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Abstract: Lespedeza davurica (Laxm.) is highly important for reducing soil erosion and maintaining
the distinctive natural scenery of semiarid grasslands in northwest China. In this study, a pot
experiment was conducted to investigate the effects of drought (20% water-holding capacity) on
biomass and its allocation, root characteristics, plant hormones, and soil microbial communities
and nutrients after L. davurica was grown in a greenhouse. Drought reduced the total biomass of
L. davurica but increased the root:shoot biomass ratio. In addition, drought altered the composition
and structure of microbial communities by limiting the mobility of nutrients in non-rhizosphere
soils. In particular, drought increased the relative abundances of Basidiomycota, Acidobacteria,
Actinobacteria, Coprinellus, Humicola and Rubrobacter, which were closely positively related to the
soil organic carbon, pH, available phosphorus, ammonia nitrogen (N) and nitrate N under drought
conditions. Furthermore, soil fungi could play a more potentially significant role than that of bacteria
in the response of L. davurica to drought. Consequently, our study uncovered the effects of drought on
the growth of L. davurica by altering soil microbial communities and/or soil nutrients, thus providing
new insights for forage production and natural grassland restoration on the Loess Plateau of China.

Keywords: drought; Lespedeza davurica; biomass allocation; fungal and bacterial communities; soil
nutrients

1. Introduction

A drought event is a recurring phenomenon in many ecosystems under global climate
change, and it is predicted to occur more frequently in the upcoming decades [1–4]. Drought
significantly threatens the structure and function of ecosystems, production and many other
aspects of agriculture and human society [5–8]. Semiarid grasslands occupy vast areas in
northwest China and are sensitive to drought [9]. However, water availability is considered
a key driver for plant composition and productivity in semiarid grasslands [2,10–14]. In
addition, drought is a primary limiting factor for agricultural productivity, plant growth
and species distribution in the semiarid regions of northwest China [15]. Moreover, root
morphological characteristics have become more important to evaluate the environmental
impacts on agriculture in semiarid areas and play a crucial role for the uptake of nutrients
and affect the ability of plants to compete in the natural community [16].

In addition, drought and nutrient deficiencies are the essential environmental factors
that limit plant growth, interactions and aboveground productivity in semiarid grass-
lands [8,17]. Drought may have a strong impact on ecosystem processes by affecting the
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chemical properties of soil and availability of water [18–20]. On the one hand, drought has
substantial considerable effects on plant growth directly through alterations in the availabil-
ity of water in the soil and its chemical properties [11,21–23]. Alternatively, drought affects
the activity, abundance, diversity and community structure of soil microbes [24–31]. It
also restrains the uptake of nutrients, which, in turn, indirectly influences the performance
of plants [29,32,33]; in addition, soil microbes, as major components of soil ecosystems,
which have an amazing amount of variety and abundance [34], participating in many key
biogeochemical cycling processes terrestrial ecosystems [35–38]. Many soil microorganisms
benefit plants via reducing pathogen incursions and assisting in the acquisition of nutrients
from soil [39]. Drought has impacts on the function of soil microbial communities and their
ability to interact with plant roots through a reduction in water availability and carbon and
nutrient diffusion in soils, leading to changes in nutrient uptake and enzyme activities [40].
For example, drought can lead to the extinction of less resistant microbial populations, a
reduction in microbial biomass, and changes in the composition of microbial communi-
ties [41–43]. During droughts, soil microbes can also synthesize extracellular polymeric
compounds to protect their cells and the local environment [44]. As well, a previous study
indicated that drought led to a shift in fungal but not bacterial community composition [45].
The differences in the composition of soil microbial communities, in turn, can impact plant
performance [46]. A recent study also reported that drought can alter the soil microbial
communities, producing strong legacy effects on the competitive interactions of plants [32].
For example, changes in the soil microbial communities can influence the drought tolerance
of subsequent generations of plants [47,48]. However, how drought influences semiarid
grassland ecosystems remains poorly understood [49,50].

Lespedeza davurica (Laxm.) is a C3 perennial leguminous subshrub species, which is
primarily distributed in temperate regions of the world [51]. It is one of the dominant
species in the natural communities of semiarid grasslands in northwest China [52] and
is an excellent natural pasture species owing to its high quality and adaptability [51,53].
The severe soil environment in the semiarid areas of northwest China and the decreased
abundance of L. davurica caused by grazing [15,54] hamper its ability to reduce water
and soil loss and maintain forage production in the Loess Plateau region of northwest
China [51,55]. Understanding the growth characteristics of the response of L. davurica to
drought would help to complete the knowledge of its mechanisms of drought tolerance
and help to understand its potential role in the production of forage and recovery of natural
grassland in semiarid regions of northwest China.

In addition, drought is expected to alter plant physiology and metabolic pathways [56],
and plants are likely to alter the level of their hormones to adapt to resource-limited
environments. For example, salicylic acid (SA) and indole-3-acetic acid (IAA) are interacted
with jasmonic acid (JA), thus regulating the adaptation of plant to its surroundings [57]
and the involvement of chitinase in the drought tolerance of tomato (Solanum lycopersicum)
when subjected to drought [58]. To date, there have been few studies on the response of L.
davurica to drought stress. One study found that drought decreased the relative growth
rate and relative leaf water content of L. davurica but increased the content of proline and
malondialdehyde, while the activities of catalase, superoxide dismutase and peroxidase
increased first and then decreased with the time of drought stress [59]. However, whether
the hormones (such as IAA, SA, JA) and the activity of chitinase in the L. davurica roots
would relate to the growth and development of L. davurica under drought conditions was
unknown. Besides, drought decreased the total biomass and the total length, surface, and
average diameter of the L. davurica roots [8,53]. Recently, a study indicated that drought
clearly decreased the photosynthesis and concentration of N in L. davurica leaves as well [60].
However, studies on L. davurica have primarily focused on growth parameters and have
rarely examined the indirect effects of drought on the growth of L. davurica by alteration of
the soil nutrients and soil microbial communities.

The purpose of this study was to illuminate the effects of drought on the growth of
L. davurica owing to changes in the microbial communities and/or nutrients in soils that
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were from non-rhizosphere. To achieve this goal, we tested the following hypotheses:
(1) drought would increase the allocation of root biomass by L. davurica; (2) drought would
reduce the mobility of soil nutrients; and (3) drought would have negative effects on the
soil microbial communities.

2. Materials and methods
2.1. Soil Sampling, Processing and Seed Collection

The soils used in the study were collected from the Grassland Research Station
of Lanzhou University (LZUGRS), Huan County, Gansu Province, northwestern China
(37.12◦ N, 106.82◦ E). This region is a typical semiarid monsoon climate at an elevation of
1650 m asl. The mean annual temperature is approximately 7.1 ◦C, and the average annual
precipitation is approximately 360 mm. The soil in this area is classified as Cambisol [61],
and water is the main limiting factor for plant growth in this area. Approximately 240 kg
of fresh topsoil (10 cm depth) were sampled in April 2018. The soil samples were instantly
taken to the laboratory where they were sieved to 5 mm to eliminate large roots and plant
residues. All the soils were stored at 4 ◦C before the greenhouse experiment. The maximum
water-holding capacity (WHC) of the soils was determined as previously described [62]. We
also measured the soil basic concentrations before the seeds were sown in the greenhouse
(Table S1).

Lespedeza davurica is one of the predominant species in this grassland and covers an
average of 7% of the soil [52]. It is a C3 perennial herbaceous semi-shrub of the genus
Lespedeza of the Leguminosae family and is highly palatable [63]. It also has some excellent
characteristics, such as tolerance to drought and barren soil. Lespedeza davurica seeds were
collected from plants that were growing on roadsides (1–2 km from LZUGRS) in early
October 2017 when they were ripe and taken to the laboratory where they were air-dried,
cleaned, and stored at 4 ◦C.

2.2. Experimental Design

To test whether and how drought modifies the growth of L. davurica by altering the
soil microbial communities and/or soil nutrients, we performed a pot experiment in which
L. davurica seeds that had been pre-germinated for 3 days were sown approximately 1 cm
deep. Two different soil water treatments were established, including normal soil moisture
(60% water-holding capacity (WHC)) and drought treatment (20% WHC), The soil water
treatments were used to match the soil water content of natural grasslands in the Loess
Plateau of China [64,65].

Lespedeza davurica seeds were surface-sterilized with 70% ethanol for 1 min followed by
1% NaClO for 2 min, rinsed three times with ddH2O and germinated on sterile glass beads
on 10 May 2018. All the pots were maintained at the normal soil moisture before sowing.
On 13 May 2018, the 3-day-old, germinated seeds were carefully sown in plastic pots (16 cm
in diameter and 18 cm deep) that contained approximately 4 kg of dry soil. Five seeds were
sown in each pot. To reduce the edge effect, the germinated seeds were sown 4 cm from the
edge of the pot. For the water treatment per soil water, 12 pots (namely 12 replicates) were
established. The greenhouse experiment was duplicated to enable us to independently
determine the plant biomass of L. davurica after 16 days of growth to calculate the rela-
tive growth ratio (RGR) of the plants. Thus, this trial included two soil water treatments
× 12 replicates × 2 duplicates for a total of 48 pots. The pots were randomized on green-
house tables at 60% relative humidity, a day/night cycle of 16/8 h, and a day/night
temperature regime of 21/16 ◦C. All the pots were watered every two days to maintain the
appropriate soil moisture content at 20% and 60% WHC by weighing at 18:00. Seedlings
that died during the first week were immediately replaced by seedlings that had grown
for the same number of days. No fertilizers were used throughout the growth period of L.
davurica. The pots were randomly repositioned weekly to minimize possible variation from
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the effects of a microclimate in the greenhouse. The plant RGR in g day−1 was calculated
as shown in Equation (1) [66]:

RGR =
ln M2 − ln M1

t2 − t1
(1)

where two consecutive harvests at times t1 (plants grown 16 days) and t2 (plants grown
106 days) in this study yielded the plant biomass M1 and M2, respectively.

The first set of pots was destructively sampled after 16 days. The shoots of each pot
were clipped at the soil surface, and the roots were carefully rinsed with tap water in a
60-mesh sieve. The shoots along with the roots were then oven-dried at 70 ◦C for 48 h to a
constant weight and weighed.

The second set of pots was collected for destructive sampling at the end of the ex-
periment, which was 106 days after sowing. The plant height was first measured using a
flexible ruler. All the plant aboveground parts of each pot were harvested by clipping the
shoots at soil surface. Soil samples were obtained destructively in each pot before the roots
were harvested and passed through a 2.0-mm sieve to remove large roots and residue. They
were then merged uniformly to obtain a pooled soil sample. Soil samples from the pots of
each treatment were randomly divided into three portions. The first portion was used to
determine the soil water content. The second portion was stored at 4 ◦C to analyze the soil
chemical properties and microbial biomass carbon. The third portion was transported to
the laboratory in an icebox and stored at −80 ◦C until the soil DNA was extracted. This
entailed the mixture of four pots of subsamples in each treatment to obtain a pooled soil
sample. Thus, three subsamples in each treatment were used to extract DNA. Finally, the L.
davurica roots were carefully washed away from the soil with tap water, and the length of
primary root was measured with a ruler. A subset of fresh root samples from each replicate
was rinsed three times with ddH2O, quickly frozen in liquid nitrogen and stored at −80 ◦C
before the contents of indole-3-acetic acid (IAA), salicylic acid (SA), jasmonic acid (JA) and
chitinase were measured in the roots. The shoots and remaining roots were placed in paper
bags, respectively, and oven-dried at 70 ◦C for 48 h to a constant weight and weighed.

2.3. Soil Chemical Properties and Microbial Biomass

The soil organic carbon was determined by the Walkley–Black method, as described by
Nelson and Sommer (1982). Total P and total N were determined by adding 1.65 g of catalyst
(CuSO4 and K2SO4 at a 1:10 ratio (w/w)) and 5 mL of concentrated sulfuric acid to a 0.5 g
soil sample. The sample was then digested for 1.5 h at 420 ◦C, analyzed on a Smartchem
450 Discrete Auto Analyzer (AMS-Alliance, Rome, Italy). Soil ammonia N (NH4

+-N) and
nitrate N (NO3

−-N) were analyzed on a Smartchem 450 Discrete Auto Analyzer (AMS-
Alliance) by KCl extraction. The soil available phosphorus was determined by NaHCO3
extraction—molybdenum antimony colorimetry as previously described [67]. The soil pH
was measured as a soil/water mixture at a ratio of 1:2.5 (w/v) on a PHS-3C acidometer
(Shanghai Yoke Instrument Co., Shanghai, China). The soil microbial biomass carbon was
measured by chloroform fumigation-K2SO4 soil extraction, as previously described [68].

2.4. Plant Hormone Measurements

Approximately 0.2 g samples of fresh roots were used to measure the contents of
IAA [69], SA [70], JA [71] and the activity of chitinase [72] in the L. davurica roots.

2.5. DNA Extraction, PCR Amplification and High-Throughput Sequencing

A Magnetic Soil and Stool DNA Kit (Tiangen Biotech, Beijing, China) was used to extract
DNA from 0.5 g soil samples, following the manufacturer’s instructions. The primers ITS1F
(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′)
were used to amplify the ITS1 region of the fungal rRNA. The V3-V4 regions of 16S
rRNA were amplified using the 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) primer set. Each sample was amplified in triplicate
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using an ABI Gene Amp®9700 PCR system (Applied Biosystems, Foster City, CA, USA)
in a 20 µL reaction system. PCR reactions of the DNA from soil fungi were performed in
a final volume of 20 µL, in which 10 ng template DNA, 0.8 µL of forward primer (5 µM),
0.8 µL of reverse primer (5 µM), 2 µL buffer (10×), 2 µL dNTPs (2.5 mM), 0.2 µL rTaq
polymerase (TaKaRa, Dalian, China), 0.2 µL bovine serum albumin (BSA), and ddH2O
had been added to a final volume of 20 µL. The following thermal cycling conditions were
used: an initial denaturation at 95 ◦C for 3 min, followed by 37 cycles of denaturation
at 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 45 s, and a final extension at 72 ◦C for 10 min.
The PCR reactions of the DNA of soil bacteria were performed in the same final volume
of 20 µL with 10 ng template DNA, 0.8 µL of forward primer (5 µM), 0.8 µL of reverse
primer (5 µM), 4 µL FastPfu Buffer (5×), 2 µL dNTPs (2.5 mM), 0.4 µL TransStart FastPfu
DNA Polymerase (Transgen Biotech Co., Ltd. Beijing, China), 0.2 µL BSA, and ddH2O to
20 µL. The same thermal cycling conditions were used as described above for the fungi,
except that the 27 cycles of denaturation were used for the 16S rRNA. After amplification,
3 µL PCR of product was detected on a 2% agarose gel. The PCR products were purified
using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA). The
samples were sequenced on a 300PE Illumina MiSeq platform (Illumina, Inc., San Diego,
CA, USA) by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

2.6. Bioinformatics Analysis

Low-quality raw sequences (average phred quality score Q < 20 or sequence
lengths < 200 bp) were removed, and the chimeras were filtered. After removing the
chimeras, all the effective tags of all the samples were clustered by Uparse (v. 7.0.1090), and
high-quality sequences were clustered into operational taxonomic units (OTUs) with a 97%
similarity [73]. The representative sequence for each OTU was screened for further annota-
tion. For each ITS representative sequence, the UNITE database [74] was used on the basis
of the BLAST algorithm that was calculated by QIIME (v. 1.9.1) to annotate the taxonomic
information. In contrast, the Silva Database [75] was used on each 16S rRNA representative
sequence based on the RDP classifier (v. 2.11). All the sequence numbers of each sample
were normalized to an even number of sequences per sample (52,778 and 28,260 sequences
per sample for ITS and 16S rRNA, respectively) for further analysis. α-Diversity, including
the Chao 1 and Shannon indices, and β-diversity were computed with Mothur (v. 1.30.2)
and QIIME (v. 1.9.1), respectively. A principal co-ordinates analysis (PCoA) was used to
visualize the similarity of fungal and bacterial compositions among sampling groups at
the OTU level using Bray–Curtis dissimilarities by the cmdscale function via the “vegan”
package in R. The variance inflation factor (VIF value < 10) was analyzed to screen the
environmental factors used for the subsequent redundancy analysis (RDA) owing to the
limited number of samples. The RDA was used to reveal the relationships between soil
microbial communities and soil properties, which was conducted by the rda function via
the “vegan” package in R. To further discern the relative importance of drought and the
soil property variables for the soil fungal community assembly, a variation partitioning
analysis (VPA) was conducted using the “varpart” function of the “vegan” package in R,
and the adjusted R2 values were used to determine the proportion of variation in soil fungal
community explained by the fitted model [76]. The bioinformatics analysis described above
was performed through an in-house pipeline that was built on the online Majorbio I-Sanger
Cloud Platform (http://www.majorbio.com, accessed on 7 September 2021).

2.7. Statistical Analysis

All the statistical analyses were performed using R v. 3.5.1 [77]. The normal distri-
bution of data and homogeneity of variance were checked by Shapiro–Wilk and Levene’s
tests, respectively. All the data were log-transformed as necessary to meet the standards
for normality. Differences between the control and drought were determined by a Tukey’s
HSD test (p < 0.05).

http://www.majorbio.com
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3. Results
3.1. Plant Biomass

Drought significantly limited the growth and development of L. davurica by the end
of this trial (Figure 1A,B). Drought significantly decreased the height of L. davurica but
increased the length of its primary root (Figure S1). The soil water content and plant RGR
were significantly lower in drought conditions compared with the control (Figure 1G,H).
Drought significantly decreased the shoot biomass, root biomass and total biomass of L.
davurica but increased the root:shoot ratio (Figure 1C–F).

J. Fungi 2022, 8, x FOR PEER REVIEW 6 of 21 
 

 

was built on the online Majorbio I-Sanger Cloud Platform (http://www.majorbio.com, 
accessed on 7 September 2021). 

2.7. Statistical Analysis 
All the statistical analyses were performed using R v. 3.5.1 [77]. The normal 

distribution of data and homogeneity of variance were checked by Shapiro–Wilk and 
Levene’s tests, respectively. All the data were log-transformed as necessary to meet the 
standards for normality. Differences between the control and drought were determined 
by a Tukey’s HSD test (p < 0.05). 

3. Results 
3.1. Plant Biomass 

Drought significantly limited the growth and development of L. davurica by the end 
of this trial (Figure 1A,B). Drought significantly decreased the height of L. davurica but 
increased the length of its primary root (Figure S1). The soil water content and plant RGR 
were significantly lower in drought conditions compared with the control (Figure 1G,H). 
Drought significantly decreased the shoot biomass, root biomass and total biomass of L. 
davurica but increased the root:shoot ratio (Figure 1C–F). 

 
Figure 1. Effects of drought on (A) aboveground, (B) roots, (C) shoot biomass, (D) root biomass, (E) 
total biomass, (F) the root:shoot biomass ratio of L. davurica, (G) soil water content, and (H) plant 
relative growth rate (RGR). Black bar = 2 cm in plot B. Mean ± SE are shown (n = 12). Within each 
panel, different lowercase letters indicate significant differences at p < 0.05 (Tukey’s HSD). 

3.2. Plant Hormones  
Drought significantly increased the contents of IAA in the L. davurica roots (Figure 

2A), while it decreased the contents of SA and JA and the activity of chitinase (Figure 2B–
D). 

Figure 1. Effects of drought on (A) aboveground, (B) roots, (C) shoot biomass, (D) root biomass,
(E) total biomass, (F) the root:shoot biomass ratio of L. davurica, (G) soil water content, and (H) plant
relative growth rate (RGR). Black bar = 2 cm in plot B. Mean ± SE are shown (n = 12). Within each
panel, different lowercase letters indicate significant differences at p < 0.05 (Tukey’s HSD).

3.2. Plant Hormones

Drought significantly increased the contents of IAA in the L. davurica roots (Figure 2A),
while it decreased the contents of SA and JA and the activity of chitinase (Figure 2B–D).

3.3. Soil Nutrients and Microbial Biomass

At the end of the experiment, drought significantly increased the soil organic carbon,
total N, available P, NH4

+-N and NO3
−-N (Figure 3A,B,G–I) but did not affect the soil total

P (Figure 3C). Moreover, drought had an obvious effect on the soil stoichiometric charac-
teristics. The ratios of C:N, C:P and N:P were significantly higher in drought conditions
than that in the control (Figure 3D–F). In addition, drought significantly decreased the soil
microbial biomass carbon (Figure 4).
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3.4. The Chao1 and Shannon Diversity Indices of Soil Microbial Communities

The soil fungal and bacterial sequences clustered into a total of 772 and 2961 OTUs,
respectively. Drought did not obviously alter the Chao1 and Shannon diversity indices of
the soil fungal and bacterial communities (Figure 5).
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3.5. The Composition of Soil Microbial Communities

Drought strongly altered the composition of soil fungal communities at both the phy-
lum and/or genus levels (Figure 6A,C). Drought clearly decreased the relative abundance
of Ascomycota but increased that of the Basidiomycota (Figure 6A). Interestingly, drought
strongly increased the relative abundances of Coprinellus and Humicola but decreased
those of Podospora and Acremonium (Figure 6C). In contrast, drought did not clearly alter
the composition of soil bacterial communities at both the phylum and/or genus levels
(Figure 6B,D). Proteobacteria was the most abundant phylum between the drought and
control conditions (Figure 6B). Drought slightly decreased the relative abundances of Pro-
teobacteria and Firmicutes but increased those of Actinobacteria and Acidobacteria to some
extent (Figure 6B). Moreover, drought increased the relative abundances of Acidobacteria,
Pseudomonas and Rubrobacter to some degree but mildly decreased those of Sphingomonas
and Bacillus (Figure 6D). The results of rarefaction curves indicated that the number of
reads was enough to detect most of the types of soil bacterial and fungal sequences from
the soil samples since the curves arrived at balanced plateaus (Figure S2). In addition, the
results of PCoA showed that the composition of soil fungal and bacterial communities was
clearly separated between the drought and control (Figure 7).
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3.6. Relationships between the Soil Microbial Communities and Soil Properties

At the phylum level, the first and second axes of RDA explained 87.71% and 12.29%
of the variance for fungal communities, respectively; soil organic carbon, soil pH, available
P, NH4

+-N and NO3
−-N were positively related to the abundance of Basidiomycota but

negatively related to that of Ascomycota under drought conditions (Figure 8A). The first
and second axes of the RDA explained 95.87% and 3.54% of the variance in bacterial
communities, respectively, and the abundance of Proteobacteria was positively related to
the soil organic carbon and soil pH but negatively related to the soil available P, NH4

+-N
and NO3

−-N under drought conditions (Figure 8B). Moreover, the soil organic carbon,
soil pH, available P, NH4

+-N and NO3
−-N were positively related to the abundances of

Acidobacteria and Actinobacteria but negatively related to those of Firmicutes, Chloroflexi
and Bacteroidetes under drought conditions (Figure 8B).
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At the genus level, the first and second axes of the RDA explained 65.03% and 18.57%
of the variance for fungal communities, respectively; the abundances of Coprinellus and
Humicola were positively related to the soil organic carbon, soil pH, available P, NH4

+-
N and NO3

−-N under drought conditions (Figure 8C). In contrast, the abundances of
Podospora and Acremonium were negatively related to the soil organic carbon, soil pH,
available P, NH4

+-N and NO3
−-N (Figure 8C). The first and second axes of the RDA

explained 98.82% and 0.96% of the variance in bacterial communities, respectively, and
the soil organic carbon, soil pH, available P, NH4

+-N and NO3
−-N were positively related

to the abundances of Acidobacteria and Rubrobacter but were negatively related to those of
Pseudomonas, Sphingomonas and Bacillus under drought conditions (Figure 8D).

3.7. The Contribution of Drought and Soil Properties to the Variation in Soil Fungal Community

Drought contributed a larger role of variation relative to the composition of the soil
fungal community than that for the soil bacterial community (Figure 6), and the soil
properties were closely related to the soil microbial communities under drought conditions
(Figure 8). We further illustrated the contribution of drought and soil properties to the soil
fungal community variation with a modified VPA (Figure 9). The results of VPA indicated
that the complete set of all variables together explained 59.1% of the variation in the soil
fungal community, and drought (11.9%) clearly contributed a larger proportion of variation
of the soil fungal community compared with soil properties (9.8%) (Figure 9).
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Figure 8. Effects of drought on the relationships among soil microbial communities and soil properties.
Redundancy analysis (RDA) of relative abundance of (A) soil fungal or (B) bacterial community and
soil properties at the phylum level, (C) soil fungal or (D) bacterial community and soil properties at
the genus level after L. davurica grown in the glasshouse under drought treatment. The black solid
line indicates fungal and bacterial phyla or genera, and the red solid line indicates soil properties.
Soil properties indicated include soil organic carbon (SOC), available phosphorus (AP), ammonium
nitrogen (NH4

+-N), nitrate nitrogen (NO3
−-N) and pH.
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4. Discussion

Water-limited ecosystems are likely to be highly responsive to drought [78]. Water is
considered to be one of the key environmental factors that limits the growth of plants in
the Loess Plateau of northwest China [8]. Soil microbes play an important role in plant
drought stress. Lespedeza davurica is one of the predominant species in natural semiarid
grasslands in northwest China [52]. Therefore, we examined how drought alters the abiotic
properties and microbial communities of soil and mediates the growth of L. davurica.

In this study, drought indeed strongly altered the growth and development of L.
davurica, including its biomass and the morphological characteristics of shoot and root. We
found that drought significantly reduced the RGR, shoot biomass, root biomass and total
biomass of L. davurica, which is consistent with previous findings that drought was the
primary limiting factor for the production of biomass by L. davurica [53]. Under drought
conditions, roots act as sensors and are responsible for resource uptake and storage, and
they grow faster than leaves [79,80]. Consistent with previous research, we found that
drought decreased the plant height but increased the root:shoot ratio and length of primary
roots of L. davurica, supporting our first hypothesis that drought would increase the root
biomass allocation of L. davurica. Root morphological traits are important for plants to
manage in an environment that has limited water and/or nutrients, such as those in arid
and semiarid ecosystems [53,81]. Numerous studies have shown that drought increased
the root mass ratio, proportion of thin roots, root length and surface area and the numbers
of root hairs [81–85], which help the plant to acquire nutrients from severe environments. A
previous study showed that the root average diameter values of L. davurica are significantly
affected by water levels, efficiently compete for the limited water resources and increase the
acquisition of nutrients under drought conditions [53]. In this study, our findings indicated
that L. davurica may absorb more water and soil nutrients under drought conditions by
shifting its biomass allocation and morphological characteristics, which is consistent with
the findings of previous studies [8,53]. However, the root vertical development could be
largely constrained by the pot size as well.

Since drought limits the uptake of nutrients from the soil nutrients [86], and long-
term drought is expected to alter plant physiology and metabolic pathways [56], plants
are likely to alter the level of their hormones to adapt to resource-limited environments.
Plant hormones play significant functions in the establishment of signaling networks to
regulate stress-related responses and plant development in response to drought. Therefore,
we tested whether hormones and chitinase modified the growth and development of L.
davurica under drought conditions. Numerous reports have suggested that JA and SA have
an important role in the response of plants to drought. For example, a prolonged water
deficit can reduce the contents of JA and SA of common sage (Salvia officinalis) during leaf
senescence [87]. Long-term drought decreased the contents of JA and SA in banana leaves
(Musa spp.) [88]. Drought decreased the contents of JA and SA of two contrasting genotypes
of Catalpa bungee [89]. Long-term drought decreased the contents of JA and SA in the roots
of tea (Camellia sinensis) [90]. A recent study found that drought also decreased the contents
of JA and SA in gray-leaved Cistus (Cistus albidus) seedlings [91]. In the study, we found
that drought decreased the content of JA in the L. davurica roots, which was consistent
with a previous study that the concentrations of endogenous JA first increased rapidly
following drought stress and then decreased to normal levels if the stress periods were
prolonged [92–94]. Another study also reported that severe drought slightly decreased
the JA content of Arabidopsis thaliana [95]. In addition, a previous study also reported that
SA, auxin, such as IAA, and other plant hormones interacted with JA, thus regulating the
adaptation of plant to its surroundings [57]. Thus, we expected that the SA content in the
L. davurica roots could decrease under drought as well, which was indeed confirmed by
our results. Recently, a study found that prolonged drought decreased the SA content in
Brassica napus leaves [96]. In contrast, we found that drought increased the contents of
endogenous IAA in L. davurica roots, indicating that IAA possibly enhanced the drought
tolerance of L. davurica. Our results were also consistent with previous findings that the
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application of exogenous IAA could weaken the negative effects caused by drought, and
thus improved the growth of barley (Hordeum vulgare) [97]. In addition, we found that
drought decreased the activity of chitinase in L. davurica roots, which was consistent with
previous findings that drought decreased the activities of enzymes because of its negative
effects on soil properties [98]. Similar results were reported that indicated the involvement
of chitinase in the drought tolerance of tomato (Solanum lycopersicum) when subjected to
drought [58].

Drought can typically induce a reduction in the mobility of soil nutrients, leading to
some substantially considerable effects on plant performance [99–101]. Consistent with
previous findings that drought has negative effects on soil properties and increased the
concentrations of soil nutrients [33,98], we found that the concentrations of soil organic
carbon, total N, available P, NH4

+-N and NO3
−-N were higher in drought conditions

compared with the control, supporting our second hypothesis that drought would reduce
the mobility of soil nutrients. In contrast, a recent study reported that drought decreased
the contents of soil organic carbon, total N, NH4

+-N and NO3
−-N in topsoil (0–10 cm)

compared with ambient water in alpine grassland [102]. The difference in this study could
by owing to use of a pot experiment in a greenhouse that utilized poor quality soil from a
semiarid grassland, which could have resulted in the depletion of soil nutrients.

Furthermore, drought can alter the activity, abundance, and community structure and
composition of soil microbes by altering the availability of soil water and
nutrients [15,24,25,27,30,103,104], which, in turn, may influence plant performance [29,32,33].
Indeed, our results indicated that drought altered the structure and composition of soil
fungal and bacterial communities. Soil microbes are more likely to aggregate to avoid
death or dehydration under drought conditions [105]. Consistent with previous findings
that drought reduced the diffusion of substrates, microbial activities and biomass [106],
we found that drought significantly decreased the soil microbial biomass carbon, because
the microbial population of soil would decline considerably if the soil water content was
reduced to less than a particular level [14,107]. There is no consensus about the response of
soil microbial diversity to drought, although many studies have focused on the responses
of soil microbes to drought [103,108,109]. In this study, we found that drought altered the
structure and composition of soil microbial communities, partially supporting our third
hypothesis that drought would have negative effects on the soil microbial communities.
Drought can reduce the mobility of soil nutrients and limit the reproduction of soil microbes
by reducing the supply of substrates and the availability of soil water to them [110,111] and
decreasing soil microbial diversity [112–115]. In addition, several meta-analyses indicated
that drought had a negative effect on soil microbial diversity [105,116–119]. In this study,
we found that drought tended to decrease the Chao1 and Shannon diversity indices of
soil bacteria but increase them in soil fungi to some extent, suggesting that drought could
have a negative effect on the diversity of soil fungal communities [119]. Drought increases
the fungal richness but does not alter the bacterial richness, for the reason that fungi are
thought to have a greater ability to cope with drought than bacteria, owing to their ca-
pability to cumulate osmoregulatory solutes to protect their filamentous structure and
metabolism [113,120,121]. This was partly consistent with our results that drought strongly
altered the composition of soil fungal communities but did not significantly affect the
composition of soil bacterial communities. Recently, a study also found that drought was
related with an increase in the Gram-positive:Gram-negative bacteria ratio [101]. Soil fungi
may remain active at a very low content of soil water compared with soil bacteria [107,116].
Since fungi can produce a large mass of hyphae that improves the transfer of moisture
across long distances [114], they are likely to be more tolerant to drought compared with
bacteria. Moreover, the fungi:bacteria ratio has a positive relationship with soil water
content, and fungi may easily have been water-restricted compared to bacteria [45,122,123].
Besides, specialized microbes show some different responses to global change factors effects
compared with fungi and bacteria [118]. For example, specialized microbes may play some
key soil functions (such as ammonia oxidizer, methanotrophic, diazotrophic, phosphorus
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mineralizer, etc.), which are vulnerable to diversity loss owing to their lower richness [124].
The root system may improve diversity of microbes, most of which (e.g., Pseudomonas,
Bacillus) can synthesize phytohormones, hydrolase enzymes or siderophores, helping plants
to cope with abiotic stress (such as drought). In contrast, our results indicated that drought
mildly decreased the relative abundances of Bacillus. Plant resistance was improved by
the root-associated bacterial microbiome to drought by water stress-induced promotion
capability as well [125]. Mycorrhizal fungi also can help plants for water and nutrients
uptake through extraradical hyphae [126]. However, in this study, we did not find changes
in these specialized microbes, possibly because the soil samples used for high-throughput
sequencing were from non-rhizosphere. Furthermore, fungi tend to have slow turnover
rates and utilize nitrogen-poor substrates, while bacteria are characterized by high nutrient
requirements and usually dominate in soil habitats that contain high-quality substrates,
such as those with lower C:P and C:N ratios [36,127,128]. In this study, we found that
drought increased the C:P and C:N ratios in soils, which would be likely to favor fungal
growth compared with that of bacteria. In addition, one study indicated that soil fungi are
more sensitive to the wetting–drying cycle than soil bacteria under drier conditions [129].
However, another study concluded that there was no difference [130].

Although drought did not significantly affect the soil microbial diversity in this study,
we found that drought clearly altered the composition of soil microbes. We found that the
composition of soil fungal communities was more influenced by drought than bacteria,
regardless of the phylum or genus level. A previous study suggested that Bacteroidetes and
Proteobacteria are sensitive to drought, while Actinobacteria and Firmicutes are resistant to
drought [131], which was not entirely consistent with our results. We found that drought
decreased the relative abundances of Ascomycota, Proteobacteria and Firmicutes but
increased those of Basidiomycota, Actinobacteria and Acidobacteria at the phylum level,
which is consistent with previous findings that drought increased the relative abundance
of Actinobacteria [132]. This is because soil microbes may show quite different responses
to drought based on their adaptation to specific environmental conditions [42,133]. In
addition, we found that drought strongly increased the relative abundances of Coprinellus
and Humicola but decreased those of Podospora and Acremonium at the genus level. Moreover,
we found that drought increased the relative abundances of Acidobacteria, Pseudomonas
and Rubrobacter to some degree but mildly decreased those of Sphingomonas and Bacillus.
Taken together, these results imply that the adaptation of key soil fungi and/or bacteria are
important for plants to manage drought [132].

Moreover, we found that drought indirectly affected the diversity and composition of
soil microbial communities by altering the soil physical and chemical factors, particularly
the soil organic carbon, soil pH, available P, NH4

+-N and NO3
−-N, which were consistent

with previous findings that the availability of water affected the soil microbial communities
by altering the availability of soil pH and nutrients [118,134–137]. In particular, we found
that the abundances of Basidiomycota, Proteobacteria, Acidobacteria and Actinobacteria
were closely positively related to the soil organic carbon and soil pH under drought
conditions, while the soil available P, NH4

+-N and NO3
−-N were closely positively related

to those of Ascomycota, Chloroflexi, Firmicutes and Bacteroidetes. Given that the soil
fungal community could potentially play an important role in mediating the growth
of L. davurica in response to drought, the results of VPA further indicated that drought
contributed a larger proportion of variation to the soil fungal β-diversity compared with
the soil properties, thus indicating a stronger effect of drought in driving the soil fungal
community.

5. Conclusions

This study first revealed the effects of drought on L. davurica owing to changes in the
soil microbial communities and the availability of nutrients. Our findings demonstrated
that drought considerably altered the performance and endogenous hormones of L. davurica,
soil physicochemical properties, soil microbial biomass, and the composition of soil fungal
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and bacterial communities. The abundances of Coprinellus had the strongest positive
relationship with the soil organic carbon, soil pH, available P, NH4

+-N and NO3
−-N under

drought conditions, and possibly mediating the response of L. davurica growth to drought.
Drought clearly contributes a larger proportion of variation relative to soil properties to soil
fungal communities. An additional benefit of this study is its analysis of forage production
and natural grassland vegetation recovery in semiarid regions of the Loess Plateau of
northwest China. However, future experiments under natural conditions are necessary to
fully understand how drought alters the abiotic and biotic properties of soil to regulate the
growth of L. davurica.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8040384/s1, Figure S1: Effects of drought on (A) plant height
and (B) length of primary root of Lespedeza davurica; Figure S2. Rarefaction curves of OTUs for (A)
fungal and (B) bacterial communities. Table S1: Basic concentrations of soil organic carbon (SOC),
total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), inorganic nitrogen (NH4

+-N
and NO3

−-N) and pH before the sowing in glasshouse.
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