
control was used to monitor the cDNA synthesis reaction, that is, as a

positive control of the reverse transcription. Furthermore, an inter-

polate calibrator was added to all qPCR plates to uniformly normalize

Ct values across all the experiments.

2.14 | Statistics analysis

All results are expressed as means ± standard deviation. Each set of

in vitro data presented in this study is the result of three in-

dependently executed experiments, each of which includes three

technical replicates (unless indicated otherwise in the figure legend).

Comparisons between in vitro conditions were performed by un-

paired two‐tailed Student's t test. Comparisons over time were

performed by two‐way analysis of variance (ANOVA). p < .05 was

considered statistically significant.

Differences between the various human subject groups

were assessed via one‐way ANOVA with Tukey's multiple com-

parisons test. Pearson correlation analysis was used to correlate

miRNA‐204‐5p expression in skeletal muscle to in vivo para-

meters of oxidative capacity.

3 | RESULTS

3.1 | miRNA‐204‐5p silencing in C2C12 myotubes
increases PGC‐1α gene expression

We previously silenced 19 individual candidate miRNAs, identified in

a large miRNA‐silencing screen (Dahlmans et al., 2017), and subse-

quently measured 27 genes involved in mitochondrial function

(Dahlmans et al., 2019). Interestingly, the silencing of miRNA‐204‐5p
showed a pronounced induction of the expression of PGC‐1α, a well‐
known regulator of mitochondrial biogenesis, both when silenced for

24 (2.43‐fold; p < .05) and 48 hr (3.71‐fold; p < .01; Figure 1). Sub-

sequent in silico analysis by TargetScan and miRanda revealed a

specific sequence in the 3′‐UTR of PGC‐1α as a predicted target to

the seed region of miRNA‐204‐5p (Figure 1a). In addition, both

miRNA‐204‐5p and the binding site in the 3′‐UTR of PGC‐1α were

conserved over many different invertebrates as well as vertebrate

species including humans, but not worm (Figure 1a). Moreover,

activity assays using a luciferase reporter construct harboring the

PGC‐1α 3′‐UTR revealed that increasing concentrations of pre‐
miRNA‐204‐5p significantly and dose‐dependently reduced the

luciferase reporter signal, indicating a functional interaction between

miRNA‐204‐5p and the 3′‐UTR of PGC‐1α (Figure 1b).

F IGURE 1 miRNA‐204‐5p silencing induces mitochondrial biogenesis through PGC‐1α induction. (a) Representation of the binding between
the 3′‐UTR of PGC‐1α mRNA and miRNA‐204‐5p in different species. (b) Activity assay of a luciferase reporter constructs harboring the
PGC‐1α 3′‐UTR after transfection with a synthetic precursor for miRNA‐204‐5p. Data shown are the result of three independently executed

duplicate experiments. (c) Relative PGC‐1α gene expression upon miRNA‐204‐5p silencing compared to Negative Control A (NegA), 24 and
48 hr posttransfection in C2C12 myotubes. (d) Citrate synthase activity following 24 and 48 hr transfection of anti‐miRNA‐204‐5p versus NegA
in C2C12 myotubes. (d) Mitochondrial DNA copy number and nuclear DNA upon miRNA‐204‐5p silencing versus NegA. *p < .05 and **p < .01

(n = 3). 3′‐UTR, 3′‐untranslated region; miRNA, microRNA; mRNA, messenger RNA; PGC‐1α, peroxisome proliferator‐activated receptor‐gamma
coactivator‐1α
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To address the consequences of the increase in PGC‐1α ex-

pression (Figure 1c), we next assessed citrate synthase activity as

well as mtDNA copy number as markers for mitochondrial density. In

line with the elevated PGC‐1α expression, citrate synthase activity

(Figure 1d) showed a strong tendency to be increased after 24 hr

miRNA‐204‐5p silencing (25% increase; p = .06), whereas the differ-

ence did not reach statistical significance at 48 hr. MtDNA copy

number was significantly increased (46% increase; p < .05) 36 hr

posttransfection, but not after 24 or 48 hr miRNA‐204‐5p silencing

(Figure 1e). Together, these results indicate a (transient) increase in

mitochondrial content upon miRNA‐204‐5p silencing, which promp-

ted us to further analyze the role of miRNA‐204‐5p in regulating

mitochondrial metabolism.

3.2 | miRNA‐204‐5p silencing induces
morphological aberrations in C2C12 myotubes

To investigate if the silencing of miRNA‐204‐5p also resulted in

morphological changes that could reveal enhanced mitochondrial

density, we next studied the effect of miRNA‐204‐5p silencing on

C2C12 myotube development and continuously monitored the

transfected C2C12 myotubes for 72 hr after transfection. Interest-

ingly, myotubes transfected with anti‐miRNA‐204‐5p displayed

morphological changes that were most apparent 48 hr post-

transfection. Thus, whereas nontransfected and Negative Control A

transfected C2C12 myotubes displayed a normal morphology and

similar appearance as control cells (Figure 2a–e) 48 hr post-

transfection, (i.e., at Day 7 of differentiation) myotubes transfected

with anti‐miRNA‐204‐5p showed large round anomalous structures

within the myotubes (Figure 2f–j).

Strikingly, when undifferentiated C2C12 muscle cells were

transfected with anti‐miRNA‐204‐5p and subsequently underwent

differentiation, the aberrant structures did not appear before Day 5

of differentiation (Figure 3). In other words, C2C12 muscle cells

transfected with Negative Control A or anti‐miRNA‐204‐5p in the

myoblasts stage, displayed similar and normal morphology during the

first 4 days of subsequent differentiation (Figure 3). Again, although

the morphological abnormalities started to appear at Day 5 of dif-

ferentiation, the irregular cellular morphology was most apparent at

Day 7 of differentiation (Figure 3h), comparable to the changes seen

after silencing miRNA‐204‐5p in already differentiated C2C12

myotubes.

3.3 | Silencing of miRNA‐204‐5p affects markers for
autophagy/mitophagy

We next hypothesized that the abnormal phenotype of the C2C12

myotubes upon miRNA‐204‐5p silencing could possibly be explained

by increased autophagic activity, especially since microtubule‐
associated protein 1A/1B‐LC3B, a major player in autophagosome

formation, is another predicted target (Figure 4a) of miRNA‐204‐5p
as shown previously in renal cell carcinoma (Mikhaylova et al., 2012).

To study whether the morphological abnormalities that we observed

in the C2C12 myotubes could be related to autophagy, we first

performed a microarray analysis 24 hr posttransfection and focused

on the expression of several autophagy‐related genes. Indeed, the

miRNA‐204‐5p predicted target LC3B, as well as autophagosome and

lysosome fuser VAMP8 and lysosomal cysteine protease inhibitor

cystatin B (CSTB), were significantly increased following anti‐miRNA‐
204‐5p treatment (Figure 4b). A similar expression pattern was

F IGURE 2 Silencing miRNA‐204‐5p induces the development of an aberrant morphology in C2C12 myotubes. C2C12 myoblasts were
differentiated for 5 days prior transfection with either Negative Control A or an LNA targeting miRNA‐204‐5p, and were subsequently observed
for 72 hr. The development of the aberrant phenotype was consistently observed 48 hr posttransfection. (a–e) C2C12 myotubes transfected

with of Negative Control A. (f–j) C2C12 myotubes transfected with an LNA directed against miRNA‐204‐5p. Panels are bright‐field micrographs.
Red arrows indicate C2C12 myotubes with atypical morphology. Scale bar = 400 μm (n = 3). LNA, locked nucleic acid; miRNA, microRNA
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observed for the autophagy markers GABARAPL1 and SQSTM1

(Figure 4b), although these changes did not reach statistical sig-

nificance. Interestingly, however, mitophagy markers PARK2, BNIP3,

BNIP3L, and FUNDC1 appeared to be decreased after miRNA‐204‐5p
lowering, although this was only statistically significant for FUNDC1

(Figure 4b).

Next, to investigate if the induction of autophagy markers was

translated to the protein level, we quantified the abundance of LC3B‐I
and LC3B‐II protein 12, 24, 36, 48, and 72 hr posttransfection.

Despite the apparent induction of several autophagy‐related genes

and the aberrant phenotype of the cells, 48 hr posttransfection with

anti‐miRNA‐204‐5p (as displayed in Figure 2), we could not detect

changes in protein abundance of LC3B‐I or LC3B‐II after silencing

miRNA‐204‐5p (Figure 4c). However, since we previously demon-

strated that the morphological phenotype only occurs in fully dif-

ferentiated C2C12 myotubes, and not myoblasts, changes in LC3B

abundance might have been masked by the presence of un-

differentiated myoblasts in our cell cultures. To circumvent this

problem, we finally performed immunocytochemistry with an anti-

body against LC3B and investigated LC3B in miRNA‐204‐5p silenced

C2C12 myotubes. Indeed, while C2C12 myotubes transfected with

Negative Control A displayed a diffuse, ubiquitous LC3B expression

(Figure 5a), miRNA‐204‐5p silencing induced a typical punctuated

staining of LC3B, 48 hr posttransfection (Figure 5b). The observed

LC3B staining was similar to the pattern observed in C2C12 myo-

tubes transfected with Negative Control A and subsequently treated

with chloroquine, which is known to induce the accumulation of

LC3B‐positive autophagosomes by inhibiting their clearance

(Figure 5c). Finally, we performed double staining for LC3B

and OxPhos, as a marker for mitochondria, in C2C12 myotubes,

48 hr posttransfection with either Negative Control A or anti‐
miRNA‐204‐5p. Interestingly, whereas OxPhos displayed a diffuse

homogenous staining in the Negative Control A transfected

cells, we observed a punctuated OxPhos localization in the anti‐
miRNA‐204‐5p transfected cells that were similar to the LC3B

staining pattern. Furthermore, the merged images of OxPhos and

LC3B demonstrated the colocalization of both mitochondria and

the autophagosomal marker LC3B (Figure 6).

3.4 | miRNA‐204‐5p expression correlates to in
vivo mitochondrial function in human skeletal muscle

To test whether these findings are relevant in human physiology, we

then selected (from previous human clinical trials performed in our

facilities [Phielix et al., 2010; Phielix et al., 2012; van de Weijer

et al., 2015; Vosselman et al., 2015]) four subject groups known to be

characterized by different mitochondrial abundance and oxidative

capacity, including Type 2 diabetes patients (Type 2 diabetes mellitus

[T2DM]), obese nondiabetic subjects (O), LS individuals, and

endurance‐trained athletes (A) and investigated miRNA‐204‐5p ex-

pression in skeletal muscle biopsies. Also, VO2 max and PCr recovery

rates were determined, although the latter could not be assessed in

the entire cohort (n = 38). The characteristics of the subjects included

for the current study are displayed in Table 1. VO2 max and PCr

recovery were highest in endurance‐trained athletes and lowest in

patients with T2DM (Table 1).

Interestingly, the expression of miRNA‐204‐5p in skeletal muscle

was different between the Type 2 diabetic individuals and

endurance‐trained athletes as assessed by one‐way ANOVA with

Tukey's post hoc correction for multiple testing. Thus, the expression

of miRNA‐204‐5p was 1.85‐fold (p = .008) higher in Type 2 diabetes

patients with a low mitochondrial oxidative capacity when compared

to the endurance‐trained athletes with an optimal mitochondrial

F IGURE 3 miRNA‐204‐5p silencing only affects fully differentiated C2C12 myotubes. Undifferentiated C2C12 myoblasts were transfected
with either Negative Control A or an LNA targeting miRNA‐204‐5p, and were subsequently observed for 7 days. (a–d) Negative Control A. (e–h)
Transfection of an LNA against miRNA‐204‐5p. Red arrows indicate C2C12 myotubes with atypical morphology. Panels are bright‐field
micrographs (n = 2). Scale bar = 400 μm. LNA, locked nucleic acid; miRNA, microRNA

HOUZELLE ET AL. | 9857



F IGURE 4 miRNA‐204‐5p silencing does not increase LC3B‐I or LC3B‐II protein abundance. (a) Representation of the binding between the
3′‐UTR of LC3B (MAP1LC3B) mRNA and miRNA‐204‐5p across different species. (b) Gene expression analysis (microarray analysis) following
anti‐miRNA‐204‐5p (24 hr) in differentiated C2C12 myotubes. *q < .05 (FDR adjusted q‐value intensity‐based moderated T‐statistic, n = 3).

(c) LC3B‐I and LC3B‐II protein levels were quantified using western blot analysis 12, 24, 36, 48, and 72 hr posttransfection with either Negative
Control A or anti‐miRNA‐204‐5p. In addition, transfected cells were compared to chloroquine treated C2C12 myotubes as a positive control
(n = 3). 3′‐UTR, 3′‐untranslated region; FDR, false discovery rate; LC3B, light chain 3 protein b; miRNA, microRNA; mRNA, messenger RNA;

NC, negative control
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oxidative capacity (Figure 7a). In addition, miRNA‐204‐5p expression

negatively correlated with VO2 max (r = −.38, p = .011; Figure 7b) and

positively correlated with PCr recovery rates (r = .37, p = .023;

Figure 7c). Collectively, these collective results indicate that low

miRNA‐204‐5p expression is associated with high in vivo mitochon-

drial oxidative capacity in humans, that is, a high VO2 max and a fast

PCr recovery.

4 | DISCUSSION

We previously conducted a high‐throughput hypothesis‐free
miRNA‐silencing screen in C2C12 muscle cells and identified several

miRNAs as potential regulators of mitochondrial function (Dahlmans

et al., 2017). Here, we further investigated one of these miRNAs and

observed that miRNA‐204‐5p silencing in C2C12 myotubes resulted

in the induction of PGC‐1α gene expression and mitochondrial bio-

genesis and that miRNA‐204‐5p expression in human muscle nega-

tively correlated to oxidative capacity.

In the present study, miRNA‐204‐5p silencing induced

PGC‐1α, a transcriptional cofactor pivotal in the regulation of

mitochondrial biogenesis, which prompted us to study the role of

miRNA‐204‐5p in the regulation of mitochondrial metabolism in

more detail. Interestingly, the increase in PGC‐1α gene expression

was accompanied by an increase in citrate synthase activity and

mtDNA copy number, known markers of mitochondrial content.

We could also show a direct interaction between miRNA‐204‐5p
and the 3′‐UTR of PGC‐1α. To the best of our knowledge, this is

the first study to directly link miRNA‐204‐5p to mitochondrial

biogenesis in skeletal muscle, whereas most studies regarding

F IGURE 5 miRNA‐204‐5p silencing leads to the activation of LC3B and the accumulation of autophagosomes in C2C12 myotubes.
C2C12 myoblasts were differentiated for 5 days and transfection with either Negative Control A (a) or an LNA targeting miRNA‐204‐5p
(b) for 48 hr. Immunocytochemistry targeting the autophagosome marker LC3B (green) or nuclei (blue) was performed. (c) Twenty‐four hours
chloroquine incubation (1 μg/ml) was used as a positive control for autophagosome accumulation (n = 4). LC3B, light chain 3 protein b;
LNA, locked nucleic acid; miRNA, microRNA

F IGURE 6 miRNA‐204‐5p silencing targets mitochondria for autophagy. C2C12 myotubes silenced with an anti‐miRNA‐204‐5p displayed
colocalization of the autophagosome marker LC3B (green) and the mitochondrial marker OxPhos (red), indicating that mitochondria are

targeted for autophagy (mitophagy). Scale bar = 25 μm (n = 3). DAPI, 4′,6‐diamidino‐2‐phenylindole; LC3B, light chain 3 protein b; miRNA,
microRNA
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miRNA‐204‐5p have been focusing on its roles in cancer. In the

context of gastric cancer, however, miRNA‐204‐5p has also been

reported to regulate SIRT1 expression, a known metabolic reg-

ulator, and upstream target of PGC‐1α (Canto & Auwerx, 2009),

indicating that miRNA‐204‐5p may also regulate mitochondrial

function in an indirect fashion.

Intriguingly, the silencing of miRNA‐204‐5p also led to the con-

sistent development of an aberrant morphological phenotype. In this

context, previous studies in renal carcinoma cells have demonstrated

that miRNA‐204‐5p is able to regulate autophagy by directly tar-

geting LC3B's broadly conserved 3′‐UTR (Mikhaylova et al., 2012;

Xiao et al., 2011). Therefore, we studied several markers of

TABLE 1 Subject characteristics

T2DM# Obese$
Lean
Sedentary* Athletes&

n 11 12 11 11

Age, years 58.6 ± 4.0 56.7 ± 7.2 22.2 ± 2.7 25.3 ± 4.5

***, &&& ***, &&& ###, $$$ ###, $$$

Weight, kg 100.2 ± 12.6 94.1 ± 13.8 73.7 ± 7.1 70.6 ± 7.7

***, &&& ***, &&& ###, $$$ ###, $$$

Height, m 1.77 ± 0.08 1.74 ± 0.07 1.83 ± 0.05 1.83 ± 0.07

*, & $ $

BMI, kg/m2 32.4 ± 3.7 31.0 ± 3.7 22.1 ± 1.8 21.0 ± 1.5

***, &&& ***, &&& ###, $$$ ###, $$$

Fat (%) 33.8 ± 4.9 34.7 ± 7.0 18.1 ± 3.7 12.7 ± 2.1

***, &&& ***, &&& ###, $$$ ###, $$$

VO2 max, ml−1·min−1·kg

(lean mass)

37.6 ± 4.5 42.8 ± 6.9 50.4 ± 3.4 68.9 ± 4.6

***, &&& **, &&& ###, $$, &&& ###, $$$, ***

PCr recovery, sa 26.7 ± 6.1 21.3 ± 4.4 20.8 ± 3.9 15.9 ± 5.1

&&& ###

Note: Age, weight, height, body mass index (BMI), body composition, and in vivo (mitochondrial)

oxidative capacity in Type 2 diabetic patients (T2DM), nondiabetic overweight/obese individuals, lean

sedentary individuals, and endurance‐trained athletes. Values presented are mean ± SD. Significance

is indicated with #, $, *, and & representing changes compared to T2DM, obese, lean sedentary, and

athletic subjects, respectively, and with 1, 2, and 3 symbols representing p < .05, p < .01, and p < .001,

respectively. Statistical significances are based on one‐way ANOVA with Tukey's post hoc test.

Abbreviations: ANOVA, analysis of variance; PCr, phosphocreatine; SD, standard deviation; T2DM,

Type 2 diabetes mellitus; VO2 max, maximal aerobic capacity.
aFor PCr recovery, group size for the lean sedentary subjects and the endurance‐trained athletes are

n = 6 and n = 9, respectively.

F IGURE 7 miRNA‐204‐5p levels in human biopsies correlates with oxidative capacity in vivo. (a) miRNA‐204‐5p expression was assessed in
skeletal muscle (vastus lateralis) biopsies from Type 2 diabetic (T2DM), obese (O), lean sedentary (LS), and athletic (A) subjects. *p < .05 one‐way

ANOVA with Tukey's post hoc testing for multiple comparisons. Pearson's correlation between miRNA‐204‐5p expression and (b) VO2 max
(normalized for lean body mass) and between miRNA‐204‐5p expression and (c) PCr recovery rate, a measure for in vivo mitochondrial capacity.
ANOVA, analysis of variance; miRNA, microRNA; PCr, phosphocreatine; T2DM, Type 2 diabetes mellitu; VO2 max, maximal aerobic capacity
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autophagy and found that miRNA‐204‐5p silencing increased LC3B

gene—but not protein—expression levels and resulted in an LC3B

staining pattern suggestive for autophagosome formation. Since the

autophagosomal marker LC3B also colocalized with mitochondria

upon miRNA‐204‐5p silencing, this possibly reflects the autophagic

clearance of mitochondria, a process called mitophagy. Arguing

against this notion, gene expression of the mitophagy marker

FUNDC1 was significantly reduced. Furthermore, since we did not

directly assess autophagic flux, our data do not exclude the possibi-

lity that anti‐miRNA‐204‐5p treatment may inhibit—rather than

activate—autophagy by blocking lysosome and autophagosome fu-

sion, ultimately resulting in failure to form autophagosomes. In fact,

we found some support for this possibility since gene expression of

autophagosome and lysosome fuser VAMP8 and proteinases release

protector from lysosomes CSTB appeared to be increased in anti‐
miRNA‐204‐5p treated C2C12 myotubes. Thus, we found support for

the involvement of miRNA‐204‐5p in autophagy although its reg-

ulatory function in this process requires further study.

In addition, the phenotype of the cells may have been affected by

changes in the differentiation process, as miRNA‐204‐5p has been

shown to inhibit C2C12 myoblast differentiation, most likely through

inhibition of MEFC2 an ERRγ (X. Cheng et al., 2018). Interestingly,

miRNA‐204‐5p expression was also decreased during C2C12 myo-

tube differentiation (X. Cheng et al., 2018), whereas the oxidative

phenotype of C2C12 myotubes has been shown to increase during

myotube differentiation (Remels et al., 2010). This enhanced capacity

for oxidative phosphorylation requires extensive remodeling of the

mitochondrial network and it has been shown that autophagy/mito-

phagy is required for this remodeling, which is also integratively

linked to C2C12 myotube differentiation (Sin et al., 2016). Taken

together, these findings indicate that miRNA‐204‐5p may play a role

in the interplay of mitochondrial biogenesis, autophagy/mitophagy,

and myogenic differentiation.

Interestingly, clearing dysfunctional mitochondria through mi-

tophagy appears important for maintaining metabolic health, as this

process has been shown to be dysregulated in obese (Bollinger

et al., 2015) and Type 2 diabetic subjects (Munasinghe et al., 2016),

and has shown to be important for exercise‐induced adaptations (He

et al., 2012; Lira et al., 2013; Moller et al., 2015; Saleem, Carter, &

Hood, 2014; Vainshtein, Tryon, Pauly, & Hood, 2015). Furthermore, it

has been demonstrated that PGC‐1α also plays a role in the regula-

tion of mitophagy (Vainshtein et al., 2015). Thus, acute exercise in-

creased the expression of mitophagy‐related genes in wild‐type, but
not in PGC‐1α knock‐out mice. In addition, mitochondria were tar-

geted for mitophagy post‐exercise in wild‐type mice, whereas this

response was diminished in PGC‐1α knock‐out mice (Vainshtein

et al., 2015), indicating a dual role for PGC‐1α in both mitochondrial

biogenesis and mitophagy. The observed increases in PGC‐1α gene

expression, in combination with the observed colocalization of mi-

tochondria with autophagosomes, could be suggestive of increased

mitochondrial turnover, although this could not be directly tested in

the current study.

To address the human relevance of our findings, we also de-

termined the expression of miRNA‐204‐5p in human skeletal muscle

biopsies from individuals ranging widely in mitochondrial oxidative

capacity. We observed that individuals with a high mitochondrial

oxidative capacity are characterized by a low expression of miRNA‐
204‐5p. It should be noted though that age may be a confounding

factor in this correlation given the significant age difference between

certain subject groups (Table 1). Nonetheless, exercise training has

been shown to induce PGC‐1α and mitochondrial biogenesis as well

as markers for autophagy and mitophagy in human skeletal muscle

(Balan et al., 2019; Brandt, Gunnarsson, Bangsbo, & Pilegaard, 2018;

Egan, O'Connor, Zierath, & O'Gorman, 2013; Popov, Lysenko,

Makhnovskii, Kurochkina, & Vinogradova, 2017). Together with our

results in C2C12 cells upon silencing of miRNA‐204‐5p, one may

postulate that low levels of miRNA‐204‐5p simultaneously induce

mitochondrial biogenesis as well as mitochondrial degradation and

that this enhanced mitochondrial “turnover” is linked to oxidative

capacity in human skeletal muscle.

In summary, we here demonstrated that the silencing of miRNA‐
204‐5p in C2C12 myotubes enhanced mitochondrial biogenesis, via

regulation of PGC‐1α. In addition, the anti‐miRNA‐204‐5p treatment

also substantially affected the morphology of differentiated C2C12

myotubes and altered several markers related to autophagy and

mitophagy. Finally, in humans, low expression of miRNA‐204‐5p in

skeletal muscle was associated with high oxidative capacity. In con-

clusion, this study identifies miRNA‐204‐5p as an interesting mod-

ulator of mitochondrial function in human skeletal muscle.
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