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Objective. Ionizing radiation (IR) causes cardiac senescence, which eventually manifests as radiation-induced heart damage
(RIHD). This study is aimed at exploring the mechanisms underlying IR-induced senescence using acetylation proteomics.
Methods. Irradiated mouse hearts and H9C2 cells were harvested for senescence detection. Acetylation proteomics was used to
investigate alterations in lysine acetylation. Atp5f1c acetylation after IR was verified using coimmunoprecipitation (Co-IP).
Atp5f1c lysine 55 site acetylation (Atp5f1c K55-Ac) point mutation plasmids were used to evaluate the influence of Atp5f1c
K55-Ac on energy metabolism and cellular senescence. Deacetylation inhibitors, plasmids, and siRNA transfection were used
to determine the mechanism of Atp5f1c K55-Ac regulation. Results. The mice showed cardiomyocyte and cardiac aging
phenotypes after IR. We identified 90 lysine acetylation sites from 70 protein alterations in the heart in response to IR.
Hyperacetylated proteins are primarily involved in energy metabolism. Among them, Atp5f1c was hyperacetylated, as
confirmed by Co-IP. Atp5f1c K55-Ac decreased ATP enzyme activity and synthesis. Atp5f1c K55 acetylation induced
cardiomyocyte senescence, and Sirt4 and Sirt5 regulated Atp5f1c K55 deacetylation. Conclusion. Our findings reveal a
mechanism of RIHD through which Atp5f1c K55-Ac leads to cardiac aging and Sirt4 or Sirt5 modulates Atp5f1c acetylation.
Therefore, the regulation of Atp5f1c K55-Ac might be a potential target for the treatment of RIHD.

1. Introduction

Radiotherapy is the mainstay of treatment for thoracic can-
cer (e.g., thymoma and cancers of the lung, breast, and
esophagus) and lymphoma [1]. More than half of the
patients receive radical or palliative radiotherapy during
anticancer treatment [2]. Large clinical studies have found
that the long-term survival of patients who have undergone
thoracic radiotherapy is impaired by radiation-induced heart
damage (RIHD) [3–5]. RIHD is mainly observed many years
after patients receive thoracic radiotherapy, manifesting as

coronary artery disease, ischemic heart disease, pericarditis,
conduction defects, and valvular dysfunction [6–8]. RIHD
can impact prognosis and increase cardiac mortality and
has become a challenge in clinical practice [9, 10].

Cellular senescence is a risk factor for cardiovascular
disease and is correlated with cardiac dysfunction [11]. Senes-
cence is a permanent state of cell cycle arrest that promotes tis-
sue remodeling and often occurs in different physiological and
pathological processes [12]. Cardiomyocyte senescence can
impair metabolic and contractile dysfunction and activate
fibroblasts [13]. The mechanism of RIHD is known to
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generate oxidative stress, damage DNA, injure endothelial
cells, and secrete cytokines, which may cause metabolic disor-
ders and nucleus damage, leading to cell apoptosis or necrosis
[14, 15]; oxidative stress, DNA damage, and continuous
inflammation have also been implicated in the mechanism of
cardiomyocyte senescence [16]. Moreover, various pathogenic
factors can cause cardiac and cardiomyocyte senescence [17].
Cardiac senescence can be characterized by systolic dysfunc-
tion and contribute to the initiation of heart failure [18]. Sur-
vivors of thoracic malignancies who receive radiotherapy may
present with cardiac disease with or without deterioration of
myocardial contractility after decades [19, 20]. Ionizing radia-
tion- (IR-) induced DNA damage, senescence-associated
inflammatory factors, and ROS are also hallmarks of cardio-
myocyte senescence [21]. Senescence and the DNA damage-
associated >BRCA1 and p53/p21 signaling axis regulated by
IR can cause cardiovascular injury, which eventually leads to
RIHD [22, 23]. Cardiac cellular senescence can also manifest
as inflammation- or ROS-induced telomere shortening and
senescence-associated secretory phenotypes (SASPs) [16, 24].
Thus, IRmight cause cardiac senescence. However, the molec-
ular mechanisms underlying radiation-induced senescence
remain to be elucidated. Epigenetic regulation is closely related
to cardiac senescence [13]. Lysine acetylation of proteins is a
conserved posttranslational modification that modifies pro-
tein structure and integrates biological processes such as
metabolism, circadian rhythm, and gene transcription in
organisms [25, 26]. The molecular mechanisms underlying
acetylated protein alterations have been studied in many
cardiac diseases [27]. Certain modifications, such as acetyla-
tion, are generally associated with cardiac hypertrophy or
heart failure [28, 29]. Protein acetylation is regulated by lysine
acetyltransferases and lysine deacetylases [30]. Some lysine
acetyltransferases and lysine deacetylases regulate energy
metabolism and have been intensively studied in mammals
[25]. Sirtuins (Sirts) are a family of nicotinamide adenine
dinucleotide- (NAD+-) dependent deacetylases with versatile
functions [31], especially in metabolism and aging [32]. In
addition, the acetylation level of proteins is especially relevant
in some metabolic diseases, including atherosclerosis, diabetes
mellitus, and polycystic ovary syndrome [33, 34]. IR can cause
various posttranslational modifications, and epigenetic regula-
tion plays a central role in normal tissue injury induced by
radiation exposure [35, 36]. Apoe-/- mice that received 6Gy
total body irradiation presented an increase in cardiac mito-
chondrial protein acetylation levels and metabolic damage
[37]. However, the relationship between acetylation alteration
and radiation-induced cardiac senescence remains unclear.

In our previous study, we found that high-energy X-rays
resulted in cardiometabolic disorders, collagen deposition,
and suppressed cardiac function [38]. In this study, we aimed
to investigate the mechanisms of radiation-induced cellular
senescence, mainly using tandem mass tags- (TMT-) labeled
acetylation proteomics.

2. Methods

2.1. Establishment of Mouse RIHD Model. The mouse RIHD
model and radiation parameters were established according

to our previous study [38]. The hearts of 10 experimental
C57BL/6 male mice (Shanghai Institute of Biochemistry
and Cell Biology, China) aged 8 weeks were irradiated with
a 16Gy/1 fraction and killed at 1 month (5 mice) and 5
months (5 mice) after irradiation. At 5 months, mice in
the control group (13 mice) were euthanized, and heart
tissues were harvested for further study. All mice were
euthanized after intraperitoneal injection of pentobarbital
sodium. The mice were bred and housed with adequate
water and food. The experiments were approved by the
Animal Ethics Committee of the Second Affiliated Hospital
of Nanchang University.

2.2. Cell Culture. H9C2 cells were cultured at 37C with 5%
CO2 in high-glucose Dulbecco’s Modified Eagle Medium
(Gibco, USA) supplemented with 10% fetal bovine serum
(FBS) (Gibco, USA), 100U/mL penicillin, and 50μg/mL
streptomycin (Solarbio, China) in 10cm culture dishes (Nest,
China). The cell lines were divided into an irradiation group
(Varian Clinic 23EX, USA) and a control group (0Gy). The
irradiated dishes were covered with a 1cm bolus and
received a single dose of 10Gy at a dose rate of 600cGy/
min, and source-to-surface distance (SSD) was 100 cm. The
cells were harvested after 12, 24, and 48h of irradiation.
Additionally, control cells were harvested after 48h. H9C2
cells were more energetically similar to primary cardiomyo-
cytes, especially in energy metabolism patterns, compared
with HL-1 cells [39].

2.3. Plasmid Construction and Transfection. Plasmids
Atp5f1c K55Q-6his, Atp5f1c K55R-6his, and Atp5f1c-6his
were constructed by Shanghai Jikai Gene Chemical Tech-
nology Co., Ltd. (Shanghai, China), and cDNA fragments
were cloned into GV417 eukaryotic expression vectors.
The resulting PCR products were digested using NheI
and BamHI. Successful mutations were confirmed by
DNA sequencing. Primers for the plasmid encoding the
Atp5f1c mutant K55Q, K55R, and WT were generated
and are listed in Supplementary Table 1.

Overexpression plasmids of HA-Sirt3, HA-Sirt4, and
HA-Sirt5 were constructed by Shanghai Jikai Gene Chemical
Technology Co., Ltd., and cDNA fragments were cloned into
GV366 eukaryotic expression vectors. The resulting PCR
product was digested using BamHI and XhoI. Successful
mutations were confirmed by DNA sequencing. Primers
for the plasmid encoding Sirt3 overexpression are listed
in Supplementary Table 2. Plasmids were transiently
transfected into cells using Lipo3000 (Invitrogen, Waltham,
Massachusetts, USA) according to the manufacturer’s
instructions. After transfection, the cells were harvested
after 48 h and subjected to further analysis.

2.4. RNA Interference. siRNAs of Sirt3, Sirt4, and Sirt5 were
synthesized by Han Heng Biotechnology (Shanghai, China)
Co., Ltd., and the oligonucleotide sequences are listed in
Supplementary Table 3. siRNAs were transfected into
H9C2 cells using Lipo3000 (Invitrogen, USA) according to
the manufacturer’s protocol. The efficiency of the gene
knockdown was verified using qPCR.
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2.5. qPCR. Total RNA was extracted from the heart apex
using TRIzol Invitrogen (Solarbio, Beijing, China) following
the manufacturer’s instructions and then reverse-transcribed
into cDNA using the PrimeScript™ RT reagent Kit with
gDNA Eraser (TaKaRa, Japan). PCR amplifications were
performed using TB Green Premix Ex Taq™ (TaKaRa,
Japan), following the manufacturer’s instructions. Actin
and GAPDH served as controls. The primer sequences are
listed in Supplementary Tables 4 and 5.

2.6. Western Blotting. Total proteins from the animal heart
apex or H9C2 cells were extracted using RIPA (Solarbio,
Beijing, China), and protein concentration and western
blotting were performed as previously described [40] The
primary antibodies used in this study were anti-
acetyllysine rabbit pAb (1 : 1000; Jingjie PTM BioLabs,
Inc., China), anti-Atp5f1 monoclonal antibody (1 : 1000;
Proteintech, Wuhan, China), anti-p21 monoclonal antibody
(1 : 1000; Boster, Wuhan, China), HA-tagged monoclonal
antibody (1 : 20000; Proteintech, Wuhan, China), 6× His-
tagged monoclonal antibody (1 : 10000; Proteintech,
Wuhan, China), GAPDH monoclonal antibody (1 : 20000;
Proteintech, Wuhan, China), and anti-α-tubulin monoclo-
nal antibody (1 : 1000; Boster). Anti-rabbit (1 : 10000) and
anti-mouse (1 : 10000) antibodies were purchased from
Proteintech.

2.7. Coimmunoprecipitation (Co-IP). Briefly, samples were
extracted from control and irradiated H9C2 cells (10 cm dish
per sample) using NP-40 (Beyotime, China). Co-IP experi-
ments were performed using SureBeads Protein A/G
Magnetic Beads (Bio-Rad, CA, USA). Briefly, 30μL of Sure-
Beads protein A and G was magnetized and washed with
0.1% PBS/Tween 20 (PBST) and then incubated with 2μg
anti-acetyllysine rabbit pAb (Jingjie PTM BioLabs Inc.,
Hangzhou, China) or IgG rabbit antibody (Abcam, USA)
at room temperature for 30min. Next, the incubated beads
were washed five times with 0.1% PBST and then incubated
with 100μg of extracted protein overnight at 4°C. Proteins
were electrophoresed on SDS-PAGE gels and immunoblot-
ted on a PVDF membrane (Millipore, USA). Membranes
were incubated with Atp5f1c rabbit antibodies (1 : 1000; Pro-
teintech, Wuhan, China) and detected using a peroxidase-
conjugated secondary antibody (1 : 20000; Abcam, USA)
with ECL Blotting Substrates (Beyotime, China). Mem-
branes were visualized by chemiluminescence (Bio-Rad,
USA) and quantified using the ImageJ 14.9 software (ImageJ,
Marlyand, USA).

2.8. Proteomics of Lysine Acetylation. Quantitative proteomic
analysis through TMT was performed by Jingjie PTM Bio-
Lab (Hangzhou, China) Co., Ltd. The sham-irradiated and
5-month-irradiated heart apexes were ground in liquid
nitrogen and lysed in buffer (3μM trichostatin A, 8M urea,
and 1% protease inhibitor). The remaining precipitate was
removed by centrifugation at 12,000×g for 10min at 4°C.
The subsequent procedures (trypsin digestion, TMT label-
ing of peptides, HPLC fractionation, and LC-MS/MS analy-
sis) were performed as previously described [41]. The

resulting MS/MS data were analyzed using the MaxQuant
search engine (v.1.5.2.8) at Jingjie PTM BioLab. The data-
base search method is shown in the Supplementary Mate-
rial (Data S1).

2.9. Bioinformatics Analysis

2.9.1. Functional Classification and Subcellular Localization
Analysis. GO annotation of the proteome was derived from
the UniProt-GOA database (https://www.ebi.ac.uk/GOA/).
The WoLFSPORT database was used to predict the subcel-
lular localization of proteins (https://www.genscript.com/
psort/wolf_psort.html).

2.9.2. Functional Enrichment. GO annotations can be
divided into three categories: biological processes, cellular
components, and molecular functions. Two-tailed Fisher’s
exact test was used to assess the enrichment of differen-
tially expressed proteins (DEPs) against all identified
proteins. Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis was performed at https://
www.genome.jp/kegg/.

2.9.3. Protein-Protein Interaction Network. All differentially
expressed modified protein database accessions or sequences
were searched against the STRING database (version 11.0;
https://www.string-db.org/) for protein-protein interactions.
Only interactions between proteins belonging to the
searched dataset were selected, thereby excluding external
candidates. STRING defines a metric called the “confidence
score” to define interaction confidence; we fetched all inter-
actions that had a confidence score > 0:7 (high confidence).
Interaction networks from STRING were visualized using
Cytoscape 3.7.2. Additionally, CytoHubba was used to study
essential nodes in the network with 11 methods (DMNC and
degree exhibit a satisfactory comparative performance),
completed to explore hub genes [42].

2.10. Telomere Length Measurement. The relative average
telomere length was examined using a q-PCR-based telo-
mere assay described previously [43]. The Ct values of telo-
meres (T) and the single copy gene 36b4 (S) were used as
reference genes and were determined by qPCR. The ratio
of telomere (T) repetitive copy number to single copy
internal reference gene (S) can be used to assess the relative
telomere length (T/S), whereas the T/S ratio is proportional
to telomere length. The calculation formula of T/S is as fol-
lows: T/S = ½2CT ðtelomeresÞ/2 CT ðsingle copy geneÞ� = 2 −
ΔCT. The primers used were as follow: telomere-F primer
(GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAG
GGT), telomere-R primer (TCCCGACTATCCCTATCCC
TATCCCTATCCCTATCCCTA), mouse 36B4-F primer
(ACTGGTCTAGGACCCGAGAAG), and mouse 36B4-R
primer (TCAATGGTGCCTCTGGAGATT). Telomere PCR
was performed at 95°C for 10min followed by amplification
rounds consisting of 40 cycles at 95°C for 15 s, 60°C for
1min, and 72°C for 30 s. The telomere repeat copy number
to single gene copy number (T/S) ratio was determined using
a Bio-Rad connection in a 96-well format.
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2.11. ATP Synthase Activity Assay. Mitochondria were
isolated using a Cell Mitochondria Isolation Kit (C3601;
Beyotime, China). ATP synthase activity was measured
using an ATP Synthase Enzyme Activity Microplate Assay
Kit (ab109714; Abcam, USA). Briefly, samples of the trans-
fected H9C2 cells were collected. ATP synthase from these
samples was immunocaptured within the wells, and its
enzyme activity was measured by determining the produc-
tion of ADP, which is coupled with the oxidation of nicotin-
amide adenine dinucleotide hydrogen (NADH) to NAD+,
and monitored as a decrease in absorbance at 340 nm in
accordance with the manufacturer’s protocol.

2.12. ATP Assay. ATP was measured using an ATP assay kit
(Beyotime, China) according to the manufacturer’s instruc-
tions. H9C2 cells were transfected into 6-well plates. Cell
samples were added to 200μL of lysis buffer and centrifuged
at 12,000× g at 4°C for 5min to obtain the supernatant.
Supernatant samples were mixed with 100μL of ATP detec-
tion working buffer and measured using a multifunctional
microplate reader (Thermo Scientific Microplate Reader,
Varioskan LUX, Finland).

2.13. Senescence-Associated-Galactosidase Activity Assay.
The transfected cells were isolated and cultured as described
above. The cells were incubated with recombinant adiponec-
tin or 25mmol/L glucose for 72 h. Cellular senescence was
detected using a senescent cell staining kit (Beyotime,
China). Blue-stained and total cells were counted, and the
percentage of galactosidase–positive cells was calculated.

2.14. Cardiac Echocardiogram. Transthoracic echocardiogra-
phy was performed using the Vevo 2100 Ultrasound System
(VisualSonics, Toronto, Canada) according to a previous
study [40]. Two-dimensional guided M-mode echoes were
obtained at the level of the largest left ventricle (LV). The left
ventricular posterior wall at the end of diastole was mea-
sured using M-mode imaging. LV ejection fraction (EF)
was calculated from the measured ventricular dimensions.

2.15. Statistical Analysis. All data are presented as the
mean ± standard deviation (SD) of at least three replicates.
Statistical differences between multiple comparisons were
determined using one-way analysis of variance with least
significant difference or Tukey post hoc test, and differences
between two groups were determined using Student’s t-test.
Statistical analyses were performed with SPSS version 20
(IBM Corp.) and GraphPad Prism 8.0. p < 0:05 was consid-
ered to indicate a statistical significance.

3. Results

3.1. Ionizing Radiation Induces Heart and Cardiomyocyte
Senescence. IR can elicit cellular senescence in cardiomyo-
cytes, fibroblasts, and epithelial cells [44]. Cardiac senes-
cence always exhibits ventricular remodeling, telomere
attrition, proinflammatory and profibrotic molecule secre-
tion, and activation of the p53/p21 and/or p16 signaling
pathways [45]. Our previous study showed that p21-/- mice
were more prone to severe RIHD after irradiation than

wild-type mice [40]. In this study, we systematically investi-
gated IR-induced cardiac senescence and detected cardiac
senescence that manifested after 5 months. We then investi-
gated whether radiation induced cardiac senescence pheno-
types. Echocardiography results indicated enlarged cardiac
chambers, thinner ventricular walls, and decreased left
ventricular ejection fraction (Figures 1(a) and 1(b)). SASP
levels in heart tissue detected by q-PCR showed that
fibrosis-related factors, such as MMP9, Trimp1, Col1a1,
Col3a1, CTGF, and α-SMA, and the inflammatory factors
IL-1, IL-6, CCL-2, and TNF-α dramatically increased after
5 months of radiation (Figures 1(c) and 1(d)). Moreover,
mice in the irradiated group had a shortened telomere length
compared to control mice (Figure 1(e)). IR increased β-
galactosidase staining in H9C2 cells at 12, 24, and 48h
(Figure 2(a)). The expression levels of the senescence-
related proteins p21 and p16 were elevated after IR at
10Gy. Furthermore, SASP factors such as IL-6, CCL-2,
MMP-2, col3a1, and CTGF increased (Figure 2(e)). The
DNA damage-associated repair protein γ-H2AX was overex-
pressed after IR (Figure S1). These findings indicate that
radiation induces cardiac and cardiomyocyte senescence
both in vivo and in vitro.

3.2. Ionizing Radiation Induces Lysine Residue Hyperacetylation
and Modification of Cardiac Metabolic Enzymes. Our previous
study showed that irradiated heart tissue exhibited significant
dysregulation of mitochondrial damage and metabolites, which
could be characterized by inner mitochondrial membrane
damage and decreased ATP synthesis [38]. To investigate the
mechanism of acyl modifications in RIHD, we examined acet-
ylation, succinylation, crotonylation, 2-hydroxyisobutyrylation,
malonylation, and ubiquitination levels in sham- and 5-
month-irradiated heart tissues. Compared to those in sham-
irradiated mice, the levels of acetylation, crotonylation, 2-
hydroxyisobutyrylation, and malonylation increased in the
hearts of irradiated mice. Among these modifications, acetyla-
tion exhibited the most obvious upregulation (Figure S2).
Posttranslational protein acetylation is involved in the
regulation of metabolism [46]. To investigate whether IR
could drive lysine acetylation changes, we measured the
acetylation levels of irradiated heart tissue and H9C2 cells,
and the results indicated that high-energy radiation could
alter the acetylation status (Figures 3(a) and 3(b)).

Lysine acetylation proteomic analysis of the heart
was conducted for the irradiated and control groups
(Figure 3(c)). A total of 721 proteins with 2138 acetylation
sites were discovered in the acetylation modification
proteome data, of which 666 proteins with 1985 acetylation
sites were identified (Supplementary Table 4). Sixty-one
proteins with 80 acetylation sites were upregulated, and
nine proteins with 10 acetylation sites were downregulated
(Figure S3A–B).

This result is in accordance with the high-throughput
acetyl-proteomic classification and enrichment analysis.
Nearly half of the upregulated proteins and acetylation sites
were located in the mitochondria (Figure S3C). Clusters of
Orthologous Groups analysis was performed, and the
results revealed that DEPs in acetylation sites were mainly
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clustered in energy production and conversion, lipid
transport and metabolism, and amino acid transport and
metabolism (Figure 3(d)). In addition, GO functional
enrichment analysis revealed that most DEPs of the
modification sites were enriched in single-organism
processes, cellular processes, and metabolic processes in
the biological process category (Figure 3(e)). Within the
cellular component category, a large number of DEPs were
categorized into mitochondrial categories (Figure S3D).
Metabolic enzyme activity and binding were also enriched
in the main molecular function category (Figure S3E).
According to the KEGG database, differentially expressed
acetylated proteins were enriched in different metabolic
pathways, such as butanoate, beta-alanine, amino acid, and
fatty acid metabolism (Figure 3(f)).

Sixty-nine proteins were filtered into the DEP PPI net-
work complex using STRING, and the resulting PPI network

contained 52 nodes and 129 edges (Figure 3(g)). The top 10
hub genes selected using the DMNC and degree methods
(score ≥ 5,000) and node degree (score ≥ 10) in the Cyto-
Hubba plug-in included Atp5c1 (Atp5f1c) and HSP901b
(Figures 3(h) and 3(i)).

3.3. Hyperacetylated Atp5f1c K55 Site Induces Metabolic
Dysfunction and Cardiomyocyte Senescence. In the above
acetyl-proteomic results, DEPs of acetylation modification
related to fatty acid metabolism and energy metabolism were
obviously overexpressed and extensively distributed in the
mitochondria and mitochondrial membrane. In addition,
we observed radiation-induced cardiac damage and ATP
depletion. Among the highly acetylated proteins, Atp5f1c is
mainly related to energy metabolism [47]. Other mitochon-
drial membrane ATP synthase subunits were also hyperace-
tylated after radiation, in accordance with the acetyl
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Figure 1: Ionizing radiation causes cardiac senescence. (a, b) Echocardiograph images and LVEF of mouse hearts in the control mice
(control group) and in mice 1 and 5 months (1-month and 5-month groups, respectively) after local heart irradiation at a dose of 16Gy.
(c) q-PCR analysis mRNA of fibrosis-associated factors in the 1-month, 5-month, and control groups (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001;
NS: not significant). (d) q-PCR analysis of the mRNA levels of inflammation-associated factors in the 1-month, 5-month, and control
groups (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, NS: not significant). (e) q-PCR analysis of telomere length in cardiac tissue from 1 month to
5 months, and control mice (∗p < 0:05).
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proteomic analysis results, including Atp5h and Atp5me
(Atp5k), which produce ATP from ADP in the presence of
a proton gradient across the membrane that is generated
by electron transport complexes of the respiratory chain.
Atp5f1c was the most hyperacetylated protein among ATP
synthase subunits (Table 1). The lysine 55 site of Atp5f1c
(Atp5f1c K55) was fairly conserved among mammalian spe-
cies, as validated by the ClustalX 2.1 software, indicating that
it has high fidelity (Figure 4(a)). The level of lysine acetyla-
tion after IR was confirmed by Co-IP in vivo and in vitro
(Figures 4(b)–4(d)).

As Atp5f1c is an enzyme central to metabolism, radia-
tion could cause hyperacetylation of cardiac Atp5f1c. More-

over, considering that Atp5f1c K55 has fidelity in various
mammals, we further investigated whether the alterations
in Atp5f1c K55 acetylation mediated the cardiac senescence
and energy metabolism caused by radiation. Subsequently,
we constructed purified His-tagged proteins containing a
mutant site of Atp5f1c K55 to Gln (mimic acetyl-modifica-
tion, K55Q) and Arg (mimic deacetyl-modification, K55R)
in H9C2 cells. The expression of the tag protein showed that
the plasmid was successfully transfected into H9C2 cells
(Figure 5(a)). Atp5f1c K55 acetylation was further verified
by Co-IP in H9C2 cells transfected with different plasmids
(Figure 5(b)). Atp5f1c K55 hyperacetylation increased
senescent cells in the β-galactosidase strain; promoted

Control 12 h 24 h 48 h

100 𝜇m 100 𝜇m 100 𝜇m 100 𝜇m

(a)

p21

GAPDH

Co
nt

ro
l

12
 h

24
 h

48
 h

Co
nt

ro
l

12
 h

24
 h

48
 h

p16

Actin

(b)

12
 h

24
 h

48
 h

0

1

2

3

Re
la

tiv
e p

ro
te

in
 ex

pr
es

sio
n

p2
1/

G
A

PD
H

⁎⁎

⁎
Co

nt
ro

l

(c)

0

1

2

3

4 ⁎⁎

⁎

12
 h

24
 h

48
 h

Co
nt

ro
lRe

la
tiv

e p
ro

te
in

 ex
pr

es
sio

n
p1

6/
A

ct
in

(d)

IL-6 CCL-2 MMP2 Timp1 Col1a1 Col3a1 CTGF 𝛼-SMA
0

5

10

15

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n
 (n

or
m

al
iz

ed
 to

 G
A

PD
H

)

Control
12 h

24 h
48 h

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎
⁎⁎⁎⁎

⁎⁎

⁎⁎

(e)

Figure 2: Ionizing radiation causes cardiomyocyte senescence. (a) Senescence-associated β-galactosidase (SA-βgal) staining of sham-
irradiated and irradiated H9C2 cells. (b)–(d) Western blotting and quantification analyses of p21 and p16 protein expression in H9C2
cells in the control group and after 6h, 12h, and 24h of irradiation (∗p < 0:05, ∗∗p < 0:01). (e) q-PCR analysis of the mRNA levels of
inflammation- and fibrosis-associated factors in H9C2 cells of the control, 6h, 12h, and 24h irradiation groups (∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001, ∗∗∗∗p < 0:0001). Bar: 100μm; h: hour.
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Figure 3: Ionizing radiation induces lysine residue hyperacetylation, thus modifying cardiac metabolic enzymes. (a) Radiation induces
protein acetylation in mouse hearts after 5 months. (b) Radiation induces protein acetylation in H9C2 cells at different time points.
(c) Experimental flow chart of proteomic analysis. (d) Clusters of Orthologous Groups/KOG functional classification chart of proteins
corresponding to differentially expressed modification sites. (e) GO enrichment bubble plot of proteins corresponding to differentially
expressed modification sites in the biological process category. (f) KEGG pathway enrichment bubble plot of proteins corresponding to
differentially expressed modification sites. (g) PPI network of the DEPs. Red nodes represent upregulated proteins, and blue nodes
represent downregulated proteins. (h) The CytoHubba of Degree method were used to extract the top 10 hub proteins from the PPI
network. (i) The CytoHubba of DMNC method was used to extract the top 10 hub proteins from the PPI network.

9Oxidative Medicine and Cellular Longevity



cytokine IL-6, CCL-2, MMP2, and α-SMA secretion; and
overexpressed senescence-associated proteins p21 and p16
(Figures 5(c)–5(i)). In addition, the hyperacetylated Atp5f1c
K-55 site exhibited decreased enzymatic activity and ATP
synthesis (Figures 5(j) and 5(k)). These findings suggest that
K55 acetylation of Atp5f1c plays a significant role in cellular
senescence and energy metabolism.

3.4. Sirt4 and Sirt5 Mediate Atp5f1c K55-Ac Deacetylation.
The above experiments demonstrated that Atp5f1c K55
acetylation (Atp5f1c K55-AC) influences ATP synthesis by
ATP synthase enzyme activity and promotes cardiomyocyte
senescence. Acetylation of nonhistone proteins is regulated
by the classical HDAC family and the NAD+-dependent Sirt
family. We then investigated the effects of the Sirt inhibitor
nicotinamide and the HDAC inhibitor trichostatin A on
Atp5f1c acetylation [48]. As nicotinamide treatment clearly
increased Atp5f1c acetylation (Figure 6(a)), and NAD+-
dependent Sirts were involved in Atp5f1c acetylation. Con-
sidering that Atp5f1c is localized in the mitochondria, the
major mitochondrial deacetylases Sirt3, Sirt4, and Sirt5 were
selected for further investigation. H9C2 cells were trans-
fected with empty vector and Sirt3, Sirt4, and Sirt5 overex-
pression plasmids with an HA-tag. The presence of HA-tag
was used to demonstrate the expression of Sirt plasmids
(Figure 6(b)). The decreased level of Atp5f1c acetylation

was validated using coimmunoprecipitation (Figure 6(c)).
In parallel, siRNA of Sirt3, Sirt4, and Sirt5 was also trans-
fected into H9C2 cells, and the efficiency of siRNA was
confirmed by qPCR (Figure S4). Co-IP results showed that
downregulation of Sirt4 and Sirt5 upregulated Atp5f1c
acetylation levels (Figure 6(d)). The gene expression of
Sirt4 and Sirt5 decreased after IR, and the decrease in Sirt5
was more pronounced. The above results indicate that IR-
induced Atp5f1c acetylation is mediated by Sirt4 and Sirt5.

4. Discussion

Lysine acetylation-mediated metabolic regulation is involved
in cardiac senescence. In this study, we first reported that IR
upregulates Atp5f1c K55-Ac, affects ATP synthase activity,
and promotes impairment of energy metabolism and
cardiomyocyte senescence. The present study provides novel
insights into the mechanisms of RIHD. DNA damage-
induced double-strand breaks have been recognized as a
significant factor in senescence [49]. IR led to cellular
senescence, as indicated by decreased cardiac function,
shortened telomeres, β-galactosidase staining, senescence-
related proteins p21 and p16, and SASP, such as MMP9,
Trimp1, Col1a1, Col3a1, CTGF, α-SMA, IL-1β, IL-6, CCL-
2, and TNF-α. These cytokines are also associated with
inflammation and fibrosis. Irradiated endothelial cells cause

Table 1: Modified K sites of ATP synthase subunit in radiated heart by proteomic profiling of lysine acetylation.

Protein accession Position Ratio Regulated type p value Amino acid Gene name

Q91VR2 55 1.346 Up 0.00080 K Atp5f1c

Q9DCX2 95 1.202 Up 0.048 K Atp5h

Q06185 34 1.308 Up 0.025 K Atp5me

Mus musculus (mouse)
Rattus norvegicus (rat)
Homo sapiens (human)
Pan troglodytes (chimpanzee)
Macaca fascicularis (cynomolgus monkey)
Bos taurus (bovine)

50
25
50
50
50
50

60
35
60
60
60
60

M V A A A K Y A R A E
M V A A A K Y A R A E
M V A A A K Y A R A E
M V A A A K Y A R A E
M V A A A K Y A R A E
M V A A A K Y A R A E

K–Ac

(a)

Co
nt

ro
l

5 
m

on
th

Co
nt

ro
l

5 
m

on
th

Co
nt

ro
l

5 
m

on
th

WB
Atp5f1c

Input Anti-Ac IgG
IP

(b)

Input Anti-Atp5f1c IgG
IP

Co
nt

ro
l

5 
m

on
th

Co
nt

ro
l

5 
m

on
th

Co
nt

ro
l

5 
m

on
th

WB
Ac

(c)

Input IP: Ac antibody

Control 24 h 48 h Control 24 h 48 h

WB: 
Atp5f1c

(d)

Figure 4: Ionizing radiation induces Atp5f1c acetylation in irradiated heart and cardiomyocytes. (a) Sequence alignment of mouse, rat,
human, chimpanzee, monkey, and bovine Atp5f1c proteins. (b, c) Ionizing radiation induced Atp5f1c acetylation in heart tissue, as
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Figure 5: Atp5f1c is hyperacetylated at the 55th lysine site, which leads to metabolic disorders and senescence. (a) The expression of anti-
His antibody after His-tagged Atp5f1c WT, K55R, and K55Q point mutation plasmids transfection in H9C2 cells. (b) Atp5f1c acetylation
level verified by Co-IP after transfection of Atp5f1c WT, K55R, and K55Q point mutation plasmids in H9C2 cells. (c, d) Senescence-
associated β-galactosidase (SABG) staining and statistical analysis after transfection of Atp5f1c WT, K55R, and K55Q point mutation
plasmids in H9C2 cells (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; NS: not significant). (e) q-PCR analysis of the mRNA levels of inflammation-
and fibrosis-associated factors after transfection of Atp5f1c WT, K55R, and K55Q point mutation plasmids in H9C2 cells (∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001). (f)–(i) Western blotting and quantification analyses of p21 and p16 protein expression after
transfection of Atp5f1c WT, K55R, and K55Q point mutation plasmids in H9C2 cells; relative protein levels were normalized to
GAPDH or actin expression (∗p < 0:05). (j, k) ATP synthase activity and ATP production after transfection of Atp5f1c WT, K55R,
and K55Q plasmids into H9C2 cells (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; NS: not significant). Co-IP: Coimmunoprecipitation; WB:
western blotting; WT: wild type.

11Oxidative Medicine and Cellular Longevity



damage to adjacent cells through SASP regulation [50]. RIHD
arises from cell apoptosis and inflammatory and fibrotic pro-
cesses, which can lead to the thickening of blood vessels and
fibrotic scar tissue in the heart [15]. Several studies have linked
altered lysine acetylation to the development of radiation-
induced damage [51]. In this study, acetylated protein levels
were extensively elevated in irradiated heart tissue and H9C2
cells, compared to those in the control groups. Subsequent
subcellular localization and functional enrichment analyses
via acetyl-proteomics indicated that DEPs at different acety-

lated sites were enriched in mitochondrial and energy metab-
olism. Interestingly, we previously discovered that irradiated
heart tissue exhibited significant dysregulation of mitochon-
drial damage and metabolites [38]. In addition to the myocar-
dium, radiation-induced mitochondrial damage in the skeletal
muscle alters the proteins involved in energy metabolism-
related processes [52].

Atp5f1c is a component of an ATP synthase complex
located in the mitochondrial inner membrane that produces
ATP from ADP in the presence of a proton gradient across
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Figure 6: Sirt4 and Sirt5 mediated Atp5f1c K55 deacetylation. (a) Effect of trichostatin A (TSA) and nicotinamide (NAM) on Atp5f1c
acetylation levels in H9C2 cells. (b) The expression of HA-tag after HA-tagged Sirt3, Sirt4, and Sirt5 plasmids was transfected into H9C2
cells. (c) Atp5f1c acetylation verified by Co-IP after HA-tagged Sirt3, Sirt4, and Sirt5 plasmids was transfected into H9C2 cells.
(d) Atp5f1c acetylation level verified by Co-IP after siRNA of Sirt3, Sirt 4, and Sirt 5 was transfected into H9C2 cells. (e) q-PCR
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∗∗p < 0:01, ∗∗∗p < 0:001). (f) Schematic diagram of the study design. WB: western blotting; h: hour; WB: western blotting; RIHD:
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the membrane generated by electron transport complexes of
the respiratory chain [47]. It was previously indicated that
bedaquiline, an FDA-approved drug that can silence the
Atpf1c expression in vitro by targeting Atp5f1c, can inhibit
mitochondrial ATP production [53]. Moreover, mitochon-
drial ATP synthase may be a potential drug target against
aging, according to a study on the activation of the typical
longevity AMPK/mTOR pathway in Alzheimer’s disease
[54]. Atp5f1c is an important enzyme involved in metabolic
pathways. In this study, IR significantly increased Atp5flc
K55 acetylation levels and Atp5f1c K55-Ac overexpression,
which induce metabolic disorder.

Acetylation levels of mitochondrial metabolic enzymes
are affected by NAD+-dependent deacetylase sirtuins (Sirt)
[55]. Sirt is an NAD+-dependent deacetylase and ADP-
ribosyltransferase related to energy metabolism and senes-
cence [56, 57]. Sirt1 is the most extensively studied protein
and is mainly located in the cytoplasm and nucleus [58].
Sirt1 regulates oxidative stress by deacetylating Pgc-1α and
contributing to Nrf2 transcription in chromium-induced
lung injury [59]. In addition, Sirt3, Sirt4, and Sirt5 are
mainly located in the mitochondria and are involved in met-
abolic reactions and antioxidant properties [60]. The ratio of
NAD+ to NADH, which is closely related to glycolysis and
the tricarboxylic (TCA) cycle, has been investigated in cellu-
lar and mitochondrial metabolism [61]. NAD+ levels in
mammalian cells and tissues decline with age [62]. Loss of
function of the NAD+-dependent enzyme Sirt has been
linked to aging-related diseases, such as cancer, insulin resis-
tance, heart disease, fibrosis, and neurodegeneration [63].

ATP synthase hyperacetylation can affect cardiac energy
metabolism and is regulated by Sirt3 in heart failure [64].
Label-free quantitative proteomics of mouse liver mitochon-
dria indicated that the absence of Sirt3 regulated the acetyla-
tion of multiple metabolism-related proteins [65]. Loss of
mitochondrial Sirt function, especially Sirt3, has been linked
to several age-related pathologies including cancer, insulin
resistance, heart disease, fibrosis, and neurodegeneration
[63]. In general, Sirt3 is regarded as a major deacetylase in
the mitochondria [66]. However, in our study, the overex-
pression of both Sirt4 and Sirt5 decreased the acetylation
level of Atp5flc. Protein activity is regulated through
deacetylation of lysine residues. Sirt4 also has an important
role in insulin secretion, fatty acid oxidation, amino acid
metabolism, ATP homeostasis, and cardiovascular diseases
[56]. Sirt4 deacetylates malonyl-CoA decarboxylase and
decreases enzyme activity, limiting fatty acid oxidation
under adequate nutrition conditions [67]. Guo et al. sug-
gested that Sirt4 dramatically deacetylated the MTPα
K350-Ac, K383-Ac, and K406-Ac sites, and that MTPα acet-
ylation plays an important role in lipid catabolism in nonal-
coholic fatty liver disease [68]. Similar to Sirt4, Sirt5 also
plays an important role in metabolic adaptations. Sirt5
appeared to regulate the heart function. Sirt5 KO mice
developed hypertrophic cardiomyopathy and showed
reduced cardiac function during aging. Although Sirt3, Sirt4,
and Sirt5 are mainly localized in the mitochondrial matrix
[61], inhibition of Sirt4 increases fat oxidative capacity and
mitochondrial function in liver and muscle cells [69],

whereas the liver of Sirt3-/- mice shows decreased β-oxida-
tion of fatty acids [70]. In this study, we found that the
expression of Sirt4 and Sirt5 decreased after IR, and that
Sirt4- and Sirt5-mediated Atp5f1c acetylation promoted car-
diomyocyte senescence.

5. Conclusion

In this study, we revealed that IR induced cardiomyocyte
senescence and regulated the acetylation level of Atp5f1c, a
key enzyme in energy metabolism, providing novel insights
into radiation-induced senescence mediated by metabolic
regulation. Atp5f1c K55-Ac in radiation-induced cells led
to cardiomyocyte ATP production and cell senescence, and
Sirt4 and Sirt5 were found to mediate Atp5f1c deacetylation.
This provides a sufficient theoretical basis for elucidating the
pathogenic mechanisms of radiation-induced heart disease
and identifying potential therapeutic targets.
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