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Abstract
The inclusion of covariates in population models during drug development is a key step to understanding drug variability

and support dosage regimen proposal, but high correlation among covariates often complicates the identification of the true

covariate. We compared three covariate selection methods balancing data information and prior knowledge: (1) full fixed

effect modelling (FFEM), with covariate selection prior to data analysis, (2) simplified stepwise covariate modelling

(sSCM), data driven selection only, and (3) Prior-Adjusted Covariate Selection (PACS) mixing both. PACS penalizes the a

priori less likely covariate model by adding to its objective function value (OFV) a prior probability-derived constant:

2 � ln Pr Xð Þ= 1� Pr Xð Þð Þð Þ, Pr(X) being the probability of the more likely covariate. Simulations were performed to

compare their external performance (average OFV in a validation dataset of 10,000 subjects) in selecting the true covariate

between two highly correlated covariates: 0.5, 0.7, or 0.9, after a training step on datasets of 12, 25 or 100 subjects

(increasing power). With low power data no method was superior, except FFEM when associated with highly correlated

covariates (r ¼ 0:9), sSCM and PACS suffering both from selection bias. For high power data, PACS and sSCM performed

similarly, both superior to FFEM. PACS is an alternative for covariate selection considering both the expected power to

identify an anticipated covariate relation and the probability of prior information being correct. A proposed strategy is to

use FFEM whenever the expected power to distinguish between contending models is\ 80%, PACS when[ 80%

but\ 100%, and SCM when the expected power is 100%.

Keywords Covariates � Prior � Correlation � Stepwise covariate modelling � Full fixed effects modelling �
Prior-adjusted covariate selection

Introduction

Population models combine pharmacological and statistical

models to describe biological processes. They allow the

distinction between the typical values (fixed effects) and

the variability (random effects) of the model parameters.

The inclusion of explanatory covariates in such models can

decrease the unexplained variability of a parameter,

increase the precision of the estimates, and add a mecha-

nistic interpretation. Covariate inclusion is often supported

by a physiological rational (e.g. the enzyme genotype in

metabolism). Building a covariate model can confirm some

prior knowledge, provide new information, support dose

adjustment, and help in the design of upcoming

experiments.

Numerous approaches have been developed in order to

identify covariates for population models [1, 2], for

example, visual inspection of unexplained parameters

variability versus covariates plots [3], generalized additive

models [4], Stepwise Covariate Modelling (SCM) [5],

Wald’s approximation method [6], Full Fixed Effects

Modelling (FFEM) [7, 8] or Full Random Effects Model-

ling [9–11]. The different methods place different emphasis

on prior knowledge versus information in the present data

when selecting covariates.
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Correlated covariates are common in biology (e.g. body

weight and body surface area, or age and renal function).

Prior knowledge is often not sufficient to identify with

certainty which of the correlated covariates is the more

closely related to the parameter in question. The selection

of the less predictive covariate can impact both the model

performance (parameter precision and stability issues [12])

and the interpretation of the results which could be mis-

leading during the learning process of drug development.

The selection between correlated covariates based on data

alone may be informative when data are rich in information

on the parameter and covariate (high power case), but

when information is poor (low power case) selection bias

may result in poor predictive performance of the developed

model.

In this work, we will compare three covariates selection

methods according different importance to the main

selection rationales that are prior information or data

information. (1) FFEM requires a covariate pre-selection

and do not account for data information, (2) sSCM is a

simplified version of the data driven SCM method which

do not use any prior information, and (3) Prior Adjusted

Covariate Selection (PACS) a new selection method bal-

ancing pre-selection (or prior information) and the data

information. The aim is to illustrate their relative merits

when applied to external data. For this purpose, a simple

situation was investigated with only one parameter and two

correlated covariates.

Material and methods

In order to compare the three covariates selection methods,

data were simulated from a simple model according to the

workflow presented below.

Software packages

The simulations were performed with PsN version 4.8.8

[13], driving NONMEM version 7.4.3 [14]. The covariate

selection methods were implemented in the statistical

software R, version 3.6.0 [15].

Models

Two covariates, A and B, were simulated for every simu-

lated subject. These were variables normally distributed

with a mean of zero, a variance of 0.045, and a correlation

varying across different scenarios (0.5, 0.7, or 0.9). The

model used to simulate the data is a simple constant-rate

infusion (rate = 1) steady-state model involving clearance

as the only pharmacokinetic parameter (CL), and including

one of the covariates (COV ¼ A or B) depending on which

was the true covariate (Eq. 1):

log CLð Þ ¼ log h1ð Þ þ g1 þ COV
Y ¼ �log exp CLð Þð Þ þ e

ð1Þ

where h1 is the typical value of the clearance and Y the

observed data. The unexplained interindividual variability

(IIV) variance of the random effect, g1, was set to 0.045,

making the total parameter variability circa 30%, with the

covariate (A or B) explaining half of the total parameter

variability. No covariance between g1 and COV was

included in the simulations. The residual random vari-

ability was also set to 30% (e�Nð0; 0:09Þ).
Three covariate models were estimated based on the

simulated data. The model M0 with no covariates (Eq. 2;

only used for assessing power, see below), the models MA

and MB with only the covariate A (Eq. 3) or only the

covariate B (Eq. 4).

log CLð Þ ¼ log h1ð Þ þ g1 ð2Þ
log CLð Þ ¼ log h1ð Þ þ g1 þ COVA � hA ð3Þ
log CLð Þ ¼ log h1ð Þ þ g1 þ COVB � hB ð4Þ

where hA and hB are the covariate effects. The selection

process was made between the models MA and MB only, to

always arrive at a model with exactly one covariate

explaining variability in CL. The simultaneous inclusion of

two correlated covariates on the same parameter is usually

avoided in covariate model building and none of the sce-

narios here allowed such models.

Covariates selection methods

Prior information selection: FFEM

In the FFEM selection method, the covariates are pre-se-

lected by the modeler and included in the model as fixed

effects. It is a data-agnostic method where the selection

process is independent of the information in the mod-

elled data: the covariate model is defined a priori.

The performance of the FFEM method is expected to be

related to the probability with which the true covariate was

a priori selected. To investigate the quality of pre-selection

of the modeler, we used 11 different values (0, 0.1, …, 1)

for the probability of the selected covariate X, to be the

true covariate PðXÞ.

Data driven selection: sSCM

SCM is a data driven selection method since the selection

process is solely based on goodness-of-fit (i.e. OFV): the

covariates are included into the model when the decrease in

OFV is significant according to a chi-square distribution for
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a given p-value (likelihood ratio test). The covariate

selection is done step by step, adding only one covariate

per step, starting with the model without any covariate

(base model). At each step, all the covariates not already

included are tested, and among the significant ones, the one

decreasing the most the OFV is selected for the next step.

Usually, a backward step with a lower p-value is performed

at the end of the inclusion process, removing the covariates

one by one to check for any over parameterization.

In this case, we wanted to compare model selection

methods when the model scope was the same. For this

purpose, the method was restricted to compare the two

possible models (sSCM): the selection was thus made

between MA and MB, by simply selecting the model with

the lowest OFV, which is equivalent to selection according

to the Akaike Information Criteria (AIC).

Prior information and data-based selection: PACS

This selection method accounts both for the data infor-

mation (OFV), and the prior information. The prior infor-

mation is introduced as penalty added to the OFV value of

the model that appears less likely to the modeler. The value

of this penalty is set according to the following formula:

2 � ln Pr Xð Þ
1� Pr Xð Þ

� �
ð5Þ

where PrðXÞ is the probability for the covariate X to be the

best of the two covariates (A or B), as assigned by the

modeler. In the simulations, we only explore

0:5�PrðXÞ� 0:999, since PrðXÞ\0:5 is equivalent when

interchanging A and B. In this context PACS is equivalent

to SCM when PrðXÞ ¼ 0:5 (i.e. the penalty is null), and

PACS is equivalent to FFEM when PrðXÞ ¼ 1 (i.e. the

penalty is infinite for the model without the pre-selected

covariate). After the addition of the penalty, model selec-

tion occurs in the same manner as for the sSCM.

Workflow

To assess the predictive performances of the three covari-

ates selection methods, the data were generated according

to the workflow presented in Fig. 1. Data were simulated

(100 replicates) for three training datasets of 12, 25, and

100 individuals (two observations per subject), corre-

sponding respectively to a power of 0:64, 0:88, and 1:00.

The power was calculated here as the frequency with which

the true covariate model was significantly better than the

model without covariate (M0) using the likelihood ratio test

with one degree of freedom. A validation dataset of 10,000

individuals (two observations per subject) was also simu-

lated for each scenario.

FFEM, sSCM, and PACS were applied to each replicate

of each training dataset. The selected models were retained

to evaluate them on the corresponding validation dataset.

In this evaluation, the individual objective function value

(iOFV) was obtained using, without reestimation, the

parameters from the model developed based on the training

data. The difference in the mean iOFV between methods

was then used to compare the external evaluation perfor-

mances of the three methods. The mean iOFV was used

here as it may offer a slightly more easily interpreted value

compared to the difference in total OFV for a very large

data set.

Results

The results are presented as heat map plots where green,

red, and blue colors indicate superior performance of

FFEM, sSCM, and PACS, respectively. The color gradient

reflects the differences in the average iOFV (diOFV)

between each pair of covariate selection methods for

Figs. 2, 3, and 4. The gradient represents the diOFV

between the methods providing the best and second-best

models to describe the validation data set in Fig. 5, and the

diOFV between the methods providing the least and second

least good models to describe the validation data set in

Fig. 6. Hence the Figs. 5 and 6 compare the three methods

simultaneously.

The comparison between PACS and FFEM (Fig. 2)

showed an overall superiority of PACS, except when the

power was low and the correlation close to 1. For the three

powers (0:64, 0:88, and 1:00), the differences decreased as

the correlation between the covariates increased. A prior-

adjustment was less valuable when the modeler was more

likely to make the right choice (i.e. P Xð Þ is high). For the
high power, the better performances of PACS can be

explained both by the additional information brought by

the prior, and the data information. When the data were not

informative (lowest power) and covariates were highly

correlated, the FFEM performed better across most values

for P(X) and Pr(X).

PACS and sSCM (Fig. 3) showed very similar perfor-

mance when the data were highly informative (power of

1.0). For the other scenarios, PACS in general performed

better when P(X) was above 0.5, that is the true covariate

was favored in PACS, whereas the opposite was true for

P(X) below 0.5. In the low power case, smaller differences

were observed when the covariates were highly correlated.

The comparison between FFEM and sSCM is illustrated

in Fig. 4. As in Figs. 2 and 3, the differences between the

two methods decreased as the correlation increased. sSCM

performed better than FFEM with informative data (high

power). In the lowest power case, FFEM had better
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performances when the pre-selected covariate was the true

one. With high correlation and low power, even when

favoring the wrong covariate (P Xð Þ\0:5), FFEM per-

formed better than sSCM.

Figure 5 showed the methods providing the covariate

model in best agreement with the validation data set and its

closeness to the second-best method. With rich data (power

of 1), the two best methods (PACS and sSCM) were

equivalent, their difference with the method providing the

least descriptive model (FFEM) increased when the prob-

ability to select the true covariate P(X) decreased (Fig. 6).

However, FFEM performed better when P(X) = 1, hence

when the right covariate was always selected with FFEM.

When the data are not informative (power of 0.64), and

with highly correlated covariates (correlation of 0.9),

FFEM was the best method. With lower covariate corre-

lations however, sSCM provided the best model for low

values of P(X). Figure 6 showed that PACS is very seldom

providing the worst model for the validation data, contrary

to FFEM, particularly predominant when the data are

informative (high power).

Fig. 1 Workflow used to

simulate the data and analyze

the results. iOFV individual

objective function value, diOFV
difference in individual

objective function value

Power of 0.64 (n=12) Power of 0.88 (n=25) Power of 1.00 (n=100)

C
orr 0.5

C
orr 0.7

C
orr 0.9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.5
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0.9
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X
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diOFV

Fig. 2 Difference in iOFV (diOFV) in the validation data set between

FFEM and PACS for different power and covariate correlation

combinations simulated. The y-axis is the prior used to favor the

covariate X (in PACS); the x-axis is the probability of X to be the true

covariate. Green (blue) color indicates that FFEM (PACS) is superior

(Color figure online)
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Discussion

The aim of this study was to compare the relative perfor-

mance of the covariate selection methods in the case of

correlated covariates. FFEM and sSCM were selected for

inclusion in the comparison as they are standard methods

and have a clear rationale for selection, prior information,

and data information, respectively. PACS is balancing

between these two extremes by allowing the OFV used for

selection to be influenced by both the data and the prior.

This simple simulated example with one parameter and two

correlated covariates was designed to illustrate the main

properties of these selection methods without potential

confounding factors.

The comparison was done across different scenarios

with respect to (i) informativeness of data (low to high

power), (ii) probability that the true covariate was identi-

fied a priori (P(X)), (iii) correlation between the two

covariates (moderate to high) and, for PACS only, (iv) the

probability for the modeler to favor the correct. The rela-

tive performance of different methods was strongly related

to these aspects as discussed below.

The most important aspect of the relative performance

of the three methods was the power. In the high power

situation, sSCM and PACS performed best and FFEM

Power of 0.64 (n=12) Power of 0.88 (n=25) Power of 1.00 (n=100)

C
orr 0.5

C
orr 0.7

C
orr 0.9
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0.8
0.9
1.0
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P
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X
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Fig. 3 Difference in iOFV (diOFV) in the validation data set between

sSCM and PACS for different power and covariate correlation

combinations simulated. The y-axis is the prior used to favor the

covariate X (in PACS); the x-axis is the probability of X to be the true

covariate. Red (blue) color indicates that sSCM (PACS) is superior

(Color figure online)
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C
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C
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C
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Fig. 4 Difference in iOFV (diOFV) in the validation data set between

sSCM and FFEM for different power and covariate correlation

combinations simulated. The x-axis is the probability of X to be the

true covariate. Red (green) color indicates that sSCM (FFEM) is

superior (Color figure online)
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performed worst unless the probability of selecting the

correct covariate was one, in which case all three methods

performed essentially the same. This conclusion is similar

to the one proposed by Khandelwal et al. [16]. With

moderate power, a similar pattern was found, although

sSCM showed superiority over PACS when the modeler

was incorrect in the pre-selection of the covariate. For the

low power situation, relations are more complex and

depend on the correlation between the two covariates. With

high correlation between the covariates and low power,

FFEM is the best method regardless of whether the pre-

selection was correct or incorrect. This may appear as

counterintuitive, but can be understood from the selection

bias associated with sSCM and PACS. The selection pro-

cess will favor the covariate showing the stronger relation

with the parameter and when the two covariates are highly

correlated, this will typically result in a covariate coeffi-

cient that is biased to have a too high absolute value. With

low power and lower (0.7 or 0.5) correlation between the

covariates, FFEM is the best method when the pre-selected

covariate is the better one. When this is not the case sSCM

is the best method.

Fig. 5 Difference in iOFV (diOFV) between the methods providing the model with the lowest and second-lowest iOFV in the validation data set

for different power and covariate correlation combinations simulated. The x-axis is the probability of X to be the true covariate

Fig. 6 Difference in iOFV (diOFV) between the methods providing the model with the highest and second-highest iOFV in the validation data

set for different power and covariate correlation combinations simulated. The x-axis is the probability of X to be the true covariate
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The above relations offer support to some common

covariate modelling strategies. For example to preselect

one of two highly correlated covariates, such as body

weight and body surface area, when the number of studied

subjects is limited [17]. Another example is the attempted

identification of the superior of two correlated covariates

when the data are highly informative [16]. However, the

results point to a strategy that may be favorable for

covariate model building in general. In such a strategy, the

method for covariate modelling, FFEM, sSCM, or PACS,

would be preselected based on the power to discriminate

between models and any prior knowledge regarding

covariate relations. Factors affecting the power to dis-

criminate between models include study design, covariate

distributions, and expected strength of the covariate rela-

tions. The study design (e.g. number of subjects and

number and timing of observations) will impact the infor-

mation about the parameter(s) in question. The expected

covariate variability and expected covariate-parameter

strength will further inform on the expected power to

identify a covariate relation, and the correlation between

the covariates will provide a basis for assessing selection

bias. Thus, for a given situation, the relative merits of

different covariate modelling strategies can be assessed

before covariate-parameter relationships are explored and

tailored to the situation in question. To our knowledge,

such a strategy has not been implemented in real data

analysis examples and would come with extra time and

cost of analysis compared to traditional covariate mod-

elling. However, enhanced discrimination between candi-

date covariates and/or predictive precision may make such

investments justified. In short, such a strategy could be

summarized as: (i) if the power to discriminate between the

covariates is complete (i.e. 100%) perform data driven

selection, (ii) if the power is low (\ 80%) use FFEM, and

(iii) if the power is 80–100%, use PACS if one covariate is

deemed more likely than the other, otherwise use purely

data driven selection. An illustration of this strategy using a

real data example is available in the Online Appendix 1.

The comparison of this strategy with the three other

covariate selection methods, using the simulated example

used in this paper, resulted in mean iOFV across all sce-

narios of - 17.92 (FFEM), - 18.06 (sSCM), - 17.99

(PACS), and - 18.19 (power-based strategy). PACS, when

the correct covariate was given any prior probability above

0.5, had a corresponding value of - 18.23. Additionally,

the best (true) model and the worst (false) models had

values of - 18.48 and - 16.21, respectively.

The example used to illustrate and compare the methods

was very simple. One aspect is that the model only contains

one parameter. With multiple parameters in a model, the

selection complexity is increased as there is a question with

which parameter(s) a covariate may correlate with. The

inclusion, or not, of a covariate can influence the power and

estimated strength of the same covariate on another

parameter [11]. For example, if a covariate influences two

parameters, but is included only on one, this relationship is

expected to be biased [11]. Another simplification is that in

the data driven modelling only two contending covariate

models were compared. This mimics a situation where

there is a known relation with an underlying feature, e.g.

body size, but lack of certainty on how this is best repre-

sented, e.g. by total or lean body weight. The addition of

the possibility to include neither covariate in the model,

which is more common for data driven covariate mod-

elling, would mainly impact the result of the low power

situations studied. Neither did we allow both covariates to

enter the model simultaneously. This mimics common

present practice. In the present simulations, the power to

identify and discriminate between the covariates was var-

ied by varying the number of subjects but other simulations

settings could similarly impact the power. A higher power

could have been achieved by increasing the explanatory

value of the covariates, decreasing the unexplained vari-

ability, increasing the number of observations per subject,

or decreasing the residual variability. When a covariate

selection is dependent on an improvement in goodness-of-

fit, as when full and reduced models are compared using

the likelihood ratio test, the power is also dependent on the

significance criteria. The higher the demand for improve-

ment, for example through a low p-value, the lower the

power of identifying a covariate relation. To learn in detail

about the relative merits of the different methods for real

data analysis problems, simulation studies tailored for the

situations are recommended.

In this work, we introduced PACS. It showed some

advantages relative to sSCM and FFEM, but was the

overall best method only in some cases when Pr(X) was

close to P(X), i.e. when the prior was close to the true

probability. When power was high, sSCM performed as

well, and when power was low either sSCM or FFEM

performed better. Noteworthy is that PACS was the worst

method less often than either sSCM or FFEM and thus may

offer robustness. In this implementation, we used a prior

suited for maximum likelihood estimation, a so-called

‘‘frequentist’’ prior [18]. PACS could also be implemented

as a Bayesian prior, but such explorations were not per-

formed as SCM procedures typically use maximum like-

lihood. In this implementation, the prior in PACS was used

to inform the relative likelihood of two parameters being

related to a parameter. In the case of a single covariate

relationship, the relative probability of an existing versus a

non-existing relationship could be used instead. As in the

present work, a value of such a relative probability

approaching one would collapse PACS towards FFEM.

However, as long as the relative probability is slightly
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lower than one, it allows the data, when highly informative,

to contribute to the covariate inclusion. This latter situation

may be a favorable feature of PACS.

Conclusion

The selection of covariate relations based on both prior

information and/or data can be rationally motivated

depending on the situation. The existing covariates selec-

tion methods are based only on pre-selection (e.g. FFEM),

or data information (e.g. SCM). The introduction of a prior

in the selection process is a new feature allowing PACS to

combine the two, which provides an interesting alternative.

The method(s) performing the best are mainly determined

by the power, where high power favors SCM and PACS

and low power FFEM. Thus the selection of a strategy for

covariate model building based on the power of discrimi-

nation can be expected to perform better than one that only

considers the correlation between covariates.
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