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ABSTRACT: Influenza A and B viruses spread out worldwide,
causing several global concerns. Discovering neuraminidase
inhibitors to prevent influenza A and B viruses is thus of great
interest. In this work, a machine learning model was trained and
tested to evaluate the ligand-binding affinity to neuraminidase. The
model was then used to predict the binding affinity of compounds
from the CHEMBL database, which is a manually curated database
of bioactive molecules with drug-like properties. The physical
insights into the binding process of ligands to neuraminidase were
clarified via molecular docking and molecular dynamics simu-
lations. Experimental investigation on enzymatic activity validated our computational results and suggested that 2 compounds were
potential inhibitors of neuraminidase of the influenza A and B viruses.

■ INTRODUCTION
Influenza A and B viruses have caused major influenza
outbreaks or pandemics that have affected millions of people
worldwide.1−3 The viruses are divided into subtypes based on
two proteins on their surface: hemagglutinin (H) and
neuraminidase (N). These subtypes have been responsible
for major pandemics throughout the 20th and 21st centuries
such as the H1N1 pandemic in 1918, H2N2 pandemic in
1957, and H3N2 pandemic in 19681,4 and outbreaks of
H5N1,2,5 H1N1,6,7 H5N8,8 and H7N99 in recent years. New
strains of the viruses continue to emerge, and the risk of drug
resistance has sparked great interest into finding potential
antiviral compounds.10−16

Neuraminidase is a key surface glycoprotein that plays an
important role in viral replication and infection. It is a proven
target for developing drugs against influenza A and B
viruses.17,18 Several drugs recommended for treating influenza
virus, such as oseltamivir, zanamivir, and peramivir, are
neuraminidase inhibitors. Existing neuraminidase inhibitors
were rationally developed many years ago since they mimic the
structure of sialic acid, the natural ligand of neuraminidase.
However, these drugs suffer from serious limitations such as
the potential emergence of oseltamivir-resistant strains19,20 and
the poor oral bioavailability of zanamivir.21 On the other hand,
more virulent variants such as H5N1 and H7N9 have emerged.
Therefore, researching novel inhibitors capable of effectively
inhibiting neuraminidase and overcoming limitations of
existing inhibitors continues to be a topic of interest.

Computer-aided drug design (CADD) is a powerful tool for
rapid and accurate screening of several million compounds for

potential inhibitors of enzymes.22−24 The adoption of CADD
methods has rapidly increased due to their potential to
significantly reduce the cost and time of a new drug
development.25 CADD can be used for both searching for
new inhibitors and repurposing existing drugs.26−29 CADD has
contributed to the discovery of severally available drugs such as
dorzolamide,24,30 saquinavir, ritonavir, and indinavir.22

The machine learning (ML) method has been widely used
to predict inhibitors for neuraminidase. Classification models
based on support vector machine, naiv̈e Bayes, and random
forest (RF)31−33 have been applied to classify active versus
inactive compounds for inhibiting neuraminidase. Training
data include a few hundred active and inactive compounds,
and standard molecular descriptors such as MACCS and
ECFP4 have been used as feature input into the models. To
the best of our knowledge, no regression models have been
trained for neuraminidase inhibitors.

In this work, we aim to use a combination of computational
and experimental approaches to find potential inhibitors for
inhibiting neuraminidase. Validation of the computational
approach against experiments helps enhance its reliability for
future applications. In particular, the trained ML regression
model was employed to predict the ligand-binding free energy
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of approximately 2 million compounds of the ChEMBL
database to neuraminidase. The experimental studies were
then carried out to validate the ML outcomes. The shortlist of
potential candidates was obtained. The experiment would then
validate the ML outcomes. Besides, molecular docking and
MD simulations were executed to clarify the physical insights
into the binding process of these compounds to neuramini-
dase.

■ MATERIALS AND METHODS
Data Set. A set of 1154 compounds with SMILES and their

corresponding association constants Ki was collected from
BindingDB. The binding free energy was computed from Ki as
ΔG = RT ln Ki, where R is the molar gas constant and T = 298
K is the absolute temperature. The experimental binding free
energy ΔG was employed as a label for training ML regression
models. The set was randomly divided into a train set
consisting of 989 compounds and a test set consisting of 165
compounds. The train set was used to train ML models, and
the test set was used for performance evaluation. The ΔG
distribution of train and test sets is shown Figure S1 in the
Supporting Information. The experimental binding free energy
in the training data ranges in a wide range from strongly active
(−14.2 kcal/mol) to essentially inactive (5.1 kcal/mol)
compounds. About 40% of compounds in the training data
have a binding free energy of −7 kcal/mol (equivalent to IC50
of about 10 μM) or weaker. The best ML model was chosen to
perform prediction of ligand-binding free energy to neurami-
nidase for the CHEMBL database,34 consisting of nearly 2
million compounds. Compounds that have already been in the
train and test sets were excluded from the CHEMBL set. The
top 100 compounds having strongest binding affinity were
selected for further investigations using molecular dynamics
(MD) simulations, enzymatic activity, and cytotoxicity assays.
Training ML Models. We trained four regression models

including linear regression (LR), RF, extreme gradient
boosting (XGBoost),35 and convolutional networks on graphs
(GraphConv).36 LR served as a baseline model due to its
simplicity and it being less prone to overfitting. RF and
XGBoost are both ensemble methods. They differ in that in
RF, regression tree learners are fit independently based on
bootstrapping and random subspace of the train sample, while
in XGBoost, the learners are instructed sequentially, with each
student attempting to rectify the errors made by their
predecessors. Furthermore, in RF, prediction is made by
averaging over the predictions of all the trees in the ensemble,
while in XGBoost, the weighted sum of predictions from all
learners is used as a final prediction. The features for LR, RF,
and XGBoost are physicochemical descriptors computed using
the RDKitDescriptors toolkit included within DeepChem.37

RDKitDescriptors calculated 200 physicochemical descriptors
that were finally reduced to 104 features after removing the
ones having a mostly zero value and highly correlated features.
In the case of LR and RF, the median was used for imputing
missing values. Conversely, XGBoost does not require
imputation as it is capable of managing missing values
automatically. For LR, the features were standardized to have
a zero mean and a standard deviation of one. The deep
learning method GraphConv can learn features on the fly and,
therefore, does not require manual feature extraction. Input
into the model is a molecular graph, which is passed to
convolutional layers. The convolutional layers will acquire a

fixed-length embedding vector that is subsequently fed into a
densely connected layer.

The hyperparameters of LR, RF, and XGBoost were
optimized by minimizing the mean square error (MSE)
calculated from the training set through the application of the
10-fold cross-validation technique. The Hyperopt library38 was
utilized to identify the optimal set of hyperparameters. In our
exploration of the GraphConv model, we experimented with
various configurations, including the number of units in the
graph_cov layers and dense layers as well as adjustments to the
learning rate and dropout rates. The performance seemed to be
more sensitive to the network size than to the learning and
dropout rates. The Python library Scikit-Learn39 was utilized to
train LR and RF models, while the XGBoost library was
employed for XGBoost models. The GraphConv model was
trained using the DeepChem37 library. Setting information on
ML models is provided in the Supporting Information.
Molecular Docking. AutoDock Vina40 was used to dock

CHEMBL ligands into the binding pocket of neuraminidase,
whose 3D structure in complex with zanamivir was obtained
from the protein data bank with PDB ID 4B7Q,41 representing
the neuraminidase of the H1N1 2009 influenza virus with a
high resolution of 2.73 Å. The docking empirical parameters
were modified to improve docking accuracy according to our
previous study.42 The force field parameters from AutoDock-
Tools were used to prepare the protein and ligands for
docking. The chemicalize Web server, a tool of ChemAxon,
was utilized to predict the ligand protonation states.43 The
center of the docking grid was chosen as the center of mass of
zanamivir and the size of the grid was 24 × 24 × 24 Å3. The
docking poses with the lowest docking energy were selected for
subsequent MD simulations.
Molecular Dynamics Simulations. MD simulations were

performed to sample the conformational space of complexes
between neuraminidase and ligands in aqueous solution. The
Amber99SB-iLDN force field44 was employed to parametrize
interatomic interactions of the protein and counterions. For
water molecules, the TIP3P water model45 was used. The
general Amber force field46 was employed for Lennard-Jones
and bonded interactions for the ligand. AmberTools1847 and
ACPYPE packages48 were applied to fit the point charges of
the ligand using the restrained electrostatic potential method.46

The fitting procedure required as an input the electrostatic
potential grid, which was calculated by density functional
theory based on the double hybrid functional Mp2, basis set 6-
31G(d,p), and implicit solvent (ε = 78.4). The neuramini-
dase−ligand complexes were inserted into a water box with
dodecahedral periodic boundary conditions. The box size was
chosen such that there was a minimum distance of 16.0 Å
between the protein−ligand complex and the box edge. The
box had a volume of 569.75 nm3 and contained a total of
56,000 atoms. The water box for MD simulations of free
ligands had a volume of 56.16 nm3 and a total number of
atoms of 5500.

Energy minimization with the steepest descent algorithm
was first performed to remove steric clashes and drive the
conformation to a local minimum. Then, short MD
simulations of 100 ps under NVT and NPT conditions were
performed to equilibrate the system. During this equilibration
step, Cα atoms were restrained by applying a weak harmonic
restraining potential. Finally, 50 ns MD simulations were
performed to generate data for structural and energetic
analyses. To improve statistical sampling, MD simulation for
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the complex was repeated 2 times using different random
number seeds. We used GROMACS version 2019.649 to
perform MD simulations.
Neuraminidase Enzymatic Activity Assays. The NA-

Fluor Influenza Neuraminidase Assay Kit (Applied Biosystems,
Foster City, CA) using MUNANA as the substrate was utilized
to assess the effectiveness of compounds.50 The virus stock was
titrated using the NA activity assay, and the optimal virus
dilution (1:64 dilution) for the neuraminidase inhibition assay
was selected. Compounds were tested for NA inhibitory
activity at 100 μM. Fluorescence was measured by an ELISA
Reader (Molecular Devices; Lmax II384) at an emission of 460
nm and an excitation of 360 nm. A zanamivir control (0.02
μM, MedChemExpress, Monmouth Junction, NJ, USA) was
included for comparison.
Analysis Tools. The statistical errors of correlation

coefficient and root-mean-square error (RMSE) were
estimated using 1000 rounds of the bootstrapping method.51

The intermolecular side chain (SC) contact between the ligand
and the residual neuraminidase was counted when the spacing
between non-hydrogen atoms of them was ≤4.5 Å. The
intermolecular hydrogen bond (HB) between the residual
neuraminidase and ligand was counted when the angle ∠ of the
acceptor−hydrogen−donor was ≥135° and the distance
between the acceptor and donor was ≤3.5 Å.

The experimental data are depicted as mean values
accompanied by their standard error of the mean (SEM,
derived from no fewer than two independent experiments.
Statistical analyses were conducted using a two-tailed, unpaired
Student’s t test with Prism software (version 8.0, GraphPad
Software, San Diego, CA, USA). Significance levels were set at
p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***), with “ns”
denoting nonsignificant differences between the indicated
settings.

■ RESULTS AND DISCUSSION
ML Calculations. The predictive performance of trained

ML models was assessed by using three performance metrics,
namely, RMSE, Pearson’s R, and Spearman’s ρ correlation
coefficients. Table 1 shows a performance comparison of the

four ML models for the test set consisting of 165 compounds.
The baseline model LR gave the poorest performance with a
large RMSE (RMSE = 2.80 ± 0.32 kcal/mol) and a low
correlation (Pearson’s R = 0.46 ± 0.07; Spearman’s ρ = 0.58 ±
0.05) with respect to the experiment. This is not unexpected
since LR is a linear model, which is unable to capture nonlinear
relationships between the input features and the target label of
binding free energy. Using more powerful nonlinear methods
such as RF, XGBoost, and GraphConv significantly improves
the predictive performance, as shown in Table 1. The
GraphConv model gave the best performance with the lowest
test RMSE (RMSE = 1.86 ± 0.22) and highest test correlation

(Pearson’s R = 0.80 ± 0.04, Spearman’s ρ = 0.84 ± 0.03).
Figure 1 shows a comparison between predicted and

experimental binding free energies. However, GraphConv’s
performance does not differ significantly from that of the
XGBoost model, which is the second best. Assuming that
compounds having a binding free energy of −7 kcal/mol or
lower are binder and those with a higher value than that are
nonbinder, we can calculate the confusion matrix, which is
shown in Table S1 in the Supporting Information. The
accuracy in predicting binder vs nonbinder is about 82%.

The GraphConv model was chosen to make predictions of
binding free energies for nearly 2 million compounds in the
CHEMBL data set. The distribution of predicted binding free
energies is shown in Figure S2 in the Supporting Information.
The mean and standard deviation of the distribution are −6.84
and 0.97 kcal/mol, respectively. A short list of 400 compounds
having the strongest binding free energy to neuraminidase
(ranging from −12.4 to −10.10 kcal/mol) were chosen for
further investigations. Among these 400 compounds, 184 of
them were previously tested and therefore removed from the
list. These 184 compounds are mostly active with the
experimental binding free energy ranging from −14.9 to
−7.0 kcal/mol, and 95% of them have an experimental binding
free energy more negative than −8.5 kcal/mol. It should be
noted that these compounds were not included in our training
data, and the ML predicted binding free energies for them are
highly accurate with RMSE = 1.57 kcal/mol. Then, 11
compounds (see Table S2 in the Supporting Information for
the list of compounds) were randomly selected for
experimental investigations to assess their enzymatic inhibitory
activity. Moreover, we also performed molecular docking and
MD simulations to study their binding conformation to the
enzyme.
Enzymatic Assays. The inhibition of neuraminidase

activity was then evaluated with the Influenza Neuraminidase
Assay Kit, using zanamivir as a positive control (Figure 2).
Two of the 11 compounds (compounds 1 and 7) exhibited
potential inhibition of NA activity. However, four compounds
(compounds 4−6 and 11) yielded higher values of readings
than the virus-only control. We suspect that these compounds
may exhibit unexpected stimulatory effects on the neuramini-
dase enzyme, either directly or indirectly, resulting in higher
enzymatic activity levels than that in the virus-alone condition.
However, we cannot exclude the autofluorescence exhibited by

Table 1. Comparison of ML Models’ Performance in
Predicting Binding Free Energy ΔG for 165 Test
Compounds to Neuraminidase

model RMSE (kcal/mol) Pearson’s R Spearman’s ρ
LR 2.80 ± 0.32 0.46 ± 0.07 0.58 ± 0.05
RF 2.03 ± 0.23 0.76 ± 0.03 0.83 ± 0.03
XGBoost 1.94 ± 0.22 0.78 ± 0.03 0.83 ± 0.03
graphConv 1.86 ± 0.22 0.80 ± 0.04 0.84 ± 0.03

Figure 1. Comparative analysis of binding free energy derived from
experimental data versus predictions generated by the GraphConv
model for a set of 165 test compounds.
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these compounds. Moreover, compounds could potentially
stabilize the neuraminidase enzyme, prolonging its activity and
enhancing the signal generated by substrate cleavage. Addi-
tionally, these compounds might inadvertently interact with
assay components or viral particles in a manner that artificially
amplifies the fluorescence signal generated by the cleavage of
the MUNANA substrate.
Structural Insights from Molecular Docking and MD

Simulations. In order to gain physical insight into the binding
process of the top CHEMBL compounds to neuraminidase, 11
selected compounds were docked into the binding site of
neuraminidase. Table S2 in the Supporting Information shows
docking energy, which ranges from −12 to −9 kcal/mol.
Docking poses of 11 compounds binding to neuraminidase are
shown in Table S3 and the Supporting Information. For most
of these poses, at least two HBs were formed between the
ligand and receptor’s residues.

A well-known limitation of docking methods is that they
ignore the dynamics and treat the protein conformation
essentially as rigid. Therefore, in the next step, we performed
MD simulations to refine the docking structure of
CHEMBL1430043 and neuraminidase. Figure S3 (in the
Supporting Information) shows the RMSD of the two
independent MD trajectories where the complex conformation
is stabilized after about 100 ns.

Figure 3 shows the binding pose of CHEMBL1430043 taken
as a representative structure in MD trajectory 1. In this binding
pose, the compound makes several HB contacts with
neuraminidase’s residues in the binding pocket. A very similar
binding pose was also observed during another independent
MD simulation (see Figure S5 in the Supporting Information),
which indicates that the structure was well equilibrated.

To study the nature of the interactions between
CHEMBL1430043 and neuraminidase, we calculated the
probability of the compound making HBs and hydrophobic
contacts with the protein, and the result is shown in Figure 4.
The important residues that make significant contacts with the
compound include Arg152, Ser180, Glu228, Ser247, Glu277,

Glu278, Agr293, Asn295, and Tyr402 and are expected to
determine the binding process.
Secondary Structure Dynamics of Complexes. To

further gain a comprehensive understanding of the changes
induced by CHEMBL1430043 within the complex, the
secondary structure was also investigated via the define
secondary structure of proteins protocol (Figure 5). In detail,
the β-content had average values of 46.5 ± 0.9% and 46.4 ±
0.9%. for trajectory 1 and trajectory 2, respectively. The α-
content of both trajectories fluctuates between 0% and 5% with
an average of 3.3 ± 0.6% and 2.3 ± 0.7% for trajectory 1 and
trajectory 2, respectively. The average values of coil-content
and turn-content of trajectory 1 were 39.7 ± 1.1% and 10.5 ±
0.7% respectively. These values remained relatively consistent
when compared to those of trajectory 2, which were 40.1 ±
1.0% and 11.2 ± 0.9%, respectively.
Free Energy Landscapes. Free energy landscape (FEL) of

the CHEMBL1430043−neuraminidase complex over the
equilibrium region 100−200 ns of MD simulations was
obtained using the GROMACS tool “gmx sham”.52,53 The
FEL was obtained and is shown in Figure 6. A minima
structure was found, which has coordinates (PC1, PC2) at
(−1.4, −0.25), of which the ligand-binding pose to

Figure 2. Validation of the compound by NA enzymatic activity assay.
Eleven compounds were evaluated at a concentration of 100 μM, with
zanamivir as the control at 0.02 μM. 1:64 dilution of virus was
selected for the assay. Data are normalized to the virus-only group,
which is arbitrarily set to 100%. The graph summarizes n = 3
independent experiments. Error bars show mean ± SEM (unpaired
two-tailed t test). *p < 0.1, **p < 0.01, ****p < 0.0001, and ns = not
significant. Comparisons between the virus-only group and compound
1, compound 7, and zanamivir yielded p-values of 0.0146, 0.0079, and
<0.0001, respectively.

Figure 3. Binding pose of CHEMBL1430043 to neuraminidase in the
representative structure using the clustering method with a non-
hydrogen atom RMSD cutoff of 0.2 nm over an interval of 100−200
ns of MD trajectory 1.

Figure 4. Probability of forming SC and HB contacts between
CHEMBL1430043 and neuraminidase of essential residues. The
calculations were performed over the time interval of 100−200 ns
during the MD simulation. See Figure S6 in the Supporting
Information for a plot of the probability of forming SC and HB
contacts across all residues.
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neuraminidase is described in Figure 7. The population
distribution of this minima is 15%.

■ CONCLUSIONS
We employed ML approaches to virtually screen the large
CHEMBL compound database consisting of nearly 2 million
compounds. The GraphConv model shows the best perform-
ance on the test set with a Pearson’s R correlation of 0.8 and an

RMSE of 1.86 kcal/mol. Molecular docking and MD
simulations were employed to understand structural insights
into the binding process between the top compounds and
neuraminidase. The MD simulations shed light into SC and
HB contacts between the top compound and neuraminidase
and indicate important residues that stabilize the protein−
ligand interaction. Experimental investigations on the
enzymatic inhibition of 11 compounds randomly selected
from the top 400 compounds indicated that compounds 1 and
7 might be able to inhibit neuraminidase. This shows that
virtual screening helps significantly increase the hit rate, which
is normally less than 1% for conventional high-throughput
screening methods. Such findings underscore the immense
value of virtual screening in expediting the identification of
potential drug candidates with IAV-inhibitory properties.

■ ASSOCIATED CONTENT
Data Availability Statement
All relevant data necessary to reproduce all results in the paper
are within the main text, Supporting Information file, and the
GitHub repository (https://github.com/nguyentrunghai/
Neuraminidase/releases/tag/v1.0). Python code for training
ML models, training data set, MD input files, parameter files,
and topology files can be found in this Github repository.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c07194.

Setting information on ML models; confusion matrix for
the test compounds; ML predicted binding free energy
and docking energy for 11 compounds; docked binding
pose of inhibitors with residues in N1 protein;
distribution of experimental binding free energies for
the train and test sets; distribution of predicted binding
free energies for ChEMBL compounds; RMSD and
RMSF during MD simulations for the neuraminidase in
complex with CHEMBL1430043; radius of gyration and
HBs during MD simulations for the neuraminidase in
complex with CHEMBL1430043; binding pose of
CHEMBL1430043 to neuraminidase; and the proba-
bility of forming SC and HB contacts between
CHEMBL1430043 and neuraminidase (PDF)
The training and testing data (XLSX)

■ AUTHOR INFORMATION
Corresponding Authors

Son Tung Ngo − Laboratory of Biophysics, Institute for
Advanced Study in Technology, Ton Duc Thang University,
Ho Chi Minh City 72915, Vietnam; Faculty of Pharmacy,
Ton Duc Thang University, Ho Chi Minh City 72915,
Vietnam; orcid.org/0000-0003-1034-1768;
Email: ngosontung@tdtu.edu.vn

Jim-Tong Horng − Department of Biochemistry and
Molecular Biology, College of Medicine, Molecular Infectious
Disease Research Center, Chang Gung Memorial Hospital,
and Research Center for Emerging Viral Infections, College of
Medicine, Chang Gung University, Taoyuan 333, Taiwan;
Present Address: Research Center for Industry of Human
Ecology and Research Center for Chinese Herbal
Medicine, Graduate Institute of Health Industry
Technology, Chang Gung University of Science and
Technology, Taoyuan 333, Taiwan; Email: jimtong@
cgu.edu.tw

Figure 5. Secondary structure of the neuraminidase in complex with
the CHEMBL1430043 inhibitor.

Figure 6. FEL of the simulated neuraminidase-CHEMBL1430043
systems based on the principal component analysis. In particular, the
first and second principal components were utilized as two reaction
coordinates. The systems were analyzed over an interval of 100−200
ns of equilibrium of both simulated MD trajectories.

Figure 7. Representative structures of the neuraminidase +
CHEMBL1430043, which are located in the corresponding minima
of the FEL.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c07194
ACS Omega 2024, 9, 48505−48511

48509

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c07194/suppl_file/ao4c07194_si_001.pdf
https://github.com/nguyentrunghai/Neuraminidase/releases/tag/v1.0
https://github.com/nguyentrunghai/Neuraminidase/releases/tag/v1.0
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c07194/suppl_file/ao4c07194_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c07194/suppl_file/ao4c07194_si_002.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Son+Tung+Ngo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1034-1768
mailto:ngosontung@tdtu.edu.vn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jim-Tong+Horng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:jimtong@cgu.edu.tw
mailto:jimtong@cgu.edu.tw
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c07194?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Authors
Trung Hai Nguyen − Laboratory of Biophysics, Institute for

Advanced Study in Technology, Ton Duc Thang University,
Ho Chi Minh City 72915, Vietnam; Faculty of Pharmacy,
Ton Duc Thang University, Ho Chi Minh City 72915,
Vietnam; orcid.org/0000-0003-1848-3963

Ngoc Quynh Anh Pham − Department of Biochemistry and
Molecular Biology, College of Medicine, Chang Gung
University, Taoyuan 333, Taiwan

Quynh Mai Thai − Laboratory of Biophysics, Institute for
Advanced Study in Technology, Ton Duc Thang University,
Ho Chi Minh City 72915, Vietnam; Faculty of Pharmacy,
Ton Duc Thang University, Ho Chi Minh City 72915,
Vietnam; orcid.org/0000-0003-2149-5690

Van V. Vu − NTT Hi-Tech Institute, Nguyen Tat Thanh
University, Ho Chi Minh City 72820, Vietnam

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.4c07194

Author Contributions
¶T.H.N. (nguyentrunghai@tdtu.edu.vn) and N.Q.A.P. con-
tributed equally to this work. All authors designed the studies,
collected and analyzed the data, and wrote the manuscript.
THN trained and tested ML models. THN predicted potential
inhibitors for NA via ML calculations. NQAP collected the
database of available inhibitors vs NA from bindingdb.org.
QMT performed molecular docking and MD simulations. VVV
helped in discussing the results. STN and JTH provided
concept, supervise, writing, editing, etc.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Ho Chi Minh City
Foundation for Science and Technology Development under
grant number 115/QD̵-SKHCN. This research was made
possible through the generous financial support of Chang
Gung Memorial Hospital, Taoyuan, Taiwan, under the grants
BMRP416 and CMRPD1M0881-3. We would like to express
our appreciation for the additional support received from the
National Science and Technology Council, which granted
support under the reference numbers 113-2321-B-182-003,
112-2321-B-182-003, 112-2320-B-182-034-MY3, and 111-
2321-B-182-001. Furthermore, our research benefited from
funding from the Research Center for Emerging Viral
Infections within the Featured Areas Research Center
Program, part of the Higher Education Sprout Project
supported by the Ministry of Education and the National
Science and Technology Council, under the grants 110-2634-
F-182-001 and 111-2634-F-182-001.

■ REFERENCES
(1) Palese, P. Influenza: old and new threats. Nat. Med. 2004, 10

(S12), S82−S87.
(2) Yen, H.-L.; Webster, R. Pandemic Influenza as a Current Threat.

In In Vaccines for Pandemic Influenza; Compans, R. W., Orenstein, W.
A., Eds.; Springer Berlin Heidelberg, 2009; Vol. 333, pp 3−24.
(3) Matsuzaki, Y.; Sugawara, K.; Takashita, E.; Muraki, Y.; Hongo,

S.; Katsushima, N.; Mizuta, K.; Nishimura, H. Genetic diversity of
influenza B virus: The frequent reassortment and cocirculation of the
genetically distinct reassortant viruses in a community. J. Med. Virol.
2004, 74 (1), 132−140.

(4) Hsieh, Y. C.; Wu, T. Z.; Liu, D. P.; Shao, P. L.; Chang, L. Y.; Lu,
C. Y.; Lee, C. Y.; Huang, F. Y.; Huang, L. M. Influenza pandemics:
past, present and future. J. Formos. Med. Assoc. 2006, 105 (1), 1−6.
(5) Ferguson, N. M.; Fraser, C.; Donnelly, C. A.; Ghani, A. C.;

Anderson, R. M. Public Health Risk from the Avian H5N1 Influenza
Epidemic. Science 2004, 304 (5673), 968−969.
(6) Patel, M; Dennis, A; Flutter, C; Khan, Z Pandemic (H1N1)

2009 influenza. Br. J. Anaesth. 2010, 104, 128−142.
(7) Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and pandemic

potential of swine-origin H1N1 influenza virus. Nature 2009, 459
(7249), 931−939.
(8) Li, M.; Liu, H.; Bi, Y.; Sun, J.; Wong, G.; Liu, D.; Li, L.; Liu, J.;

Chen, Q.; Wang, H.; He, Y.; Shi, W.; Gao, G. F.; Chen, J. Highly
Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds,
Qinghai Lake, China. Emerg. Infect. Dis. 2017, 23 (4), 637−641.
(9) Wu, Y.; Bi, Y.; Vavricka, C. J.; Sun, X.; Zhang, Y.; Gao, F.; Zhao,

M.; Xiao, H.; Qin, C.; He, J.; Liu, W.; Yan, J.; Qi, J.; Gao, G. F.
Characterization of two distinct neuraminidases from avian-origin
human-infecting H7N9 influenza viruses. Cell Res. 2013, 23 (12),
1347−1355.
(10) Perrier, A.; Eluard, M.; Petitjean, M.; Vanet, A. In Silico Design

of New Inhibitors Against Hemagglutinin of Influenza. J. Phys. Chem.
B 2019, 123 (3), 582−592.
(11) Choi, W.-S.; Jeong, J. H.; Kwon, J. J.; Ahn, S. J.; Lloren, K. K.

S.; Kwon, H.-I.; Chae, H. B.; Hwang, J.; Kim, M. H.; Kim, C.-J.;
Webby, R. J.; Govorkova, E. A.; Choi, Y. K.; Baek, Y. H.; Song, M.-S.
Screening for Neuraminidase Inhibitor Resistance Markers among
Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase
Subtypes. J. Virol. 2018, 92 (1), 10.
(12) Albohy, A.; Zhang, Y.; Smutova, V.; Pshezhetsky, A. V.; Cairo,

C. W. Identification of Selective Nanomolar Inhibitors of the Human
Neuraminidase, NEU4. ACS Med. Chem. Lett. 2013, 4 (6), 532−537.
(13) Zhang, G.-Q.; Chang, H.; Gao, Z.; Deng, Y.-p.; Zeng, S.; Shang,

L.; Ding, D.; Liu, Q. Neuraminidase-Activatable NIR Fluorescent
Probe for Influenza Virus Ratiometric Imaging in Living Cells and
Colorimetric Detection on Cotton Swabs. ACS Mater. Lett. 2023, 5
(3), 722−729.
(14) Tam, N. M.; Nguyen, M. T.; Ngo, S. T. Evaluation of the

Absolute Affinity of Neuraminidase Inhibitor using Steered Molecular
Dynamics Simulations. J. Mol. Graph. Model. 2017, 77, 137−142.
(15) Nagao, M.; Yamaguchi, A.; Matsubara, T.; Hoshino, Y.; Sato,

T.; Miura, Y. De Novo Design of Star-Shaped Glycoligands with
Synthetic Polymer Structures toward an Influenza Hemagglutinin
Inhibitor. Biomacromolecules 2022, 23 (3), 1232−1241.
(16) Waldmann, M.; Jirmann, R.; Hoelscher, K.; Wienke, M.;

Niemeyer, F. C.; Rehders, D.; Meyer, B. A Nanomolar Multivalent
Ligand as Entry Inhibitor of the Hemagglutinin of Avian Influenza. J.
Am. Chem. Soc. 2014, 136 (2), 783−788.
(17) Das, K.; Aramini, J. M.; Ma, L.-C.; Krug, R. M.; Arnold, E.

Structures of influenza A proteins and insights into antiviral drug
targets. Nat. Struct. Mol. Biol. 2010, 17 (5), 530−538.
(18) Stohr, K. Preventing and treating influenza. Br. Med. J. 2003,

326 (7401), 1223−1224.
(19) Hurt, A. C. The epidemiology and spread of drug resistant

human influenza viruses. Curr. Opin. Virol. 2014, 8, 22−29.
(20) Bloom, J. D.; Gong, L. I.; Baltimore, D. Permissive Secondary

Mutations Enable the Evolution of Influenza Oseltamivir Resistance.
Science 2010, 328 (5983), 1272−1275.
(21) Cass, L. M. R.; Efthymiopoulos, C.; Bye, A. Pharmacokinetics

of Zanamivir After Intravenous, Oral, Inhaled or Intranasal
Administration to Healthy Volunteers. Clin. Pharmacokinet. 1999,
36 (Supplement 1), 1−11.
(22) Van Drie, J. H. Computer-aided drug design: the next 20 years.

J. Comput. Aided Mol. Des. 2007, 21 (10−11), 591−601.
(23) Yu, W.; MacKerell, A. D. Computer-Aided Drug Design

Methods. In Antibiotics: Methods and Protocols; Sass, P., Ed.; Springer:
New York: New York, NY, 2017; pp 85−106.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c07194
ACS Omega 2024, 9, 48505−48511

48510

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Trung+Hai+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1848-3963
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ngoc+Quynh+Anh+Pham"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Quynh+Mai+Thai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2149-5690
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Van+V.+Vu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07194?ref=pdf
mailto:nguyentrunghai@tdtu.edu.vn
http://bindingdb.org
https://doi.org/10.1038/nm1141
https://doi.org/10.1002/jmv.20156
https://doi.org/10.1002/jmv.20156
https://doi.org/10.1002/jmv.20156
https://doi.org/10.1016/S0929-6646(09)60102-9
https://doi.org/10.1016/S0929-6646(09)60102-9
https://doi.org/10.1126/science.1096898
https://doi.org/10.1126/science.1096898
https://doi.org/10.1093/bja/aep375
https://doi.org/10.1093/bja/aep375
https://doi.org/10.1038/nature08157
https://doi.org/10.1038/nature08157
https://doi.org/10.3201/eid2304.161866
https://doi.org/10.3201/eid2304.161866
https://doi.org/10.3201/eid2304.161866
https://doi.org/10.1038/cr.2013.144
https://doi.org/10.1038/cr.2013.144
https://doi.org/10.1021/acs.jpcb.8b10767?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.8b10767?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1128/jvi.01580-17
https://doi.org/10.1128/jvi.01580-17
https://doi.org/10.1128/jvi.01580-17
https://doi.org/10.1021/ml400080t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ml400080t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmaterialslett.2c01112?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmaterialslett.2c01112?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmaterialslett.2c01112?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jmgm.2017.08.018
https://doi.org/10.1016/j.jmgm.2017.08.018
https://doi.org/10.1016/j.jmgm.2017.08.018
https://doi.org/10.1021/acs.biomac.1c01483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biomac.1c01483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biomac.1c01483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja410918a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja410918a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nsmb.1779
https://doi.org/10.1038/nsmb.1779
https://doi.org/10.1136/bmj.326.7401.1223
https://doi.org/10.1016/j.coviro.2014.04.009
https://doi.org/10.1016/j.coviro.2014.04.009
https://doi.org/10.1126/science.1187816
https://doi.org/10.1126/science.1187816
https://doi.org/10.2165/00003088-199936001-00001
https://doi.org/10.2165/00003088-199936001-00001
https://doi.org/10.2165/00003088-199936001-00001
https://doi.org/10.1007/s10822-007-9142-y
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c07194?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(24) Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W.
Computational Methods in Drug Discovery. Pharmacol. Rev. 2014,
66 (1), 334−395.
(25) Marshall, G. R. Computer-Aided Drug Design. Annu. Rev.

Pharmacol. Toxicol. 1987, 27, 193−213.
(26) Ngo, S. T.; Minh, N. H.; Thuy, H. L. T.; Minh, Q. P.; Vi

Khanh, T.; Nguyen Thanh, T.; Van, V. Assessing Potential Inhibitors
for SARS-CoV-2 Main Protease from Available Drugs using Free
Energy Perturbation Simulations. RSC Adv. 2020, 10, 40284−40290.
(27) Ngo, S. T.; Fang, S.-T.; Huang, S.-H.; Chou, C.-L.; Huy, P. D.

Q.; Li, M. S.; Chen, Y.-C. Anti-Arrhythmic Medication Propafenone a
Potential Drug for Alzheimer’s Disease Inhibiting Aggregation of Aβ:
In Silico and In Vitro Studies. J. Chem. Inf. Model. 2016, 56 (7),
1344−1356.
(28) Tam, N. M.; Pham, M. Q.; Ha, N. X.; Nam, P. C.; Phung, H. T.

T. Computational Estimation of Potential Inhibitors from Known
Drugs Against the Main Protease of SARS-CoV-2. RSC Adv. 2021, 11
(28), 17478−17486.
(29) Thai, Q. M.; Phung, H. T. T.; Pham, N. Q. A.; Horng, J.-T.;

Tran, P.-T.; Tung, N. T.; Ngo, S. T. Natural compounds inhibit
Monkeypox virus methyltransferase VP39 in silico studies. J. Biomol.
Struct. Dyn. 2024, 1−9.
(30) Vijayakrishnan, R. Structure-based drug design and modern

medicine. J. Postgrad. Med. 2009, 55 (4), 301−304.
(31) Li, Y.; Kong, Y.; Zhang, M.; Yan, A.; Liu, Z. Using Support

Vector Machine (SVM) for Classification of Selectivity of H1N1
Neuraminidase Inhibitors. Mol. Inf. 2016, 35 (3−4), 116−124.
(32) Zhang, L.; Ai, H.; Zhao, Q.; Zhu, J.; Chen, W.; Wu, X.; Huang,

L.; Yin, Z.; Zhao, J.; Liu, H. Computational Prediction of Influenza
Neuraminidase Inhibitors Using Machine Learning Algorithms and
Recursive Feature Elimination Method. In Bioinformatics Research and
Applications; Cai, Z., Daescu, O., Li, M., Eds.; Springer International
Publishing: Cham, 2017; pp 344−349.
(33) Lian, W.; Fang, J.; Li, C.; Pang, X.; Liu, A.-L.; Du, G.-H.

Discovery of Influenza A virus neuraminidase inhibitors using support
vector machine and Naiv̈e Bayesian models. Mol. Diversity 2016, 20
(2), 439−451.
(34) Mendez, D.; Gaulton, A.; Bento, A. P.; Chambers, J.; De Veij,

M.; Félix, E.; Magariños, M.; Mosquera, J. F.; Mutowo, P.; Nowotka,
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