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Flow cytometric analyses showed frequent and functional memory T-cell response to SARS-CoV-2 for 

8 months post-symptom onset. Memory CD4+ T-cell response tended to be greater in severe 

patients than in mild or asymptomatic patients. 
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ABSTRACT  

Background. Understanding the memory T-cell response to severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) is crucial for assessing the longevity of protective immunity after SARS-

CoV-2 infection or coronavirus disease-2019 (COVID-19) vaccination. However, the longitudinal 

memory T-cell response up to 8 months post-symptom onset (PSO) according to the severity of 

illness is unknown. 

Methods. We analyzed peripheral blood mononuclear cells (PBMCs) from healthy volunteers or 

patients with COVID-19 who experienced asymptomatic, mild, or severe illness at 2, 5, and 8 months 

PSO. SARS-CoV-2 spike, nucleocapsid, and membrane protein-stimulated PBMCs were subjected to 

flow cytometry analysis  

Results. A total of 24 patients—seven asymptomatic and nine with mild and eight with severe 

disease—as well as six healthy volunteers were analyzed. SARS-CoV-2-specific OX40+CD137+ CD4+ T 

cells and CD69+CD137+ CD8+ T cells persisted at 8 months PSO. Also, antigen-specific cytokine-

producing or polyfunctional CD4+ T cells were maintained for up to 8 months PSO. Memory CD4+ T-

cell responses tended to be greater in patients who had severe illness than in those with mild or 

asymptomatic disease. 

Conclusions. Memory response to SARS-CoV-2, based on the frequency and functionality, persists 

for 8 months PSO. Further investigations involving its longevity and protective effect from 

reinfection are warranted. 

 

Keywords: Memory response, T-cell, SARS-CoV-2, 8 months, severity 
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Introduction 

Although 1 year has elapsed the first report of coronavirus disease-19 (COVID-19), caused by severe 

acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the pandemic is ongoing [1, 2]. Recent 

reports on COVID-19 vaccines with high efficacy raise hope for pandemic control [3, 4]. However, 

evaluations of the duration of SARS-CoV-2-specific immune responses after SARS-CoV-2 infection or 

vaccination are needed [5, 6]. 

The cell-mediated immune response is important in both the acute and convalescent phases of 

COVID-19. Delayed clinical deterioration in severe COVID-19 after an early peak in the viral load 

suggests the importance of the immune response in the progression of COVID-19 [7], and 

hyperactivated and uncontracted T cells and their infiltration of vital organs have been implicated.[8, 

9] In addition, the memory T-cell response after the acute phase of COVID-19 is crucial for protection 

against recurrence or progression of the disease [6, 10]. 

Understanding the memory T-cell response to SARS-CoV-2 is critical to further examine the 

longevity of protective immunity after SARS-CoV-2 infection or vaccination [11]. The T-cell response 

at 2 months post-symptom onset (PSO) of COVID-19 has been reported [12, 13], and was stronger in 

patients who experienced severe illness than in those who had mild disease. However, there are few 

studies of the memory T-cell response after the first 2 months PSO. Although Dan et al. reported 

that SARS-CoV-2-specific CD4+ or CD8+ T cells declined with a half-life of 3–5 months after analyzing 

samples within and beyond 6 months PSO [14], most of the patients had mild COVID-19 and the 

evaluation was performed at a single time point. Therefore, the longitudinal memory T-cell response 

to SARS-CoV-2 up to 8 months PSO is unclear, especially depending on the severity of illness. 

We examined the longitudinal memory T-cell response to SARS-CoV-2 at 2, 5, and 8 months 

PSO, stimulated by various SARS-CoV-2 antigens, in patients who experienced asymptomatic, mild, 

or severe illness. 
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Materials and Methods 

Study design and participants 

We analyzed peripheral blood mononuclear cells (PBMCs) of patients with COVID-19, which had 

been collected at 2, 5, and 8 months (± 2, 4, and 4 weeks, respectively) after diagnosis 

(asymptomatic patients) or disease onset. All patients were laboratory-confirmed with reverse-

transcription polymerase chain reaction and were treated or monitored at Seoul National University 

Hospital or at a community treatment center in Daegu, Republic of Korea [15]. All asymptomatic 

patients were diagnosed during contact tracing in the midst of Daegu metropolitan city outbreak, 

March 2020 [16]. The Institutional Review Board of Seoul National University Hospital approved the 

study (No. H-2004-158-1118), and all participants provided written informed consent in accordance 

with the Declaration of Helsinki. 

The asymptomatic patients were defined as those with a body temperature of < 37.5℃ and 

without symptoms during their stay in the community treatment center despite undergoing a 

comprehensive medical interview twice daily [17]. Severe cases were defined as radiological 

pneumonia and an oxygen saturation of ≤ 93% in ambient air during their illness [18]. Others were 

classified as mild cases. Information on clinical characteristics—age, gender, the day of onset or 

diagnosis of COVID-19, maximal oxygen demand, and antiviral or anti-inflammatory drugs—was 

collected from the electronic medical records. 

We analyzed PBMCs of SARS-CoV-2-seronegative healthy volunteers (healthy controls, HCs) 

during the pandemic (HC [2020]) who had neither been diagnosed of COVID-19 nor had received 

COVID-19 exposure notification [17]. Additionally, we analyzed PBMCs of those who had been 

infected with Middle East respiratory syndrome coronavirus (MERS-CoV) 5 years ago and donated 

their PBMCs in 2019 (HC [MERS]) as the second control group. 

  



Acc
ep

ted
 M

an
us

cri
pt

 

6 

Collection of PBMCs and antigen stimulation 

PBMCs were purified from heparinized peripheral whole blood using a Ficoll–Histopaque gradient 

(1.077 g/mL; GE Healthcare Life Sciences, Piscataway, NJ). They were stored in liquid nitrogen until 

analysis in freezing medium comprising 50% fetal bovine serum, 10% dimethyl sulfoxide (DMSO), 

and 40% RPMI-1640 (all reagents from Thermo Fisher Scientific, Waltham, MA) [19]. 

After thawing, the PBMCs (1 × 106 cells/mL) were stimulated with 2 μg/mL SARS-CoV-2 spike 

glycoprotein peptide pool, 2 μg/mL SARS-CoV-2 NCAP (nucleocapsid) peptide pool, or 2 μg/mL SARS-

CoV-2 VME1 (membrane protein) peptide pool (all peptide pools purchased from JPT Peptide 

Technologies, Berlin, Germany), respectively, for 16–18 hours in the presence of 10 μg/mL anti-

human CD28/CD49d antibodies (Abs) (BD Biosciences, San Jose, CA) for co-stimulation. PBMCs 

stimulated with 4 μg/mL CEF peptide pool (Mabtech AB, Hamburg, Germany), composed of well-

defined peptides derived from cytomegalovirus (C), Epstein-Barr virus (E) and influenza virus (F), 

were used as the positive control. DMSO was used as the negative control. A fluorescein 

isothiocyanate–anti-human CD4 Ab (clone RPA-T4, BD Bioscience) was applied concomitantly with 

antigen stimulation. PBMCs were treated with BD Golgistop™ (Monensin, BD Biosciences) for the 

final 4 hours of the antigen stimulation. 

 

Intracellular cytokine staining and flow cytometry 

After stimulation, dead cells were stained with Fixable Viability Dye eFluor 506 (Thermo Fisher 

Scientific). Surface antigens were stained with Alexa Fluor® 700–anti-human CD8 (clone, RPA-T8), 

BUV395–anti-human CD137 (clone, 4B4-1), phycoerythrin (PE)-CF594–anti-human OX40 (clone, 

ACT35), and PE–anti-human CD69 (clone, FN50,) Abs. After fixation and permeabilization with a 

Cytofix/Cytoperm kit (BD Biosciences), PBMCs were incubated with PE-Cy7–anti-human interferon 

(IFN)- (clone, B27), eF450–anti-human tumor necrosis factor (TNF)-, and allophycocyanin (APC)–

anti-human interleukin (IL)-2 (clone, MQ1-17H12) Abs (all from BD Biosciences, except for APC–anti-

IL-2 Ab, BioLegend, San Diego, CA). Brilliant Stain Buffer (BD Biosciences) was added to each sample. 
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Stained PBMCs were analyzed using an LSR II flow cytometer (BD Biosciences) and FACSDiva 

software with a minimum target event count of 500,000 cells. Data were analyzed using FlowJo 

software version 9.9.6 (TreeStar, Ashland, OR). 

The frequencies of SARS-CoV-2-specific T cells (activation-induced markers, AIM+ T cells; OX40+ 

CD137+ CD4+ T cells or CD69+ CD137+ CD8+ T cells) [20] or SARS-CoV-2-specific cytokine-producing 

cells (IFN-, TNF-, and IL-2) among CD137+ T cells were evaluated. T cells expressing two or more of 

IFN-, TNF-, and IL-2 were determined by sequential gating and were regarded as polyfunctional 

cells (Supplementary Figure S1) [21]. 

The percentages of target populations in the unstimulated specimens (DMSO control) were 

subtracted from that in the antigen stimulated specimens to account for a nonspecific response [21]. 

If there was no available unstimulated specimen at the same time point, the mean percentages of 

samples at other time points from the same patient were used. The responses to the three SARS-

CoV-2 antigens were calculated by summing the final value of the response to each antigen [20]. 

 

Statistical analyses 

To compare the clinical characteristics of the asymptomatic, mild, and severe patients, the Kruskal-

Wallis rank sum test or linear-by-linear association was performed. Data are expressed as means ± 

standard errors of the mean (SEMs) and as dot plots. When comparing the proportions of activated 

or cytokine-producing T cells between COVID-19 patients and HCs (2020), the Mann-Whitney U test 

with the Benjamini-Hochberg method for multiple comparisons was used. The Kruskal-Wallis rank-

sum test with Dunn’s post hoc test for multiple comparisons was used to compare frequencies 

according to disease severity. 

P < 0.05 was considered indicative of statistical significance. All statistical analyses were two-

tailed and performed using PASW for Windows (version 25.0; IBM Corp., Armonk, NY) and GraphPad 

Prism 8 (GraphPad Software, La Jolla, CA). Graphs were generated using Prism 8. 
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Results 

Participants 

A total of 24 patients—seven asymptomatic and nine with mild and eight with severe disease—were 

analyzed (Table 1). No patient had evidence of immunodeficiency or a history of re-exposure to 

COVID-19 or confirmed patients during the follow-up period. The median (range) ages of the 

asymptomatic, mild, and severe patients were 25 (20–28), 48 (24–69), and 63 (39–76) years, 

respectively (P = 0.001). Regarding anti-inflammatory treatment, one mild and three severe patients 

received baricitinib [22], and two severe patients received a therapeutic dose of steroid. The 

demographics, disease severity, treatment, details on availability of samples from each patient, and 

timing of sample collections are shown in Supplementary Table S1. 

The HC (2020) group comprised six healthy volunteers who donated their blood in September 

2020. Their median (range) age was 35 (28–47) years, and five (83.3%) were male (Table 1). The HC 

(MERS) group comprised seven blood samples from MERS survivors obtained in October 2019. Their 

median (range) age at the time of donation was 60 (38–64) years, and five (85.7%) were male. 

 

Distribution of SARS-CoV-2-specific memory CD4+ or CD8+ T cells 

The frequency of SARS-CoV-2-specific (OX40+CD137+) CD4+ T cells (Figure 1A) in the patients with 

COVID-19, especially in those with severe disease, was higher at 8 months PSO than those in the HCs 

(2020) (Figure 1B and Supplementary Figure S2). The proportion of Ag-specific memory CD4+ T cells 

responding to spike protein was similar to that to the nucleocapsid and membrane proteins. The 

responses to the three antigens were significantly higher in patients with mild and severe disease 

than those of HCs (2020) (Figure 1C), especially in symptomatic patients, up to 8 months PSO. The 

frequency of SARS-CoV-2-specific CD4+ T cells was significantly higher in the patients with severe 

disease than in the asymptomatic patients at 2 and 5 months PSO (Figure 1B). A similar albeit 

nonsignificant trend was detected in comparison with the patients with mild disease (Figure 1B). The 
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frequency of SARS-CoV-2-specific memory CD4+ T cells tended to decline over time in all severity 

groups, and the significance of the differences among the groups decreased.  

The SARS-CoV-2-specific (CD69+CD137+) memory CD8+ T-cell response in patients with COVID-

19 was also distinct when compared to the HCs (2020) at 8 months PSO (Figure 2 and Supplementary 

Figure S3), similar to those of memory CD4+ T cells. However, the level of SARS-CoV-2-specific CD8+ T 

cells was not significantly different among the severity of COVID-19 patients (Figure 2B). Paired dot-

plots of SARS-CoV-2-specific memory CD4+ or CD8+ T-cell responses through 2, 5, and 8 months PSO 

according to the severity showed similar trends (Supplementary Figure S4A). Heatmap shows more 

robust memory responses in severe patients than in mild or asymptomatic patients, especially in 

CD4+ T cells (Supplementary Figure S5). 

Additionally, there was no significant difference among healthy subjects and patients with 

COVID-19 in the CEF peptide-specific memory response (positive control) (Supplementary Figure S2 

and 3), suggesting that the magnitude of the CEF peptide-specific memory response is not markedly 

affected by SARS-CoV-2 infection. Collectively, a broad (covering various SARS-CoV-2 antigens) 

memory T-cell response was induced after recovery from COVID-19 and persisted up to 8 months 

PSO. The magnitude of the CD4+ T-cell memory response tended to be greater in the patients with 

severe compared to those with mild disease. 

 

Functionality of memory T cells responding to SARS-CoV-2 antigens 

To assess the functional competence of SARS-CoV-2-specific (CD137+) memory CD4+ T cells, we 

measured cytokine production by CD4+ T cells responding to spike, nucleocapsid, and membrane 

proteins (Figure 3A–C) from patients who were asymptomatic and from those with mild and severe 

disease. The levels of IFN-, TNF-, and IL-2 in memory CD4+ T cells at 2 and 5 months PSO in 

patients with COVID-19 tended to be higher than those in HCs (2020) (Figure 3D–F and 

Supplementary Figure S1). The proportion of IL-2-producing memory CD4+ T cells responding to 

spike protein from patients with mild and severe disease was higher than that from HCs (2020) even 
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at 8 months PSO (mean [± SEM], 213 [± 76] in mild disease vs. 23 [± 9] in HCs [2020]; adjusted P = 

0.0261; 293 [± 75] in severe disease vs. 23 [± 9] in HCs [2020]; adjusted P = 0.0648). 

IFN-, TNF-, and IL-2-production by Ag-specific memory CD4+ T cells in patients with severe 

disease was significantly increased compared to that of asymptomatic patients at 2 months PSO 

(Figure 3D). Similar to the proportion of Ag-specific memory CD4+ T cells (Figure 1), the functionality 

of Ag-specific memory CD4+ T cells declined over time, and the significance of the differences among 

patients with asymptomatic, mild, and severe disease decreased. However, the proportions of 

cytokine-producing Ag-specific memory CD8+ T cells were not significantly different according to 

disease severity (Figure 4A–F). Therefore, the functionality of memory CD4+ T cells responding to 

SARS-CoV-2 antigens was greatest in symptomatic patients. The similar trends are also observed in 

paired dot-plots or heatmaps of cytokine productions stimulated by spike protein (Supplementary 

Figure S4B and S5). 

 

Longitudinal analysis of polyfunctional memory T-cell responses 

To evaluate further the functionality of memory CD4+ T cells responding to SARS-CoV-2 antigens, we 

examined the frequencies of polyfunctional T cells.[20] IFN-+TNF-+, IFN-+IL-2+, TNF-+IL-2+, or 

triple-positive cells among CD4+ T cells responding to spike protein were more dominant in patients 

with mild or severe disease up to 5 months PSO compared to the HCs (2020) (Figure 5A–D). The 

proportion of polyfunctional CD4+ T cells also tended to be higher in patients with severe disease 

than in those with mild disease or in asymptomatic patients (Figure 5). 

Discussion 

We analyzed longitudinal memory T-cell responses up to 8 months PSO, in terms of frequency and 

functionality, to SARS-CoV-2 antigens in patients with COVID-19 according to disease severity. SARS-

CoV-2-specific memory CD4+ or CD8+ T cells slowly decline up to 8 months PSO. Memory T-cell 

responses tended to be stronger in symptomatic than in asymptomatic patients, especially in those 
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with severe disease. The spike, nucleocapsid, and membrane proteins stimulated similar memory T-

cell response patterns. 

After the early reports on efficacy of COVID-19 vaccines [3, 4], several countries have initiated 

national vaccination programs. However, the correlation between protection against COVID-19 and 

the longevity of the immunity induced by vaccination is unclear [5]. Our findings on the memory T-

cell response of patients with COVID-19 of differing severities could be used as reference data for 

studies of the cellular immunogenicity of COVID-19 vaccines. 

SARS-CoV and MERS-CoV induce long-term cell-mediated immune responses [23, 24]. However, 

the degree and longevity of the memory response to SARS-CoV-2 according to disease severity was 

unknown. Our results show that a memory T-cell response persists up to 8 months PSO, particularly 

in patients with severe COVID-19. Further long-term and larger studies are warranted to characterize 

the magnitude and duration of the protective effect. 

Although we could not explore the relationship between the numbers of AIM+ T cells and the 

magnitude of antibody response [25], decreased, but persistent cellular response to COVID-19 up to 

8 months PSO were similar to the humoral response [14, 26]. Since Dan et al reported that 

circulating follicular helper (Tfh) memory CD4+ T cells which enhance B-cell function were 

maintained until 8 months PSO [14], similar kinetics might be mediated by circulating Tfh memory 

CD4+ T cells. In addition, increased memory T-cell response with disease severity was also similar to 

the humoral response [27]. Such a severity-dependent response may be attributed to the delayed 

but strong type I IFN response in the acute phase of severe COVID-19 [28], because the type I IFN 

response contributes to the memory formation in response to viral infection [29]. Similar responses 

were observed when PBMCs were stimulated with SARS-CoV-2 nucleocapsid and membrane 

proteins, in agreement with previous reports [12, 20]. 

IFN- and TNF- production by activated CD4+ T cells in patients with COVID-19 was robust up 

to 2 or 5 months PSO; however, it decreased at 8 months PSO despite the abundance of SARS-CoV-2-

specific T cells. In contrast, IL-2 production was greater in symptomatic patients up to 8 months PSO. 
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Notably, IFN-γ enzyme-linked immunospot assay of the cell-mediated immune response during the 

late convalescent phase could yield a false-negative result. 

Pre-existing SARS-CoV-2-reactive T cells might have been induced by seasonal coronaviruses 

[13, 20]. One could accurately examine the degree of COVID-19-specific T-cell responses if they had 

pre-COVID-19 PBMCs, which is impractical. To minimize this concern, we subtracted the frequencies 

in unstimulated samples to determine the SARS-CoV-2-specific response. In addition, the responses 

in terms of all three cytokines in CD4+ T cells were robust at 2 months but decreased over time. 

These kinetics imply that the responses measured in this study were COVID-19-specific. 

We analyzed two control groups to compensate for confounding by seasonal coronavirus- 

and/or MERS-CoV-reactive T cells. Interestingly, the frequency of SARS-CoV-2 spike-specific CD4+ T 

cells in HCs (2020), which represents HC during the COVID-19 pandemic, was considerably higher 

than that of HCs (MERS) (Figure 1B). Cytokine production by Ag-specific memory CD4+ T cells from 

HCs (2020) was lower than that of HCs (MERS) and similar to that of asymptomatic patients (Figure 

5). The mechanism underlying this frequency-functionality discordance is unclear. The composition 

of a truly HC group in the COVID-19 era necessitates further research. 

The memory response was less prominent in CD8+ T cells than in CD4+ T cells, as reported 

previously [30]. However, the possibility of suboptimal stimulation of CD8+ T cells by the 15-mer 

peptides pool could not be excluded because major histocompatibility complex (MHC) class Ⅰ has a 

shorter binding groove (typically 8–10 residues) than MHC class II [31]. Moreover, Tarke et al. 

recently reported that epitope pools could be helpful to optimize detection of T cell responses 

because of HLA binding-related immunodominance. Therefore, further evaluation using either a 

shorter peptide or epitope megapool is warranted [32].  

This study had several limitations. First, since we could analyze a small number of samples, the 

results of statistical analyses should be interpreted with caution. Similarly, we could not draw a 

meaningful severity-specific decay rate of SARS-CoV-2-specific T cells in this study. Second, the age 

distribution differed among the severity groups. Further validation using a larger, age-matched 
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cohort is therefore needed. Third, baricitinib or steroid treatment in severe group could have 

affected memory response [33]. Lastly, we could not account initial viral load in the present study. 

Although inoculum size of SARS-CoV-2 might affect severity of COVID-19 [34], viral load itself could 

influence establishment or longevity of memory T-cell response.  

In conclusion, a memory T-cell response, in terms of frequency and functionality, persisted up 

to 8 months PSO, particularly in symptomatic patients. Further studies of the protective effect of the 

memory T-cell response to SARS-CoV-2 and the kinetics at ≥ 8 months are needed.  
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Figure legends 

Figure 1. SARS-CoV-2-specific CD4+ T cells up to 8 months post-symptom onset (PSO). (A) 

Representative gating strategy for SARS-CoV-2-specific (OX40+CD137+) CD4+ T cells. (B) SARS-CoV-2-

specific CD4+ T cells according to the severity of illness and months PSO responding to different 

antigens. (C) SARS-CoV-2-specific CD4+ T cells responding to all three antigens. Comparisons 

between healthy control (2020) group and each severity groups were performed by Mann-Whitney 

U test with Benjamini-Hochberg method for multiple comparison. Frequencies among three 

different severity groups were compared with Kruskal-Wallis test with Dunn’s post hoc test for 

multiple comparison. * P < 0.05; ** P < 0.01; NS, not significant 

 

Figure 2. SARS-CoV-2-specific CD8+ T cells up to 8 months post-symptom onset (PSO). (A) 

Representative gating strategy for SARS-CoV-2-specific (CD69+CD137+) CD8+ T cells. (B) SARS-CoV-2-

specific CD8+ T cells according to the severity of illness and months PSO responding to different 

antigens. (C) SARS-CoV-2-specific CD8+ T cells responding to all three antigens. Comparisons 

between healthy control (2020) group and each severity groups were performed by Mann-Whitney 

U test with Benjamini-Hochberg method for multiple comparison. Frequencies among three 

different severity groups were compared with Kruskal-Wallis test with Dunn’s post hoc test for 

multiple comparison. * P < 0.05; ** P < 0.01; NS, not significant 

 

Figure 3. SARS-CoV-2-specific cytokine-producing CD4+ T cells up to 8 months post-symptom onset 

(PSO). (A–C) Representative gating strategy for the expression levels of IFN-, TNF-, and IL-2 in 

CD137+ CD4+ T cells, respectively. (D–F) IFN-, TNF-, and IL-2 productions in CD137+ CD4+ T cells 

according to the severity of illness and months PSO responding to different antigens. Comparisons 

between healthy control (2020) group and each severity groups were performed by Mann-Whitney 

U test with Benjamini-Hochberg method for multiple comparison. Frequencies among three 
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different severity groups were compared with Kruskal-Wallis test with Dunn’s post hoc test for 

multiple comparison. * P < 0.05; ** P < 0.01; NS, not significant 

 

Figure 4. SARS-CoV-2-specific cytokine-producing CD8+ T cells up to 8 months post-symptom onset 

(PSO). (A–C) Representative gating strategy for the expression levels of IFN-, TNF-, and IL-2 in 

CD137+ CD8+ T cells, respectively. (D–F) IFN-, TNF-, and IL-2 productions in CD137+ CD8+ T cells 

according to the severity of illness and months PSO responding to different antigens. Comparisons 

between healthy control (2020) group and each severity groups were performed by Mann-Whitney 

U test with Benjamini-Hochberg method for multiple comparison. Frequencies among three 

different severity groups were compared with Kruskal-Wallis test with Dunn’s post hoc test for 

multiple comparison. * P < 0.05; ** P < 0.01; NS, not significant 

 

Figure 5. Polyfunctional SARS-CoV-2-specific CD4+ T cells up to 8 months post-symptom onset 

(PSO). (A–D) IFN-+TNF-+, IFN-+IL-2+,  TNF-+IL-2+, or IFN-+TNF-+IL-2+ CD4+ T cells according to the 

severity of illness and months PSO responding to different antigens, respectively. Comparisons 

between healthy control (2020) group and each severity groups were performed by Mann-Whitney 

U test with Benjamini-Hochberg method for multiple comparison. Frequencies among three 

different severity groups were compared with Kruskal-Wallis test with Dunn’s post hoc test for 

multiple comparison. * P < 0.05; ** P < 0.01; NS, not significant 
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Table 1. Clinical characteristics of completely asymptomatic, mild, and severe patients with COVID-19 

 

HC [2020]  

(n = 6) 

HC [MERS]  

(n = 7) 

Completely 

asymptomatic  

(n = 7) 

Mild (n = 9) Severe (n = 8) P-value 

Age, median years (range) 35 (28─47) 60 (38─64) 25 (20─28) 48 (24─72) 63 (39─76) 0.001 

Male gender, n (%) 5 (83.3) 6 (85.7) 5 (71.4) 4 (44.4) 6 (75.0) 0.364 

Maximal oxygen demand, median 

(range) 

n.a. n.a. 
n.a. n.a. HFNC (NP to MV) 

n.a. 

Treatment n.a. n.a.     

 Lopinavir/ritonavir   0 (0) 2 (22.2) 2 (25.0) 0.213 

 Remdesivir   0 (0) 1 (11.1) 7 (87.5) < 0.001 

 Baricitinib   0 (0) 1 (11.1) 3 (37.5) 0.054 

 Steroid   0 (0) 0 (0) 2 (25.0) 0.079 

Days of sample collection from the 

onset of COVID-19, median (range) 

n.a. n.a. 
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 For 2 months   57 (55─61) 62 (40─68)a 65 (39─73) 0.281 

 For 5 months   133 (131─137) 134 (102─169) 127 (99─157) 0.365 

 For 8 months   231 (229─235) 235 (192─253)a 196 (185─198)a 0.004 

 

HC, healthy control; MERS, Middle East respiratory syndrome; n.a., not applicable; HFNC, high flow nasal canula; NP, nasal prong; MV, mechanical 

ventilation 

aone missing value 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 


