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Abstract

Organisms within species have numerous genetic and phenotypic variations. Growing evidences show intraspecies variation
of mutant phenotypes may be more complicated than expected. Current studies on intraspecies variations of mutant phe-
notypes are limited to just a few strains. This study investigated the intraspecies variation of fitness effects of 5,630 gene mu-
tants in ten Saccharomyces cerevisiae strains using CRISPR–Cas9 screening. We found that the variability of fitness effects
induced by gene disruptions is very large across different strains. Over 75% of genes affected cell fitness in a strain-specific
manner to varying degrees. The strain specificity of the fitness effect of a gene is related to its evolutionary and functional
properties. Subsequent analysis revealed that younger genes, especially those newly acquired in S. cerevisiae species,
are more likely to be strongly strain-specific. Intriguingly, there seems to exist a ceiling of fitness effect size for strong
strain-specific genes, and among them, the newly acquired genes are still evolving and have yet to reach this ceiling.
Additionally, for a large proportion of protein complexes, the strain specificity profile is inconsistent among genes encoding
the same complex. Taken together, these results offer a genome-wide map of intraspecies variation for fitness effect as a
mutant phenotype and provide an updated insight on intraspecies phenotypic evolution.
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Introduction
A fundamental assumption of evolutionary biology is that
orthologs, which are homologs derived from a single ances-
tral gene, typically retain similar functions (Koonin and
Galperin 2003; Siepel et al. 2005). But at the same time,
species-specific phenotypes such as essentiality, response
to stress conditions, and drug resistance, have been ob-
served even in closely related species of yeast and bacteria

(Apjok et al. 2019; Sanchez et al. 2019; Doughty et al.
2020). This interspecies variability of functions for the
same genes is not beyond expectations and reflects the
adaptive evolution of different species (Pfennig et al.
2010; Zamudio et al. 2016). In fact, the variability is also
existed within species. Different phenotypes have been re-
ported for the same gene mutant within a species in mice,
Drosophila melanogaster, and yeast (Threadgill et al. 1995;
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Dworkin et al. 2009; Liu et al. 2020). Death which is
brought by epidermal growth factor receptor (EGFR) defi-
ciency can occur at peri-implantation, midgestation, or 3
weeks after birth in three mouse strains (Threadgill et al.
1995). The scallopedE3 mutation has distinct effects on
wing morphology in two strains of D. melanogaster
(Dworkin et al. 2009). In a previous study of ours,
the deletion effects of HAP4 were examined in three
Saccharomyces cerevisiae (S. cerevisiae) strains, and a fairly
large part of the deletion effects was found to be poorly
conserved (Liu et al. 2020).

These are not exceptional cases, and intraspecies varia-
tions of mutant phenotypes exist even on a genome-wide
scale. For two S. cerevisiae strains with �99.7% sequence
similarity, comparative gene deletion experiments showed
that 894 genes were essential in both strains, but that 44
genes were essential in only one strain and 13 genes
were essential in only the other strain (Dowell et al.
2010). Galardini et al. (2019) measured growth in 38 con-
ditions for 3,786 gene knockouts in four S. cerevisiae
strains, and found only 9–24% of gene deletion pheno-
types significantly conserved in all four backgrounds. The
effect of genetic background on loss-of-function pheno-
types was investigated in two isolates of Caenorhabditis
elegans as well, and �20% genes were found to have dif-
ferent severity of phenotypes in two isolates (Vu et al.
2015). All these studies suggest that intraspecies variations
of genotype-to-phenotype relationships may be more com-
plicated than expected, and remind us to consider the im-
pact of genetic backgrounds to mutant phenotypes. In
fact, organisms within species have numerous genetic var-
iations (The International HapMap Consortium 2005; Clark
et al. 2007; Frazer et al. 2007; Schacherer et al. 2009).
Intraspecies phenotypic variations are produced by these
genetic variations together with environmental factors
(Nei 2007), and have been observed in genetically diverse
yeast strains,Arabidopsis thaliana inbred lines, and humans
(Sabatti et al. 2009; Atwell et al. 2010; Skelly et al. 2013).

Current studies on intraspecies variations of mutant phe-
notypes are limited to just a few strains. In this study, we es-
timated the fitness effects of disruptions of �5,600
orthologous genes in ten S. cerevisiae strains by CRISPR–
Cas9 screening. As a high-throughput genetic perturbation
technology, CRISPR–Cas9 screening is widely used to iden-
tify genes essential for cell viability, host factors essential for
influenza virus replication, human pluripotency-specific
genes, and other functional elements (Shalem et al. 2014;
Zhu et al. 2016; Haapaniemi et al. 2018; Han et al. 2018;
Ihry et al. 2019). Here, we used a pooled single-guide
RNA (sgRNA) library targeting �5,600 genes to generate
large-scale loss-of-function mutants in various strains
(fig. 1A). The strategy of a gRNA combinedwith a donor se-
quence was adopted to increase successful editing events
(Bao et al. 2015; Guo et al. 2018) (see Materials and

Methods). The donor sequence served as a barcode for
each mutant, and the variation in barcode abundances be-
fore and after the generation of mutant reflected the fit-
ness effect of gene disruption.

Results

Genome-Wide Measurement of Fitness Effects of
Mutants in S. cerevisiae Strains

We first tested the disruption efficiency of the CRISPR–Cas9
system targeting the endogenous gene ADE2 in 25
S. cerevisiae strains (see Materials and Methods, fig. 1B).
The disruption efficiency of the system was different in
the different strains, and ten strains with over 70% effi-
ciency were selected (fig. 1B, supplementary file S1: fig.
S1, Supplementary Material online). These strains have
high genome similarity but different geographic origins or
usages (Liti et al. 2009) (fig. 1C). The SNP densities of these
strains are 0.5–2.7 per kilobase when compared with
the reference strain S288C (the most widely studied strain
of S. cerevisiae) (supplementary file S2, Supplementary
Material online) (Bergström et al. 2014). To remove the ef-
fect of sequence divergence, CRISPR library was designed
to target the conserved regions. In total 28,457 sgRNAs
with donor sequences targeting 5,706 genes (�86% of
homologous genes in S. cerevisiae strains,�5–7 sequences
per gene) were designed by considering their efficacy, speci-
ficity, positions in open reading frames (ORFs) (see Materials
and Methods, supplementary file S3, Supplementary
Material online). We also designed 100 random sgRNAs,
each with 100 bp random donor sequences as a control.
The sgRNA cassette, donor sequence, and Cas9 cassette
were assembled into the background vector (see Materials
and Methods).

The pooled library was delivered into each yeast strain, and
each strain library was collected and incubated (fig. 1A). We
optimized the induced incubation, including massive small-
volume culturing to enhance the editing probability for each
gene, and expanding culturing to enlarge the differences
among mutants. The abundance of donor sequences before
and after induced incubation was quantified by next-
generation sequencing (NGS). There were two biological re-
plicates for each strain in both conditions. As expected, the
distributions of proportions of read counts for 100 random
donor sequences in each replicate were quite consistent
(fig. 1D, supplementary file S1: fig. S2, Supplementary
Material online). Because the random donor sequences
were nontarget, the distributions of abundances of them
were stable in different strains (fig. 1D, supplementary file
S1: fig. S2, Supplementary Material online). The editing
events were highly robust in each strain as well. The correla-
tions of proportions of read counts for donor sequences be-
tween two replicates after induced incubation were 0.92–
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0.96 (fig. 1E, supplementary file S1: fig. S3, Supplementary
Material online). These results suggested that the assays
were performed with high reproducibility.

Then the effects of gene disruptions created by the
CRISPR–Cas9 system in each strain were analyzed by the
model-based analysis of the genome-wide CRISPR–Cas9
knockout (MAGeCK) program. MAGeCK assesses the do-
nor sequence abundance for each gene in each strain,
and tests whether the abundance differs significantly be-
tween before and after induced incubation by a negative
binomial model (Li et al. 2014; Wang et al. 2019).
Because abundances of random donor sequences were
consistent across different samples, their read counts
were used as controls for read-count normalization in
each sample. The positive and negative β-scores were

calculated for each gene in each strain to estimate whether
the gene was positively or negatively selected, which repre-
sents that disrupting the gene confers a growth advantage
or disadvantage, respectively. There were 19.8–84.7%
genes negatively selected but only 0–0.02%genes positive-
ly selected in ten strains under false dicovery rate (FDR),
0.05, echoing disruptions of genes generally tend to be
deleterious to various extents (fig. 1F, supplementary file
S4, Supplementary Material online). Hence, the negative
β-score was used as a proxy for deleterious effects of
gene disruption, which was consistent with previous
studies (Zhu et al. 2016; Haapaniemi et al. 2018). The va-
lue of negative β-score ranged from 0 to 1, and a smaller
negative β-score means a larger fitness effect led by the
disruption of the gene (fig. 1F).

A B C

D E F G

FIG. 1.—Genome-wide CRISPR–Cas9 screening in various Saccharomyces cerevisiae strains. (A) CRISPR–Cas9 screening workflow. The sgRNAs with do-
nor sequences targeting different genes were constructed into the vectors with a Cas9 expression cassette. The pooled library was delivered into each yeast
strain. The expression ofCas9 in each yeast librarywas induced to generatemutants. The abundance differences amongmutantswere enlargedby expanding
culturing. Here, we used the donor sequence as a unique barcode for each gene. Donor sequences are longer than guide sequences, which provide higher
accuracy in mapping. The cells of various strains in different stages were collected and used to extract plasmids. Donor sequences were amplified and se-
quenced. Reads were mapped and analyzed by MAGeCK to quantify the variations of abundances of donor sequences for each strain. The negative
β-score of each gene was taken as the proxy of fitness effect after disruption. Then, the value of Shannon entropy (Hf) of each gene was calculated, which
indicated the strain specificity of fitness effect for each gene. (B) Disruption efficiency of CRISPR–Cas9 system targeting ADE2 in 25 S. cerevisiae strains.
Loss-of-function mutations in ADE2 can lead to the accumulation of red pigment in cells because ADE2 is required for adenine biosynthesis. The red clones
(black arrows) represented the successful editing events. Strains labeled black were chosen for the next experiments. (C) Phylogenetic tree of ten S. cerevisiae
strains with a S. paradoxes strain Q32.3 as an outgroup. (D) Spearman’s correlation coefficients of relative abundances of 100 random donor sequences
among replicates before and after induced incubation. The relative abundancewas estimated by the proportion of donor sequence counts in the total counts
in each sample. The heatmap (left) shows Spearman’s correlation coefficients derived from BY4741 and UWOPS03-461.4, and the scatter plot (right) is the
relative abundance of two replicates after induced incubation in BY4741. (E) The relative abundance of 28,455 donor sequences of two replicates after in-
duced incubation in BY4741. The gradient represents the density of donor sequences. (F) The relationship between negative β-score and FDR in BY4741 de-
rived from MAGeCK. The dashed line represents FDR= 0.05. The gradual blues represent the density of genes. (G) Heatmap of Spearman’s correlation
coefficients of negative β-scores among 10 strains.
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The negative β-scores of the same gene in different strains
were comparable. Spearman’s correlation coefficients of
negative β-scores between different strains ranged from
0.4 to 0.72, which were higher than the values derived
from fitness data of gene deletion lines in four genetic back-
grounds assessed by clone image (fig. 1G, supplementary file
S1: fig. S4, Supplementary Material online, Spearman’s cor-
relation coefficients: 0.04–0.39) (Galardini et al. 2019).

Evaluation of Intraspecies Specificity of Fitness Effect of
Disruptions of the Same Genes

More than 58%of genes (3305/5630) significantly affected
cell fitness in at least one strain (negative β-score,0.1, FDR

, 0.05, fig. 2A). The numbers of strains in which the disrup-
tion of the same gene had similar significant effects were
counted, and the distribution was very different from ran-
dom samplings (see Materials and Methods, fig. 2A). Only
�15% of them (494/3305) had similar effects in over eight
strains, whereas 26% (872/3305) showed exclusive effects
in one strain. To evaluate the strain specificity of the fitness
effects for genes, the Shannon entropy was introduced in
light of its success in analyzing tissue-specific genes
(Schug et al. 2005). The Shannon entropy (Hf) was calcu-
lated for each gene by using the negative β-scores in all
strains (see Materials and Methods, fig. 2B). Smaller Hf va-
lues mean stronger strain specificity, that is, larger variabil-
ity within species. Next, we calculated the Shannon entropy
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FIG. 2.—Shannon entropy (Hf) indicates the strain specificity of fitness effect for each gene across different strains. (A) Distribution of the numbers of
strains inwhich the disruption of the samegene had similar striking effects (negative β-score,0.1, FDR,0.05). The line chart with error bars shows the
result derived from ten random samplings. (B) Distribution of Hf for 5,630 genes. The dashed lines represent Hf=2.989359 and Hf=3.177758, which
are the thresholds for classifying genes. Genes with Hf smaller than the left threshold are strong strain-specific, and genes with Hf larger than the right
threshold are nonspecific. (C ) Distributions of He (left) and Hf derived from six strains (right) of 3,661 overlapped genes. Hf derived from six strains was
calculated by negative β-scores in six strains randomly sampled from ten strains. The samplings were performed ten times, and the average value of Hf

was taken as Hf of six strains for each gene. (D) Heatmap for negative β-scores of 60 genes with different strain specificity. For each level of strain spe-
cificity, 20 geneswere sampled randomly. (E) Comparison of sequence length of genes with different strain specificity of fitness effects. The information
of gene length was obtained according to S288C annotation. The statistic differences of sequence properties between each two groups was examined
byWilcoxon rank-sum test (**: P,0.01; ***: P,0.001). The dashed lines represent the median values for nonspecific genes. (F ) Comparison of total
SNPs per Kb for genes with different strain specificity of fitness effects. (G) Comparison of dN/dS of genes with different strain specificity of fitness ef-
fects. (H ) Comparison of expression level of genes with different strain specificity of fitness effects. The expression profile was obtained in BY4741.
(2I) Comparison of number of physically interacting partners of genes with different strain specificity of fitness effects. (J ) Proportions of essential
and nonessential genes in genes with different strain specificity of fitness effects.
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of gene expression (He) from the expression profiles of six S.
cerevisiae strains measured in Yang et al.’s (2017) study
(see Materials and Methods, supplementary file S5,
Supplementary Material online). To remove the influence
of number of strains, we also calculated the Hf of six strains
by random samplings. Intriguingly, He showed a much nar-
rower distribution than Hf (fig. 2C). It indicates that genes
have more comparable strain specificity of expression
than that of fitness effect. The intraspecies variability
seemed to be increased from gene expression to the fitness
effect of gene disruption.

Taking advantage of comprehensive studies on S. cerevi-
siae strains (especially S288C), we examined several proper-
ties of the sequence, evolution, and functions of these
genes. Despite low correlation coefficients (absolute value
of Spearman’s correlation coefficient, 0.15), certain cor-
relations between Hf and these properties indeed existed
(P,, 0.01). To make it more informative, genes were clas-
sified into nonspecific, moderate strain-specific, and strong
strain-specific groups by two thresholds of Hf derived by si-
mulations (fig. 2B, see Materials and Methods). We ex-
cluded 204 genes whose disruptions were barely
negatively selected in all strains (negative β-score. 0.6 in
all strains). The Gene Ontology (GO) analysis of these genes
did not reveal any significant terms, and nearly a quarter of
them (50/204) have no annotations (supplementary file S4,
Supplementary Material online). Genes in the nonspecific
group (1200/5630, 21.3%) induced ubiquitous and similar
fitness effects in all strains, genes in the strong strain-
specific group (2384/5630, 42.3%) had large fitness effects
in a small number of strains, and genes in the moderate
strain-specific group (1842/5630, 32.7%) were in between
(fig. 2D).

There were no differences in gene length (subject to
S288C) between genes in nonspecific and strain-specific
groups (fig. 2E). The total number of SNPs relative to
S288C was counted for each gene. The total numbers of
SNPs for strong strain-specific genes were more than the
values for nonspecific and moderate strain-specific genes
(fig. 2F). It indicated that strong strain-specific genes had
the largest variability of sequence. Thus, it is no surprise
that strong strain-specific genes suffered the weakest se-
lective pressures when examining gene evolutionary rates
derived from four Saccharomyces species (Wall et al.
2005) (fig. 2G). Using expression profiles in BY4741,
YPS606, and BC187 (Yang et al. 2017), we found strong
strain-specific genes generally had the lowest expression le-
vels (fig. 2H, supplementary file S1: fig. S5, Supplementary
Material online). In addition, strong strain-specific genes
tended to have fewest physically interacting partners (fig.
2I). According to the current essential genes annotated in
S. cerevisiae strains, the proportion of essential genes de-
creased from nonspecific, moderate strain-specific to
strong strain-specific genes (fig. 2J). These results indicate

that the strain specificity of the fitness effect for a gene is
connected with its evolutionary and functional importance.

Relationship Between the Strain Specificity of Fitness
Effect and Gene Age

New genes are always considered to contribute species-
specific phenotypic traits (Kaessmann 2010). To explore
the role of gene age in the strain specificity of fitness ef-
fects, genes were assigned to different ages, according to
Doughty et al.’s (2020) study (fig. 3A). Genes of age I are
ancient genes that are conserved in filamentous fungi,
and genes of age V are newly acquired in S. cerevisiae spe-
cies (i.e., S. cerevisiae species-specific genes). In the pro-
gression from ancient genes to young genes, the
proportions of strong strain-specific genes increased, and
the proportions of nonspecific genes decreased (fig. 3B).
This suggests that gene age is genuinely relevant to the
strain specificity of the fitness effect. A remarkable observa-
tion was that there was no difference in Hf for nonspecific
genes of different ages (fig. 3C left), though strong strain-
specific genes of age V had significantly lowerHf than those
of age I (fig. 3C right). This provides evidence that a portion
of new genes, that is, the nonspecific genes of age V, can
rapidly evolve to perform universal functions within species.

We further examined the fitness effect size of genes of
each age. As expected, for nonspecific genes, significant
differences in negative β-scores existed between genes of
age I and age II, and between genes of age IV and age V
(fig. 3D left). That is, for these genes, the size of the fitness
effect generally decreased from ancient genes to young
genes, echoing the different functional importance of
genes of different ages. However, for strong strain-specific
genes, there were no differences in negative β-scores
among genes of ages I, II, III, W, and IV, whereas significant
differences existed between genes of age IV and age V
(fig. 3D right). In other words, the size of the fitness effect
cannot be distinguished among genes of all ages, except
S. cerevisiae species-specific genes. It seemed that strong
strain-specific genes might have a ceiling of fitness effect
size, which is not affected by gene age, and S. cerevisiae
species-specific genes are still evolving and have not yet
reached this ceiling. To avoid bias from small fitness effects,
we excluded the genes with negative β-scores larger than
0.3 in ten strains, and we continued to observe similar pat-
terns (supplementary file S1: fig. S6, Supplementary
Material online).

Diverse Strain Specificity of the Fitness Effects for Genes
Whose Products Form Complexes

Protein complexes are vital for many conserved biological
processes (Wan et al. 2015). However, studies have found
that members constituted a complex may not be equal in
conservation and essentiality (Ryan et al. 2013; Caufield
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et al. 2015). We wondered whether genes whose products
form a protein complex would have identical strain specifi-
city of fitness effect. The levels of strain specificity for mem-
bers of 391 curated consensus complexes (involving 1,556
genes) were examined (see Materials and Methods,
supplementary file S6, Supplementary Material online).
Unexpectedly, inconsistent performances of members
within complexes were prevalent across 391 complexes
(supplementary file S1: fig. S7, Supplementary Material on-
line). To assess the diversity with complexes, the same

number of pseudocomplexes was generated by random
samplings from genes involved in complexes (see
Materials and Methods). The proportion of nonspecific
genes in each complex was calculated for both complex
sets. Distributions of proportions for the two sets were dif-
ferent. In the pseudocomplex set, the highest peak was ap-
proximately at 0.28, which matches the proportion of
nonspecific genes in complex genes (0.28, 431/1556)
(fig. 4A). In contrast, in the curated consensus complex
set, the highest peak was at zero. That was to say, a
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(left) and strong strain-specific genes (right) of different age groups. There is no difference among nonspecific genes of different ages. Strong strain-specific
genes of age V have significantly lower Hf than those of age I (Wilcoxon rank-sum test, P= 0.006). (D) Cumulative distributions of negative β-scores for non-
specific genes (left) and strong strain-specific genes (right) of different age groups. The cumulative distributionswere drawn by negative β-scores in ten strains.
For nonspecific genes, there are no differences among genes of ages II, III, IV, and V groups, but significant differences exist between genes of age I and age II
groups, and between genes of age IV and age V groups (Wilcoxon rank-sum test, I vs. II: P= 6.7×10−9; IV vs. V: P=0.01). For strong strain-specific genes,
there are no differences among genes of ages I, II, III, IV, and V groups, but significant differences exist between genes of age IV and age V groups (Wilcoxon
rank-sum test, IV vs. V: P=2.7×10−4).

Moderate strain-specific

Non-specific

Strong strain-specific

A B C

FIG. 4.—Diverse conservation of members in complexes. (A) Density of proportion of nonspecific members for 391 complexes. The curated consensus
complex set is indicated by dark gray, and the pseudocomplex set is colored by light gray. (B) Three-hundred-ninety-one complexes are classified into three
categories, which are fully nonspecific members, fully strain-specific members, and nonspecific/strain-specific members mixed, respectively. (C) Cumulative
scores for the essentiality of nonspecific, semistrain-specific, and strong strain-specific members in partially essential complexes consisted of both nonspecific
and strain-specific members, respectively. The score of an essential gene was defined as 1, and the score of a nonessential gene was defined as−1. For each
complex, the essentiality of each member was judged, and scores were calculated for each level of strain specificity, respectively. The cumulative scores were
calculated by traversing all complexes consisting of genes with three levels of strain specificity.
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prominent feature in this set was that a relatively high num-
ber of them (0.42, 163/391) consisted entirely of strain-
specific genes (fig. 4A). This result indicates that the diverse
strain specificity of fitness effects among members might
have biological significance, rather than being merely ran-
dom combinations.

Among 391 complexes, 23 fully consisted of members
encoded by nonspecific genes (fig. 4B, supplementary file
S6, Supplementary Material online). All of these were
formed by relatively older genes (evolved before the diver-
gence of Saccharomyces), and 74% (17/23) were formed
by genes of the same ages. Additionally, members of
such complexes tended to have a large number of physically
interacting partners (supplementary file S6, Supplementary
Material online). For instance, BRE5 and UBP3, whose pro-
ducts belong to the Ubp3–Bre5 complex, have 394 and 454
physically interacting partners, respectively. In contrast, 163
complexes fully consisted of strain-specific members (in-
cluding moderate strain-specific and/or strong strain-
specific members) (fig. 4B, supplementary file 6,
Supplementary Material online). Not surprisingly, over
71% of these complexes (116/163) consisted of only non-
essential genes annotated in S. cerevisiae, and �50%
(81/163) of them consisted of genes in at least two age
groups.

Beyond that, over half of the complexes (205/391) con-
sisted of both nonspecific and strain-specific members (fig.
4B, supplementary file S6, Supplementary Material online).
Though complexes with only nonessential members were
more abundant than those with only essential members
in this category (69 vs. 35), in the remaining 101 complexes
showing partial essentiality, nonspecific members are ap-
parently enriched in essential genes relative to strain-
specific members (fig. 4C). The inconsistent performances
of members might reflect their different roles when com-
plexes execute functions. For example, in the nucleoporin
Nsp1 subcomplex, the FG-nucleoporin components of the
nuclear pore complex (NSP1, NUP57, and NUP49) are non-
specific, and the linker nucleoporin component (NIC96) is
strong strain-specific (Schrader et al. 2008). In the nascent
polypeptide-associated complex, the member that showed
a strongly strain-specific fitness effect (BTT1) is the paralog
of one of the moderate strain-specific members (EGD1),
which indicates genetic redundancy in complexes. Taken
together, these results suggest that the constitution of pro-
tein complex is far more flexible in terms of fitness effects of
disruptions of member genes within species.

Discussion
This study presents genome-wide fitness effect data for ten
S. cerevisiae strains, which provide direct and detailed in-
sights into intraspecies variations of mutant phenotypes.
Though there was extremely high conservation in DNA

sequences for �5,600 orthologs, strain-specific variations
in fitness effects were detected formost genes. The fraction
of nonspecific genes (21.3%) is similar to the fraction of
conserved growth profiles in four genetic backgrounds of
yeast (9–24%) (Galardini et al. 2019). It is worth noting
that growth behaviors in galactose condition differ among
these strains. The relative proliferation rates of nine strains
comparedwith BY4741 range from 1.04 to 1.54with ame-
dian of 1.36 (supplementary file S1: fig. S8, Supplementary
Material online). Deleterious mutations in more-fit strains
have more strongly deleterious effects (Johnson et al.
2019). The different fitness of wildtype strains may be asso-
ciated with the less conservation of fitness effect.

The degree of strain specificity of a gene is related to its
functional and evolutional properties, such as expression le-
vel, essentiality, physically interacted partner, and power of
natural selection. In particular, we found that strong strain-
specific genes have a growing proportion of newly evolved
genes. This is consistent with the observations for new
genes: they often contribute to lineage- or species-specific
phenotypes (Kaessmann 2010; Chen et al. 2013). In fact,
nearly half of newly evolved strong strain-specific genes
(of age V, 58/118) are unannotated in S288C, indicating
that they may be specifically functional in other strains. In
addition, because they have been sustained in the long evo-
lution process, ancient genes are usually considered the
most important, and their deletion would lead to a large fit-
ness effect (Chen et al. 2012; Yin et al. 2016). This is true for
nonspecific genes, but not for strong strain-specific genes
(fig. 3D), providing an intriguing insight into the functional
evolution of genes.

Negative β-score was used to indicate the deleterious fit-
ness effect of gene disruption in this study. To assess its cap-
acity, we experimentally examined the deletion effects of
eight genes in BY4741 by replacing the target genes with
a URA3 marker, respectively (see Materials and Methods).
Although the deletion of SAK1 resulted in an unexpected
growth defect, the deletion mutants of BY4741 generally
grew in line with their negative β-scores (supplementary
file S1: fig. S9A, Supplementary Material online). We also
deleted two genes with distinct negative β-scores in the
other nine strains (supplementary file S1: fig. S9B,
Supplementary Material online). Negative β-scores of
PHO3 were larger than 0.8 in all strains except Yllc17_E5,
and the PHO3 deletion mutants had near-normal growth
in most strains. Conversely, CKB2 exhibited small negative
β-scores in all strains, and its deletion had large effects on
growth. We further examined the correlation between
negative β-scores and public fitness data of gene deletion
lines in genetic background of S288C assessed by Bar-seq
and clone image, respectively (Qian et al. 2012; Galardini
et al. 2019). The negative β-score as a proxy for fitness ef-
fect of gene disruption could not directly indicate the fit-
ness effect of gene deletion (Spearman’s correlation
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coefficients ρ= 0.11 for Bar-seq, ρ= 0.05 for clone image),
although genes whose deletions resulted in low fitness
tended to have less negative β-scores (supplementary file
S1: fig. S9C, Supplementary Material online). This may
due to the intrinsic difference between gene deletion and
gene disruption. Different culture conditions (carbon
source, culture medium) and different measurements of fit-
ness in different studies may also have contributions.

However, neither a clustering tree derived from fitness ef-
fects of all genes nor clustering trees of genes in each level of
strain specificity exactly agreed with the phylogenetic tree of
these strains (supplementary file S1: fig. S10, Supplementary
Material online). The discordance between genomic diver-
gence and phenotypic variation within species is not rare,
and sporadic cases have been observed in plants, verte-
brates, reptiles, and fungi (Yvert et al. 2013; Jin et al.
2014; Valladares et al. 2014; Harris et al. 2018). Recent views
state that phenotypic evolution may obey different laws of
genotypic evolution (Zhang 2018; Wideman et al. 2019).
We indeed observed that the variability of fitness effects
within species was larger than that of gene expression (fig.
2C), which probably is an intrinsic feature for mutant pheno-
type. Vu et al. (2015) suggested that natural variation in gene
expression can significantly affect the severity ofmutant phe-
notypes, and loss of function of geneswith a 20%difference
in expression level comparedwith the species average would
probably lead to severe phenotypes.

Genome-wide CRISPR–Cas9 screening is a general tool
for studying the essentiality of genes and other functional
elements (Fei et al. 2019; Ihry et al. 2019; Schwartz et al.
2019; Choudhury et al. 2020). Nevertheless, it is difficult
to give a definite cutoff to distinguish essential and non-
essential genes on a genome-wide scale no matter which
indicator is used (Shalem et al. 2014; Morgens et al.
2016; Wang et al. 2017; Ihry et al. 2019). An intrinsic rea-
son for this is that some genes are only essential in certain
conditions (Papp et al. 2004; Liu et al. 2015; Chen et al.
2016; Larrimore and Rancati 2019), and mutants of some
nonessential genes can severely influence cell growth
(e.g., some ribosomal genes). Another important reason
is the library-specific false negatives brought by inactive
gRNAs (Ong et al. 2017; Schwartz et al. 2019). Here, pleio-
tropic mutational effects, which are either ad hoc or evolu-
tionarily selected, may also contribute to phenotypic
variations (He 2016; Liu et al. 2020). Under these circum-
stances, the Shannon entropy provides a reliable estimation
of the effective size and conservation of fitness effects for
each gene by considering their whole performances in
ten strains, which can partly reduce the impact of false ne-
gatives in a single strain (He 2016).

Here we systematically investigated the intraspecies vari-
ation in fitness effects of 5,630 gene mutants in ten S. cer-
evisiae strains using CRISPR–Cas9 screening. We showed
that the variability of fitness effects induced by gene

disruptions is very large within species, which supports
that phenotypic evolution may obey different laws of geno-
typic evolution. Importantly, the strain specificity of fitness
effect of a gene is connected to its functions and evolution-
ary time. This work is a comprehensive evaluation of intras-
pecies phenotypic variation, which provides crucial insights
for gene function prediction and biological complexity.

Materials and Methods

Yeast Strains and the Composition of Vector

Twenty-five S. cerevisiae strains were included in this study.
Except for BY4741 (MATa, his3, leu2, met15, ura3) and
GIL104 (a haploid yeast strain derived from theW303 back-
ground, MATa, URA3, leu2, trp1, CAN1, ade2, his3,
bar1Δ::ADE2) (Lang and Murray 2008), other strains
(MATa, ura3) were purchased from the National
Collection of Yeast Cultures. The wildtype URA3 in
GIL104 was first replaced by a LEU2 cassette. All strains
were cultured at 30 °C.

The background vector used in this study is pYES2
(Invitrogen). A gRNA expression cassette and a Cas9 ex-
pression cassette were constructed into the vector. The for-
mer consisted of the SNR52 promoter, sgRNA, gRNA
scaffold, SUP4 terminator, and a 100-bp donor sequence
with 8-bp deletion around the PAM sequence. The latter in-
cluded the GAL1 promoter, two SV40 nuclear localization
signal sequences, Cas9, and the CYC1 terminator. Codon
optimization was performed for Cas9 (derived from
Streptococcus pyogenes) by DNA Chisel (Zulkower and
Rosser 2020), and the optimized Cas9 was synthesized by
Genewiz and cloned into pYES2.

Verify the Efficiency of the CRISPR–Cas9 System

To verify the typical gene disruption efficiency of this system
in 25 S. cerevisiae strains, a 20-bp guide sequence targeting
157 bp downstream of the start codon of ADE2 with the
corresponding donor sequence was constructed into the
vector for ADE2 disruption (Bao et al. 2015). The con-
structed vector was transformed into each strain according
to the standard polyethylene glycol (PEG)/LiAc-based meth-
od, as described in our previous study (Liu et al. 2020).
Transformants were growth in plates of synthetic medium
deprived of uracil (SC-URA, 2% glucose, 2% agar) for 2
days. Then the positive clones were confirmed by polymer-
ase chain reaction (PCR), and cultured in synthetic medium
deprived of uracil (SC-URA, 2% glucose) for 2 days with
shaking. After that,�104 cells were transferred to synthetic
medium deprived of uracil containing galactose (1% gal-
actose, 2% raffinose) and incubated for 2–3 days with
shaking. To examine the editing events, dilutions of 10 μl
cells were spread on YPD plates (1% yeast extract, 1%
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peptone, 2% dextrose, 2% agar) for 2–3 days, and frac-
tions of red clones were counted for each strain.

CRISPR–Cas9 Library Design

To design the CRISPR library, the potential sgRNAs were
predicted for each gene of S288C by sgRNAScorer.2.0
(Chari et al. 2017), and the efficacy of each sgRNAwas eval-
uated by CRISPRseek (Zhu et al. 2014). SgRNAs with
top5OfftargetTotalScore larger than 15 and gRNAefficacy
,0.3 were excluded (top5OfftargetTotalScore and
gRNAefficacy: two indices derived from CRISPRseek).
SgRNAs, including SNPs of S. cerevisiae strains, were also
excluded (Bergström et al. 2014). Two criteria were used
to pick five sgRNAs per gene: the position of the sgRNAs
should be in the first half of the ORFs, and the
gRNAefficacy should be as high as possible. The first criter-
ion was relaxed when insufficient sgRNAs could be ob-
tained, and extra sgRNAs were supplemented to increase
the editing opportunities of these genes. For each sgRNA,
50-bp homologous sequences on each side of its PAM se-
quence with a centered 8-bp deletion were detected and
connected up as its donor sequence. Then, we got
28,457 sgRNAs with donor sequences for 5,706 genes.
We also designed 100 random sgRNAs, each with 100-bp
random donor sequences for control.

Library Production

The oligonucleotide library of sgRNAs with SUP4
terminator and donor sequences was synthesized by
Genewiz. BbSI and EcoRI restriction sites were appended
to each sequence. First, the library was amplified by
PCR (F primer: TGACGCGAAGACATGATC; R primer:
GCGAATTCCACTCAGTCC) and cloned into PUC19 con-
taining SNP52 promoter using restriction enzymes BbSI
(NEB #R3539), EcoRI (NEB #R3101), and T4 ligase (NEB
#M0202). Next, the gRNA scaffold was cloned into the
above vector by seamless DNA cloning (Clonesmarter,
Seamless Assembly Cloning Kit # C5891-50). Briefly, the
vector in the first step was linearized by PCR (F primer:
GCACACCTGCTTATGTCT; R primer: TAGCTCTAAAAC-
NNNN); the gRNA-scaffold was amplified using primers
with overlapped sequences (F primer: NNNGTTTTAGAGC-
TAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCA
ACTTGAAAAAGTGGCACCGAGT; R primer: AGACATAA-
GCAGGTGTGCAGACATAAAAAACAAAAAAAGCACCG-
ACTCGGTGCCACTTTTTCA). The library of gRNA expres-
sion cassette was obtained by the above two steps.
Third, both pYES2 with the Cas9 expression cassette and
the library vector with gRNA expression cassette were di-
gested with SphI (NEB #R3182) and EcoRI (NEB #R3101).
Then, the gRNA expression cassette fragments were con-
structed into pYES2 with the Cas9 expression cassette
using T4 ligase. In each round of cloning, the ligation

mixture was purified by ethanol precipitation and trans-
formed into DH5α electrocompetent Escherichia coli cells
(Weidibio, CAT#DE1001) by electroporation. The transfor-
mants were verified using PCR, and the positive rates were
achieved to 100% in all rounds. About 106 transformants
were collected, and plasmids were extracted in each
round. To confirm the coverage of sgRNAs in the plasmid
library, the donor sequences were amplified by PCR (F pri-
mer: GTCTGCACACCTGCTTATGTC; R primer: GAGGTC-
GCTCTTATTGACCAC). High-fidelity DNA polymerase
(TOYOBO, KOD-FX 101) was used, and multiple amplifica-
tions were performed parallelly to reduce batch effects.
Then, the amplicons were sequenced on a HiSeq platform
at Genewiz with two technical replicates. NGS of the li-
brary captured 97.3% of the designed donor sequences
(27,799/28,557), which covered �100% of the targeted
genes (5705/5706).

CRISPR–Cas9 Screening in Various Strains

The plasmid library was transformed into each yeast strain
by a high-efficiency PEG/LiAc-based method (Takara,
Yeastmaker™ Yeast Transformation System 2). SC-URA
plates were used to select the cells successfully taking up
plasmids. The transformants were verified using PCR, and
the positive rates were achieved to 100%. To assess the
probability of a transformant with more than one vector,
we picked 40 single clones from four strains (BY4741,
322134S, DBVPG1106, L-1528), and amplified and se-
quenced the sgRNA sequences. If the sgRNA sequence of
a clone was not unique, it was defined as a hybrid event.
Sequencing of �40 transformants revealed that the prob-
ability of a transformant with more than one vector was
,0.08. Over 5× 107 transformants were collected for
each strain. To determine the baseline of the abundance
of donor sequence for each strain, about 109 cells were im-
mediately taken from the collections, and donor sequences
were amplified following sequencing, as described above.
Meanwhile,�5× 107 cells were taken from the collections
and incubated in a liquid synthetic medium deprived of ura-
cil containing galactose to induce the expression of Cas9
for 2–3 days with shaking. To ensure each sgRNA has the
opportunity to work, the induced incubation was per-
formed in ten 96-well plates for each strain. Each well
was an independent environment. After induced incuba-
tion, all cells were collected, mixed well, and transferred
into a fresh liquid synthetic medium deprived of uracil
with glucose for 1–2 days with shaking. Then, the cells
were collected and used to extract plasmids. Donor se-
quences were amplified and sequenced, as described
above. Each condition in each strain had two replicates.
The sequencing data were in BioProject (PRJNA693154).
For each strain, there were four samples, including two
samples before edited (replicate_1_control and

Rapid Intraspecies Evolution GBE

Genome Biol. Evol. 14(5) https://doi.org/10.1093/gbe/evac061 Advance Access publication 28 April 2022 9

https://doi.org/10.1093/gbe/evac061


replicate_2_control) and two samples after edited (replica-
te_1_treatment and replicate_2_treatment).

Data Processing and Analysis

Reads were mapped to the custom index built according to
relationships between donor sequences and genes using
BWA (Version 0.7.17) (Li and Durbin 2009). The coverages
of donor sequences ranged from 90.6% to 95.2% for plas-
mids collected before induced incubation in various strains.
MAGeCK (Version 0.5.9) (Wang et al. 2019) was used to
quantify the variations of abundances of donor sequences
with the following key parameters: remove-zero-threshold
30, norm-method control− control-sgrna random_do-
nor_sequences.txt. The txt file recorded the names of ran-
dom donor sequences. To remove the effects of different
total reads in different sample, the counts of random donor
sequences were used as controls for normalization of
CRISPR screens because their variations reflected the back-
ground effect of the vector. There were 92.3–99.6% genes
having fold-change values ,1 in different strains, suggest-
ing the successful generation of mutants by this system and
the occurrence of negative selection. The value of negative
β-score (representing the strength of negative selection)
was calculated by ranking sgRNAs on the basis of their
P-values calculated from the negative binomial model and
using a modified robust ranking aggregation algorithm by
MAGeCK. The negative-selection data of genes in each
strain are listed in supplementary file S4, Supplementary
Material online.

The numbers of genes with significant effects were
counted for each strain with the thresholds of FDR, 0.05
and negative β-score,0.1. The numbers of strains in
which the disruption of the same gene had similar signifi-
cant effects were counted (i.e., the number of co-
occurrence strains). To evaluate the randomness of the
distribution of the numbers of cooccurrence strains, a cer-
tain number of genes were sampled for each strain, and
the numbers of different strains were different according
to the number of genes with significant effects in each
strain, respectively. Then the numbers of cooccurrence
strains were counted. The random sampling performed
ten times, and the average number and standard variation
were calculated for each condition.

There were 5,630 genes having negative β-scores in all
strains. To evaluate the conservation of fitness effect for
each gene across different strains, Shannon entropy (Hf)
was calculated for each gene as following (Schug et al.
2005). We defined the fitness effect level of gene i in strain
j as fi,j=−log 10βi,j, where βi,j is the negative β-score. The
mathematical treatment of negative β-score could expand
the difference between genes, considering a fairly large
number of genes had values ,0.1 (e.g., 23% in BY4741).
Then, the relative fitness effect of gene i in strain j is

p j|i = fi,j/
∑

1≤j≤N fi,j, where N is the number of strains
(N= 10). The entropy of fitness effect distribution (Hf) for
gene i is Hfi = −∑

1≤j≤N p j|i log2 (p j|i).

To define the threshold of different levels of Hf, simula-
tions were performed to model a gene with uniform fitness
effects in all strains following the previous study (Schug
et al. 2005). The fitness effects of the gene in different
strains were assumed to fluctuate around an average fit-
ness effect with deviations following a narrow distribution.
Average fitness effects were sampled from the average
values of 5,630 genes. To model a gene having a highly
conserved fitness effect, we set the deviation to 1 (i.e.,
fold changes between the fitness effect of a particular
strain and the average level were within 1.5 in over 70%
strains). The value of Hf was estimated by 2,000 random
samplings, and the average value of ten repeats was used
to define the threshold. To get a looser threshold, the devi-
ation was set to 1.5.

The expression profiles of six S. cerevisiae strains were
derived from Yang et al.’s (2017) study, and the entropy
of expression of each gene (He) was calculated as follows:

Hei = −
∑

1≤i≤6

p j|i log2 ( p j|i)

where p j|i = log2ri,j∑
1≤j≤6

log2ri,j
, and ri,j is the expression level (log 2

base of RPKM, Reads Per Kilobase per Million mapped
reads) of gene i in strain j. Entropy ranges from 0 to
log2(N ). For comparison, we calculated Hf for 3,661 over-
lapped genes in six strains sampled from ten strains in this
study. The samplings were performed ten times, and the
average value of Hf was calculated for each gene.

Yeast Gene Deletions and Fitness Estimation

Eight genes (PHO3, MPO1, YDR132C, ZRC1, REV3, SAK1,
HSE1, and CKB2) with various negative β-scores were re-
placed by a URA3 cassette based on homologous recom-
bination in BY4741, respectively. Transformations of gene
replacements were according to the standard PEG/
LiAc-based method. PHO3 and SAK1 were deleted in the
other nine strains by the same method. The successful de-
letion clones were identified by PCR. Because flocculation
is widespread in most strains, we used clone size to esti-
mate the fitness effects of deletion lines. For each strain,
the wildtype and deletion lines were incubated in a synthet-
ic medium with 2% glucose for 2 days. Then, cell concen-
trations were measured and quantified to ensure the
initial cell number for dilution was the same in all lines.
Cells were gradiently diluted (1:100, 1:500, 1:1,000,
1:5,000, 1:10,000), and 1 μl cells in each gradient were
dropped to synthetic medium plates. The plates were incu-
bated for 30 h and imaged. The relative proliferation rates
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of nine strains in galactose (2%) and glucose condition
were obtained from Warringer et al.’s (2011) study.

Gene Features Analysis

The phylogenetic tree of ten S. cerevisiae strains and an
S. paradoxus strain was drawn with the distance matrix de-
rived inWest et al.’s (2014) study usingMEGA-X (Molecular
Evolutionary Genetics Analysis) (Kumar et al. 2018). The fit-
ness of �5,000 nonessential gene deletion strains in YPD
measured by Bar-seq was from Qian et al.’s (2012) study.
The fitness of 3,786 gene knockouts in four S. cerevisiae
strains in SC-HEPES medium measured by clone image
was from Galardini et al.’s (2019) study. Median values of
normalized sizes were calculated from replicates for mu-
tants and wild-type strain, respectively. Then the fitness
for each mutant was the ratio of the median value of mu-
tants vs. the median value of wild-type strain. Gene anno-
tations were downloaded from Saccharomyces Genome
Database (SGD, http://sgd-archive.yeastgenome.org/
curation/literature/gene_association.sgd), and the repre-
sentative putative genes were filtered by keywords (“puta-
tive” and “unknown”). The GO slim mapping file was
downloaded from SGD (https://www.yeastgenome.org/
go_slim_mapping.tab), and the representative ribosomal
genes were filtered from the terms including “ribosomal”
or “ribosome”. The ORF sequences of S288C were down-
loaded from SGD, and the sequences of other strains
were downloaded from Saccharomyces Genome
Resequencing Project (SGRP, http://www.moseslab.csb.
utoronto.ca/sgrp/download.html). The ORF length in
S288C was used to represent gene length for each gene.
The information of SNPs in S. cerevisiae was downloaded
from SGRP, and the total number of SNPs compared with
the reference genome of S288C was counted for each
gene. Gene evolutionary rates were from Wall et al.’s
(2005) study, which were estimated from 4,120 orthologs
of S. bayanus, S. mikatae, S. paradoxus, and S. cerevisiae.
The annotations of gene age were from Doughty et al.’s
(2020) study. The expression levels of S. cerevisiae genes
were estimated by the average values of six S. cerevisiae
strains in Yang et al.’s (2017) study (including YPS606,
IFO1815, DBVPG6040, Y9, BC187, and YJM145).
Physically interacting partners for each gene were extracted
from the BioGRID database (https://thebiogrid.org/
BIOGRID-ORGANISM-Saccharomyces_cerevisiae_S288c-3.
5.169). The list of essential and nonessential genes in
S288C (genes with inviable and viable phenotypes, respect-
ively) was downloaded from SGD on November 2, 2020.
Information of protein complexes was obtained from
Benschop et al.’s (2010) study, and the curated consensus
complex list was used. To generate a pseudocomplex set,
in each sampling, the number of members was randomly
sampled from the numbers in the curated consensus

complex set, and the corresponding set of genes were ran-
domly sampled from complex genes. All features of genes
are listed in supplementary file S4, Supplementary
Material online.
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