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Polyphenols are secondary plant metabolites or organic compounds

synthesized by them. In other words, these are molecules that are found in

plants. Due to the wide variety of polyphenols and the plants in which they are

found, these compounds are divided according to the source of origin, the

function of the polyphenols, and their chemical structure; where the main ones

are flavonoids. All the beneficial properties of polyphenols have not yet been

studied, since this group of substances is very extensive and diverse. However,

most polyphenols are known to be powerful antioxidants and have anti-

inflammatory effects. Polyphenols help fight cell damage caused by free

radicals and immune system components. In particular, polyphenols are

credited with a preventive effect that helps protect the body from certain

forms of cancer. The onset and progression of tumorsmay be related directly to

oxidative stress, or inflammation. These processes can increase the amount of

DNA damage and lead to loss of control over cell division. A number of studies

have shown that oxidative stress uncontrolled by antioxidants or an

uncontrolled and prolonged inflammatory process increases the risk of

developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer.

Therefore, a more in-depth study of the effect of polyphenolic compounds on

certain signaling pathways that determine the complex cascade of oncogenesis

is a promising direction in the search for new methods for the prevention and

treatment of tumors.
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1 Introduction

Polyphenols are naturally occurring compounds found

primarily in fruits, vegetables, cereals, beverages, and dry

beans. Polyphenols are secondary metabolites of plants and

are usually involved in protection against ultraviolet (UV)

radiation or against aggression from pathogens (Figure 1)

(Singla et al., 2019; Reed and de Freitas, 2020). In food,

polyphenols can contribute bitterness, astringency, color, taste,

odor, and oxidative stability. Animal, human, and

epidemiological studies indicate that various polyphenols have

antioxidant and anti-inflammatory properties that may have

preventive and/or therapeutic effects in cardiovascular disease,

neurodegenerative disorders, fat metabolism disorders, and

tumors (Yahfoufi et al., 2018; Potì et al., 2019). In recent

years, interest in polyphenols has increased as they are the

subject of scientific research due to their possible beneficial

effects on human health. Also, the main advantage of

polyphenolic compounds is their use as chemoprophylaxis

due to low toxicity and high tolerability (Singla et al., 2019;

Reed and de Freitas, 2020).

The main indicator in the use of polyphenols is

bioavailability. Bioavailability is the proportion of a

nutrient that is digested, absorbed, and metabolized

through normal pathways. The bioavailability of each

polyphenol is different, but their relationship between the

amount of polyphenols in food and their bioavailability in the

human body is not fully understood. It is important that the

chemical structure of polyphenols, and not their

concentration, determines the rate and extent of

absorption, as well as the nature of the metabolites

circulating in plasma. The most abundant polyphenols in

the diet are not necessarily those that show the highest

concentration of active metabolites in target tissues;

therefore, the biological properties of polyphenols differ

significantly from one polyphenol to another (Brglez

FIGURE 1
Main groups of natural polyphenolic compounds (A–B). (A) Phenolic compounds (polyphenols) constitute one of the most numerous and
widespread groups of plant substances. The structure of polyphenols can contain both simple molecules (phenolic acids) and highly polymerized
compounds (condensed tannins). (B) It should be noted that the main share here falls on flavonoids. Structural changes in the rings subdivide
flavonoids into several families: flavonols, flavones, flavanols, isoflavones, anthocyanins, etc. These families are often found in the form of
glycosides. Various variations of flavonoids are linked by a common biosynthesis.
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Mojzer et al., 2016; Rogovskii, 2022). Evidence from

preclinical and clinical studies indicates that the

antioxidant and anti-inflammatory properties of

polyphenols may potentially prevent or treat various

tumors (Table 1) (Henning et al., 2015; Gee et al., 2017;

Silva et al., 2019; Zeng et al., 2019; Basak et al., 2020; Lee

et al., 2021; Mallet et al., 2021; Rojas-Ochoa et al., 2021; Shan

et al., 2021; Wang et al., 2021). This review focuses on the

current understanding of the biological effects of polyphenolic

compounds and their importance in health and tumor

prevention and therapy.

2 The effectiveness of polyphenols

In Table 1, various types of tumors are reviewed for which

polyphenolic compounds have been used as therapy and have

been positive. From the indicators in Table 1, the dominant

explanation for these benefits is the neutralization of free

radicals, the formation of stabilized chemical complexes, thus

preventing further reactions. There is also evidence of an

additional mechanism by which polyphenols protect against

oxidative stress by producing hydrogen peroxide (H2O2),

which may then help regulate immune response actions

such as cell growth. It is believed that polyphenols have an

anticarcinogenic effect, inhibit cell growth, causing aging or

apoptosis of tumor cells, and their differential redox status can

selectively affect tumor cells.

The effect of polyphenols on tumor cells is most often

protective. To date, many polyphenols, such as quercetin,

catechins, isoflavones, lignans, flavanones, ellagic acid, red

wine polyphenols, resveratrol, and curcumin, have been

studied and tested for effectiveness (Brglez Mojzer et al.,

2016; Rogovskii, 2022). All of them showed protective effects

TABLE 1 Results of some preclinical and clinical experiments on the study of the therapeutic effect of polyphenols in tumors.

Polyphenol Tumor type Study model Gene-targets Mechanism of
action

References

PEBP Breast Cancer In vitro FOXO1 and miR-145 Inhibits breast cancer development and
progression

Mallet et al.
(2021)

EGCG TNBC In vitro and in vivo PRODH and
alpha-SMA

Sensitizes TNBC tumor cells to clinical
therapeutic drugs. Inhibits tumor
growth and prevents tumor cell
metastasis

Lee et al. (2021)

APG-157 Oral cancer A double-blind,
randomized, placebo-
controlled, phase I clinical
trial

IL-1β, IL-6, and IL-8 Increases expression of genes associated
with differentiation and T-cell
recruitment to the tumor
microenvironment

Basak et al.
(2020)

Polyphenols of green and
black tea

Prostate cancer Open label, randomized,
phase II trial

Ki67, apoptosis Bcl-2,
Bax, Tunel, NF-κB,
and 8OHdG

Anti-inflammatory effect. Promotes
tumor cells death. Decrease in
serum PSA

Henning et al.
(2015)

Polyphenon E [a green tea
polyphenol formulation
primarily consisting of
EGCG]

Bladder cancer Multi-centered,
randomized, double-blind,
placebo-controlled, phase
II trial

PCNA, MMP-2,
clusterin, VEGF, p27,
IGF-1, IGFBP-3

Inhibits invasion, angiogenesis, tumor
cells migration, and progression

Gee et al. (2017)

AVP Glioblastoma In vitro NF-κB, IκB-α, TNF-α,
TRAIL, caspase-3 and
caspase-9

Inhibitory effect on glioma cells:
inhibits proliferation and enhances
tumor cell apoptosis

Zeng et al.
(2019)

Curcumin Glioblastoma In vitro ERK/MAPK pathway Inhibits adverse psychological stress-
induced proliferation and invasion of
tumor cells

Wang et al.
(2021)

NDGA Medulloblastoma In vitro Glutathione/
glutathione disulfide

Induce oxidative stress, G2/M and
S-G2/M cell cycle arrest, and tumor cells
apoptosis

Rojas-Ochoa
et al. (2021)

Polyphenol complex
catechin:lysine 1:2

Breast, pancreatic and
colorectal cancer

In vitro JAK2/STAT3 and
Wnt pathway

Antimigratory and pro-apoptotic
effects

Silva et al. (2019)

BPIS Colorectal cancer In vitro Akt, Cyclin B1,
CDK1, and miR-149

Increases the chemosensitivity, induce
cell cycle arrest in G2/M phase

Shan et al.
(2021)

TNBCs, triple-negative breast cancers; PEBP, polyphenol enriched blueberry preparation; EGCG, epigallocatechin-3-gallate; AVP, apocynum venetum polyphenol; NDGA, polyphenols α-
mangostin and nordihydroguaiaretic acid; BPIS, polyphenol from foxtail millet bran; FOXO1, forkhead box protein O1; PRODH, proline dehydrogenase; alpha-SMA, smooth muscle

alpha-actin; IL-1β, 6, 8, interleukin -1β, 6, 8; Ki-67, tissue immunostaining of proliferation apoptosis; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2-associated X protein; NF-κB, nuclear and
cytoplasmic nuclear factor kappa B; 8OHdG, 8-hydroxydeoxy-guanosine; PCNA, proliferating cell nuclear antigen; MMP-2, matrix metalloproteinase-2; VEGF, vascular endothelial

growth factor; IGF-1, insulin-like growth factor 1; IGFBP-3, insulin-like growth factor binding protein-3; IκB-α, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,
alpha; TNF-α, tumor necrosis factor-alpha; TRAIL, tumor necrosis factor ligand superfamily member 10; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein

kinase; JAK2, janus kinase 2; STAT3, signal transducer and activator of transcription 3; CDK1, cyclin-dependent kinase 1; PSA, prostate-specific antigen.

Frontiers in Cell and Developmental Biology frontiersin.org03

Sufianova et al. 10.3389/fcell.2022.1011435

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1011435


in experimental models with tumors, their mechanisms of

action turned out to be different.

Oncogenesis is a multistage and microevolutionary

process. There are three main stages of oncogenesis:

initiation, promotion and progression. Initiated cells thus

may have the ability to transform into a malignant tumor if

further development follows. Development is influenced by

factors that do not alter the DNA sequence and include the

selection of initiated cells (Patterson et al., 2018; Peters and

Gonzalez, 2018).

Several mechanisms of action have been identified for the

chemopreventive action of polyphenols, including estrogenic/

antiestrogen activity, antiproliferative activity, apoptosis

induction, cell cycle inhibition, oxidation prevention,

detoxification enzyme induction, regulation of the host

immune system, and anti-inflammatory activity (Singh et al.,

2021a; Bahrami et al., 2021; Weh et al., 2022) (Figure 2, Figure 3

and Figure 4). At the same time, polyphenols can affect the

metabolism of pro-carcinogens and modulate the expression of

cytochrome P450 enzymes involved in their activation into

carcinogens. They may also facilitate their clearance by

increasing the expression of phase II conjugating enzymes.

This induction of phase II enzymes may be due to polyphenol

toxicity (Diaz-Gerevini et al., 2016).

Polyphenols can form potentially toxic quinones in the

body, which are themselves substrates for these enzymes.

Consumption of polyphenols can then activate these

enzymes to detoxify themselves and thus cause an overall

increase in the body’s defenses against toxic xenobiotics

(Erlank et al., 2011). It has been demonstrated that tea

catechins in the form of capsules, when administered to

men with high grade intraepithelial neoplasia of the

prostate, have a prophylactic activity by inhibiting the

transformation of high grade intraepithelial neoplasia

lesions into tumors (Bettuzzi et al., 2006).

Theaflavins, thearubigins and black tea polyphenols also had

strong antitumor properties. Black tea polyphenols have been

found to inhibit proliferation and enhance apoptosis in prostate

carcinoma DU 145 cell lines (Klein and Fischer, 2002). Higher

levels of insulin like growth factor-1 (IGF-1) have been found to

be associated with a higher risk of developing prostate cancer

(Cao et al., 2015). The binding of IGF-1 to its receptor is part of

the signal transduction pathway that causes cell proliferation.

The addition of black tea polyphenols was found to block the

progression of IGF-1-induced cell growth into the S-phase of the

cell cycle at a dose of 40 mg/ml in prostate cancer.

Polyphenols act as generators of reactive oxygen species

(ROS) that act as second messengers in cellular signal

transduction. In tumor cells, there are many targets that

polyphenolic compounds can act on. However, nuclear factor

kappa B (NF-κB) can be considered a central target, since it

controls the expression of genes responsible for tumor

proliferation, apoptosis, and metastasis (Khan et al., 2020).

Resveratrol prevents all stages of tumor development and has

been shown to be effective in most types of tumors, including

lung cancer, melanoma, breast cancer, prostate cancer, gastric

cancer, and colorectal cancer (Rauf et al., 2018). It has also been

shown to inhibit angiogenesis and metastasis. Extensive data

in vitro show that resveratrol can modulate multiple signaling

pathways involved in cell growth, apoptosis, and inflammation

(Wu et al., 2019). The anticarcinogenic effects of resveratrol

appear to be closely related to its antioxidant activity, where it

inhibits cyclooxygenase, hydroperoxidase, protein kinase C,

B-cell lymphoma 2 (Bcl-2) phosphorylation, Akt-kinase with

focal adhesion, NF-κB expression, expression of matrix

metalloproteases (MMPs) and cell cycle regulators (Yousef

et al., 2017; El-Readi et al., 2019; Buhrmann et al., 2020).

These and other in vitro and in vivo studies justify the use of

polyphenols in tumor chemoprophylaxis in a combinatorial

approach with chemotherapeutic drugs or cytotoxic factors for

the effective treatment of drug-resistant tumors (Patra et al.,

2021).

Based on the literature data on the effects of polyphenolic

compounds on tumors, it can be concluded that polyphenols

have great potential for use in combination with chemotherapy.

A suitable combination of polyphenols with existing

chemotherapeutic agents will result in a reduction in side

effects without reducing the therapeutic effects of

chemotherapy drugs.

FIGURE 2
Schematic representation of cell cycle regulation. The
activating and inhibitory effect of some polyphenols [curcumin,
resveratrol, apigenin, and epigallocatechin-3-gallate (EGCG)] on
the cell cycle of a tumor cell was shown.
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2.1 Curcumin

Curcumin is the main curcuminoid found in turmeric root.

Curcuminoids also include dimethoxycurcumin and

bisdimethoxycurcumin. Turmeric has been used for its

medicinal properties for thousands of years and is a widely

used spice in Asian and Indian foods. Curcumin has a

characteristic yellow color, is poorly soluble in water, but

readily soluble in alcohol and dimethyl sulfoxide (DMSO).

Curcumin has many health benefits, such as relieving

inflammation, pain, and symptoms of metabolic syndromes.

There is also evidence that curcumin has anti-tumor

properties (Gupta et al., 2013; Lestari and Indrayanto, 2014).

Curcumin has been researched to have anticancer properties,

but most of these studies have been done in vitro. These studies

suggest that curcumin inhibits proliferation, induces cell cycle

arrest and apoptosis through different mechanisms, in different

types of tumor cell lines. There is evidence that curcumin reduces

the expression of many different enzymes, transcription factors,

inflammatory cytokines, growth factors, and other cell signaling

components that are important for tumor growth and

progression (Table 2) (Lee et al., 2011; Wang et al., 2019a;

Zhang et al., 2020; Ebrahimi et al., 2021; Liang et al., 2021;

Mao et al., 2021; Shi et al., 2021; Sun and Fang, 2021). For

instance, in many studies of various tumor cell lines, curcumin

has been found to downregulate the expression of the

transcription factor NF-κB, which is normally highly

expressed in tumor cells and is known to promote

development, metastasis and tumor growth. In addition,

curcumin stops the cell cycle in the G1/S or G2/M phases by

inhibiting various cyclins in tumor cells (Figure 2). Curcumin

also induces tumor cell apoptosis through caspase-dependent

pathways and reduces the expression of anti-apoptotic proteins.

Moreover, to in vitro studies, the properties of curcumin have

also been studied in in vivo; overall demonstrating that curcumin

has anti-proliferative effects (Lee et al., 2011; Wang et al., 2019a;

Zhang et al., 2020; Ebrahimi et al., 2021; Liang et al., 2021; Mao

et al., 2021; Shi et al., 2021; Sun and Fang, 2021). For instance, a

mouse model of colorectal cancer treated with an intraperitoneal

injection of curcumin demonstrated that curcumin inhibits

FIGURE 3
A scheme of intracellular signal transduction is presented. The inhibitory effect of epigallocatechin-3-gallate (EGCG) on some protein kinase
signaling pathways and transcription factors has been shown, as a complex of p65 and p50 subunits. Note: EGFR, Epidermal growth factor receptor;
HER 2/3, Human epidermal growth factor receptor 2/3; PI3K, Phosphoinositide 3-kinases; PKC, Protein kinase C; Ras GTP, RAS guanosine
triphosphate; NIK, NF-kappa-B-inducing kinase; MKK4, Mitogen-activated protein kinase kinase 4; MEK 1/2, Mitogen-activated protein kinase
kinase 1/2; ERK 1/2, Extracellular signal-regulated kinase-1/2; JNK, c-Jun N-terminal Kinase; BAD, BCL2-associated agonist of cell death; PIP 2/3,
Prolactin induced protein 2/3; Bcl-xL, B-cell lymphoma-extra large; IKK α, β, γ, Cytokine-responsive IkappaB kinase α, β, γ; IkBα, Nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; Ub, Ubiquitin B; AP-1, Activator protein 1; MMP-9, Matrix metallopeptidase 9; COX-
2, cyclooxygenase 2; Bcl-2, B-cell lymphoma-2; c-FLIP, Cellular FLICE-like inhibitory protein; IAP 1/2, Inhibitor of apoptosis 1/2.
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tumor growth with favorable prognosis for overall survival. These

data also suggest that curcumin activated miR-130a, which

reduced expression of the Wnt/β-catenin signaling pathway

and resulted in increased overall survival (Dou et al., 2017).

Curcumin also downregulates NF-κB expression in an

animal model of breast cancer, with subsequent inhibition of

metastasis and angiogenesis. Studies in an animal model of

pancreatic cancer have also shown that curcumin inhibits

tumor growth, suppresses proliferation, and inhibits

angiogenesis (Bimonte et al., 2016; Coker-Gurkan et al., 2018).

These studies on the anticancer effects of curcumin are mostly

pilot studies; however, curcumin has been shown to be non-toxic

and well tolerated even at high concentrations. A Phase 2 pilot

study evaluated the use of curcumin with docetaxel in 26 men

with metastatic castration-resistant prostate cancer (mCRPC)

(Passildas-Jahanmohan et al., 2021). In this study, the men

received 6 g of curcumin daily in addition to docetaxel and

prednisone for 6 cycles. There was a prostate-specific antigen

(PSA) response among 59% of patients, and 40% experienced a

partial response. There were no side effects in 100% of patients.

While there appear to be countless therapeutic benefits with

curcumin supplementation, most of these benefits are due to its

antioxidant and anti-inflammatory effects.

One of the main problems of curcumin is its low

bioavailability, which seems to be mainly due to poor

absorption, rapid metabolism and rapid elimination.

Polyphenols have been tested that will improve the

bioavailability of curcumin. Most of them were designed to

block the metabolic pathway of curcumin in order to increase

its bioavailability (Anand et al., 2007). For instance, piperine, a

well-known bioavailability enhancer, is the main active

ingredient in black pepper and has been associated with a

2000% increase in the bioavailability of curcumin (Haq et al.,

2021). Preclinical and clinical evidence suggests that curcumin

has antitumor properties, and these data warrant its further

evaluation as a potential treatment for tumors in humans.

FIGURE 4
Apoptosis induction by some natural polyphenols. There are twomain ways of apoptosis: 1. Apoptosis is activated by the interaction of specific
ligands on the cell surface with receptor proteins containing “death domains”; and 2. The mitochondrial pathway of apoptosis begins with the
collapse of the mitochondrial membrane potential and is accompanied by the release of cytochrome C from the mitochondrial intermembrane
space into the cell cytoplasm. The vast experimental material obtained so far indicates that some natural polyphenols (epigallocatechin-3-
gallate (EGCG), apigenin, genistein, luteolin, resveratrol, curcumin, and anthocyanin) have an apoptogenic effect using a variety of cellular targets.
Note: BAX, Bcl-2 associated X-protein; Bcl-2, B-cell lymphoma-2; ROS, Reactive oxygen species; FADD, Fas-associated death domain; c-FLIP,
Cellular FLICE-like inhibitory protein; Apaf-1, Apoptotic protease activating factor 1; ATP, Adenosine triphosphate; BID, BH3 interacting-domain
death agonist.
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However, due to its poor bioavailability, ongoing research is

developing approaches to improve its delivery to cells, thereby

potentially improving dosage and efficacy. Thus, the problem of

poor bioavailability seems to be eliminated by the addition of

agents such as piperine, which increase bioavailability, thereby

creating a curcumin complex.

Curcumin also shows significant interactions with

cardiolipin, a lipid found exclusively in the mitochondrial

membrane. It has been studied that curcumin influences the

structure and dynamics of cardiolipin-containing biomimetic

and biological membranes of mitochondria. The application of

several biophysical methods reveals cardiolipin-stimulated

association and internalization of curcumin into the lipid

bilayer. In parallel, curcumin with cardiolipin-containing

bilayers increased their fluidity and reduced lipid order

(Taylor et al., 2011). These data suggest that membrane

modifications mediated by cardiolipin interactions may play a

role in the therapeutic functions of curcumin and that the

mitochondrial inner membrane as a whole may represent a

potential therapeutic target.

2.2 Carnosic acid

One of the polyphenolic compounds of plant origin that

attracts the attention of clinicians is carnosic acid. The body is

not able to synthesize carnosic acid on its own, so it can only

get through food. Carnosic acid is a chemical compound that

is found in large quantities in rosemary and sage, has a

number of properties that make it possible to include it in

some medicines and prophylactic products (Birtić et al., 2015).

Rosemary leaves are used as a seasoning and food preservative.

These fragrant herbs are not only valued for their unique taste

and smell, but also chemical composition of spices has served

as an excellent raw material for obtaining a useful medicinal

compound - carnosic acid (Moore et al., 2016). Rosemary

leaves are included in the British Herbal Pharmacopoeia

(BHP). In the United States, India, China, they are the

official pharmacological raw materials and are used in

herbal medicine and homeopathy. Rosemary leaves are

used as a seasoning and food preservative. Rosemary

essential oil exhibits pronounced antibacterial, antifungal,

anti-inflammatory, cytostatic, and antioxidant properties

(Bahri et al., 2016).

In preclinical studies, it was proved that sarnosic acid had anti-

inflammatory, antioxidant and antitumor activity (Bahri et al., 2016;

Donmez et al., 2020; Hosokawa et al., 2020). The main property of

this compound is that sarnosic acid has a high ability to neutralize

free radicals, even in the human brain, preventing disorders

associated with weakened nerve signal transmission. It is well

known that impaired neural signaling, such as low

neurotransmitter levels, is associated with mental illness,

TABLE 2 Results of some preclinical experiments on the study of the therapeutic effect of curcumin in tumors.

Tumor type Study
model

Gene-targets Mechanism of action References

Breast cancer In vitro and
in vivo

ROS/YAP1/JNK signaling pathway Suppresses tumor growth and metastasis. Induces tumor
cell apoptosis

Wang et al.
2019a)

Gastric cancer In vitro Gli1-β-catenin Decreases cellular migration and invasion, while
enhances tumor cells apoptosis. Induces cytoskeletal
remodeling and inhibits the epithelial-mesenchymal
transition process

Zhang et al.
(2020)

Colorectal cancer In vitro TFAP2A-mediated ECM pathway: GP1BB, COL9A3,
COMP, AGRN, ITGB4, LAMA5, COL2A1, ITGB6,
ITGA1, and TNC

Inhibits tumorsphere formation, decreases cell viability in
a dose-dependent manner, and promote apoptosis

Mao et al. (2021)

Colorectal cancer In vitro p53, p21, BAX, BCL-2, and NOXA Suppresses the proliferation of cancer cells via induction
of apoptosis

Ebrahimi et al.
(2021)

Ovarian cancer In vitro and
in vivo

circ-PLEKHM3/miR-320a/SMG1 axis Suppresses cancer cell proliferation and promote
apoptosis

Sun and Fang,
(2021)

Papillary thyroid
cancer

In vitro MMP-2, MMP-9, miR-301a-3p/JAK/STAT3 axis Inhibits the viability, migration and invasion Liang et al.
(2021)

Glioblastoma In vitro AKT pathway, Bcl-2 Anti-proliferation effect, suppresses the growth of tumor
and reduces of apoptosis

Shi et al. (2021)

Medulloblastoma In vitro and
in vivo

HDAC Induce apoptosis and cell cycle arrest at the G2/M phase.
Reduces tumor growth and significantly increases mouse
survival

Lee et al. (2011)

ROS, reactive oxygen species; YAP1, yes-associated protein 1; JNK, c-Jun N-terminal kinases; Gli1, GLI family zinc finger 1; TFAP2A, transcription factor AP-2 alpha; ECM, extracellular

matrix; GP1BB, glycoprotein Ib (platelet), beta polypeptide; COL9A3, collagen type IX alpha 3 chain; COMP, cartilage oligomeric matrix protein; AGRN, agrin; ITGB4, integrin subunit

beta 4; LAMA5, laminin subunit alpha-5; COL2A1, collagen type II alpha 1 chain; ITGB6, integrin subunit beta 6; ITGA1, integrin alpha-1; TNC, tenascin C; BAX, Bcl-2 associated

X-protein; BCL-2, B-cell lymphoma-2; NOXA, phorbol-12-myristate-13-acetate-induced protein 1; MMP-2, matrix metalloproteinase-2; MMP-9, matrix metalloproteinase-9; JAK, janus

kinase 2; STAT3, signal transducer and activator of transcription 3; HDAC, histone deacetylase 1.
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increased sensitivity to stress, and cognitive impairment. The use of

sarnosic acid is possible for the prevention or treatment of

conditions associated with reduced transmitter/mediator activity

of dopamine, serotonin and norepinephrine (de Oliveira, 2018).

ROS can cause inflammation, the development of cancer and simply

lead to aging (Brieger et al., 2012). Tumors such as prostate cancer,

colorectal cancer and breast cancer acquire metabolically highly

active mitochondria with an increased frequency of respiratory

complexes and a higher level of mitochondrial membrane

potential and calcium retention (Brieger et al., 2012). Therefore,

in such oxidative tumor types, the treatment strategy should be

aimed at disabling oxidative mitochondrial phosphorylation. It has

been investigated that the growth arrest caused by this polyphenol

does not limit its protonophoric activity, but also depends on the

alteration of mitochondria containing proteins that regulate the cell

cycle. Targeting tumor metabolism with carnosic acid represents a

promising strategy to overcome drug resistance and tumor

sensitization in cancer therapy. Table 3 presents a number of

preclinical studies showing the antitumor activity of the sarnosic
acid (de Souza et al., 2021; de Oliveira et al., 2019; de Oliveira et al.,

2016; Coyne and Narayanan, 2019; Corveloni et al., 2020; Liu et al.,

2018a; D’Alesio et al., 2017; Min et al., 2021; Shao et al., 2022; Hasei

et al., 2021; Liu et al., 2018b; Park et al., 2014; Petiwala et al., 2016;

Kim et al., 2016).

3 Mechanisms of action of flavonoids

One of the promising sources of phytopreparations are

medicinal plants containing flavonoids, which, due to their

TABLE 3 Results of some preclinical experiments on the study of the therapeutic effect of carnosic acid in tumors.

Tumor type Study
model

Gene-targets Mechanism of action References

Neuroblastoma In vitro PI3K/Akt/Nrf2/γ-GCL/GSH axis Promotes mitochondrial protection de Souza et al.
(2021)

In vitro Nrf2 Promotes mitochondrial protection and pro-apoptotic
stimulus

de Oliveira et al.
(2019)

In vitro PI3K/Akt/Nrf2 axis Promotes mitochondrial protection, suppresses
mitochondria-related pro-oxidant and mitochondria-
dependent pro-apoptotic effects of chlorpyrifos

de Oliveira et al.
(2016)

Pulmonary
adenocarcinoma

In vitro Dexamethasone-(C21- phosphoramidate)-[anti-
EGFR]

Anti-neoplastic cytotoxicity Coyne and
Narayanan, (2019)

Lung cancer In vitro PUMA Cytotoxic activity, cell cycle arrest at G0/G1 and G2/M
phases, and anti-apoptotic, effects

Corveloni et al.
(2020)

In vivo iNOS2, Arg-1, and MMP-9 Anti-growth and pro-apoptotic effects Liu et al. (2018a)

Breast cancer In vitro PI3K/AKT/mTOR, CDKN1A/p21WAF1 and
CDKN1B/p27KIP1 signaling pathways

Late autophagy and causes derangement of the
lysosomal compartment

D’Alesio et al.
(2017)

Oral squamous cell
carcinoma

In vivo Bax, Bad, Caspase-3 and -9, PARP1, Bcl-2 Inhibits the tumor growth without affecting the body
weight and tissue morphology

Min et al. (2021)

Glioma In vivo Cyclin B1, PARP, caspase-3, p-AKT, p62, LC3-I,
and LC3-II

Enhances TMZ-induced inhibition of colony formation
and cell migration and enhances TMZ-induced cell
cycle arrest and cellular apoptosis

Shao et al. (2022)

Hepatocellular
carcinoma

In vitro AMPK Suppresses cell proliferation and reduce cell viability Hasei et al. (2021)

Chronic myeloid
leukemia

In vitro miR-780 Induction of apoptosis and cell cycle arrest Liu et al. (2018b)

Melanoma In vitro Src, FAK, and AKT Suppresses the adhesion of tumor cells, as well as the
secretion of MMP-9, TIMP-1, uPA, and VCAM-1.
Inhibits of the epithelial-mesenchymal transition

Park et al. (2014)

Prostate cancer In vitro and
In vivo

PERK, ATF-6 and IRE1α Inhibits tumor growth Petiwala et al.
(2016)

Colon cancer In vitro p53, Bax, Mdm2, Bcl-2, and Bcl-xl, caspase-9, and
-3, PARP, JAK2, Src kinases, STAT3, cyclin D1, D2,
and D3

Induces apoptosis, inhibits the constitutive
phosphorylation, inhibits cell viability and the
expression of cyclin D1 and surviving

Kim et al. (2016)

PI3K, phosphoinositide 3-kinases; γ-GCL, γ-glutamate—cysteine ligase; GSH, glutathione; Nrf2, nuclear factor erythroid 2-related factor 2; EGFR, epidermal growth factor receptor;

PUMA, p53 upregulatedmodulator of apoptosis; iNOS2, nitric oxide synthase 2; Arg-1, arginase 1; MMP-9, matrix metallopeptidase 9; mTOR, mammalian target of rapamycin; CDKN1A,

cyclin-dependent kinase inhibitor 1A; CDKN1B, cyclin-dependent kinase inhibitor 1B; p27KIP1, p27; Bax, Bcl-2 associated X-protein; Bad, BCL2-associated agonist of cell death; PARP1,

Poly [ADP-ribose] polymerase 1; Bcl-2, B-cell lymphoma-2; PARP, poly(ADP-Ribose) polymerase 1; p-AKT, phospho-Akt; LC3-I, microtubule-associated protein 1A/1B-light chain 3-I;

LC3-II, microtubule-associated protein 1A/1B-light chain 3-II; AMPK, AMP-activated protein kinase; Src, proto-oncogene tyrosine-protein kinase Src; FAK, focal adhesion kinase; PERK,

protein kinase R (PKR)-like endoplasmic reticulum kinase; ATF-6 a, activating transcription factor 6; Mdm2, mouse double minute 2; Bcl-xl, B-cell lymphoma-extra large; JAK2, janus

kinase 2; TMZ, temozolomide; TIMP-1, tissue inhibitor of metalloproteinase 1; uPA, urokinase plasminogen activator; VCAM-1, vascular cell adhesion molecule 1.
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wide distribution in plants and great structural diversity, are

currently in the focus of attention of researchers in the field of

pharmacognosy, pharmacy and medicine. Flavonoids are the

most numerous class of natural phenolic compounds, which are

characterized by structural diversity, high and versatile activity

and low toxicity. The wide range of biological activity of

flavonoids is associated with the diversity of their chemical

structures and the various physicochemical properties

resulting from them (Figure 1). This interest is due to the fact

that flavonoids cause antioxidant, angioprotective,

hepatoprotective, and antitumor activity (Serafini et al., 2010;

Wen et al., 2021). Moreover, it is the antitumor properties that

attract scientists to the greatest extent in the field of creating new

drugs in the fight against tumor.

Cell signaling systems are involved in the transmission of

chemical signals from the cell surface to the cytoplasm, due to

which the cell is able to respond to environmental changes. To do

this, cells have specialized receptors on the surface of the plasma

membrane that can recognize the presence of certain molecules

in the environment, called extracellular signaling molecules.

Flavonoids are able to influence the functioning of cytokine

receptors, tyrosine kinase receptors (RTKs), tumor necrosis

factor ligand superfamily member 10 (TRAIL), protein-

coupled receptors (GRCRs), and a broad class of

transmembrane signaling protein called integrins (Wiseman

et al., 2001; Chen et al., 2018). The molecular mechanisms of

this influence and signal propagation pathways are not well

understood. In recent years, only scattered information has

appeared indicating changes in the activity or expression of

proteins of a particular signaling system in the presence of

certain flavonoids. In this chapter, we will discuss the main

mechanisms of action of flavonoids on the signaling pathways

of oncogenesis.

3.1 Cytokine receptors

It is now known that polyphenolic compounds can affect the

functioning of receptors for cytokines such as tumor necrosis

factor alpha (TNF-α) or some interleukin receptors, which can be

used in tumor therapy. To a large extent, therapy is provided by

suppressing the production of inflammatory cytokines, which

leads to a decrease in the binding of the nuclear factor NF-kB to

DNA and a decrease in the production of a number of cytokines

such as interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8
(IL-8) and TNF-α (Leyva-López et al., 2016).

Epigallocatechin-3-gallate (EGCG) is one of the most active

green tea flavonoids, has the ability to normalize many cellular

processes by neutralizing the damaging effects of high

concentrations of cytokines that occur during inflammation

(Ohishi et al., 2016). Thus, when acting on insulin-producing

pancreatic β-cells, EGCG protected against the action of IL-1β
and TNF-α and restored the ability of cells to produce insulin

under the influence of glucose (Zhang et al., 2011). At the same

time, the content of oxidation products and ROS in the

cytoplasm decreased, the potential on the mitochondrial

membranes was restored, the release of cytochrome c from

mitochondria into the cytoplasm stopped, and the

concentration of nitrogen oxide in the cytoplasm decreased

due to the suppression of the expression of nitric oxide

synthase genes under the action of cytokines (Jeong and Kim,

2021). Which suggests prophylactic properties to prevent the PC

development. Hoffman et al. demonstrated that EGCG was able

to block constitutive and IL-1-dependent NF-kB activation as

well as production of tumorigenic factors in pancreatic cancer

(Hoffmann et al., 2011). EGCG inhibited tumor growth,

invasion, and metastasis implying an association of the

EGCG-mediated downregulation of IL-1 with the reduction in

tumor growth and the development of a malignant phenotype

that might play a crucial role in oncogenesis of pancreatic cancer.

In other study, was demonstrated that EGCG inhibited IL-6-

induced vascular endothelial growth factor (VEGF) expression in

gastric cancer cells, and this inhibitory effect was at

transcriptional level (Zhu et al., 2011). The preclinical studies

using flavonoids in tumors therapy through control the

expression inflammation mediators are shown in Table 4

(Nicholas et al., 2007; Cai et al., 2011; Ma et al., 2011; Khan

et al., 2012; García-Zepeda et al., 2013; Youn et al., 2013; Abaza

et al., 2015; Zhang et al., 2015; Erdogan et al., 2016; Zhao et al.,

2016; Zhang et al., 2019).

3.2 TRAIL-induced apoptosis pathway

The role of TRAIL has not been sufficiently studied, but it has

been shown that this protein plays a role in the formation of

T-lymphocyte memory, in the processes of hematopoiesis, in the

development of autoimmune diseases, and in many other

phenomena (Falschlehner et al., 2009). TRAIL plays a

significant role in the antitumor activity of T-lymphocytes and

natural killer cells (NK cells) (Falschlehner et al., 2009). Thus,

TRAIL regulates the growth and metastasis of tumors, which is

an important part of the body’s immune defense against the

development of oncogenesis (Cardoso Alves et al., 2021). This

protein contains 281 amino acids and is a homotrimer that

combines three identical molecules. TRAIL is found on the

surface of some immune cells (T cells, NK cells) (Falschlehner

et al., 2009). There is also a water-soluble form of the TRAIL

protein. The soluble form of TRAIL exhibits less liver toxicity

than the membrane-bound form and can be used to initiate

tumor cell apoptosis. The TRAIL molecule circulating in the

blood binds to the transmembrane cell death receptors DR4

(TRAIL-R1) or DR5 (TRAIL-R2) located on the plasma

membrane of cancer cells, which triggers a cascade of

chemical processes leading to apoptosis (Yuan et al., 2018).

The apoptosis factor TRAIL is synthesized by immune cells
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(T- and NK-cells), attaches to the DR4/DR5 cell death receptors

on the surface of tumor cells, after which the death-inducing

signaling complex (DISC) is formed, which also involves the

adapter FAS-associating death domain-containing protein

(FADD) and procaspase-8 or -10. Subsequently formed

caspase-8 or -10 activates caspase-3 (possibly also -6 or -7),

which is an effector of apoptosis (Voss et al., 2021). This path is

called external. It can be influenced by the apoptosis regulator

FADD-like IL-1β-converting enzyme)-inhibitory protein

(c-FLIP) protein (also called caspase 8). It is also possible to

activate caspase-3 through mitochondria (MTX). In this case,

caspase-8 or -10 activates the apoptosis agonist BH3 interacting-

domain death agonist (BID) protein (another designation BH3),

which acts on mitochondrial membranes through Bax and/or

Bak proteins, resulting in the formation of pores in the outer

mitochondrial membrane, through which cytochrome c (Cyt C)

(Engels et al., 2005; Crowder and El-Deiry, 2012). The latter

through caspases is able to initiate apoptosis. The action of the

Bax protein is regulated by its associated apoptosis regulatory

proteins Bcl-2, BCL-xL and the inducible myeloid leukemia cell

differentiation protein induced myeloid leukemia cell

differentiation protein (Mcl-1). The action of caspase-9 and

caspase-3 can be modulated by the apoptosis inhibitors

X-linked inhibitor of apoptosis protein (XIAP), calf intestinal

alkaline phosphatase (CIAP) and Survivin, which are regulated

by the mitochondrial caspase activator SMAC (also known as

Diablo) (Singh et al., 2021b). Mitochondrial damage can also be

caused by the tumor suppressor protein p53, which acts in the

presence of ROS or Akt protein kinase, which in turn is activated

by phosphoinositide 3-kinase (PI3K) (Wendt et al., 2005). For

unknown reasons, activation of the TRAIL signaling pathway

does not cause toxicity to normal cells, which distinguishes this

factor from TNF-a or FasL (Falschlehner et al., 2009). The latter

can also trigger apoptosis processes, but their use in medicine is

very problematic, since these proteins are highly toxic to healthy

cells of various organs, especially to hepatocytes.

Clinical trials using recombinant human TRAIL in

combination with conventional chemotherapy have shown

encouraging results. However, some tumor cells are resistant

to activation of the TRAIL signaling pathway. Overcoming this

resistance and increasing the ability of cells to apoptosis can

significantly help in the treatment of various types of tumors

(Deng and Shah, 2020; Thapa et al., 2020). Many polyphenolic

compounds, in most cases flavonoids, show synergistic effects

with TRAIL, affecting various proteins involved in the regulation

of apoptosis, survival, or the rate of tumor cell division. Thus,

Nishikawa et al. was the first to discover that green tea EGCGwas

able to enhance the effect of TRAIL on human hepatocarcinoma

cells, through a negative regulatory effect on Bcl-2α and BCL-xL

proteins (Nishikawa et al., 2007). A similar mechanism of action

through the proteins Bcl-2, BCL-xL and a number of other

proteins was found in the action of EGCG to TRAIL in

prostate carcinoma cells (Thapa et al., 2020). Later, the

effectiveness of kaempferol against TRAIL in relation to

glioblastomas was shown, where the specified flavonoid

initiated the degradation of survivin and inhibition of the Akt

pathway, which led to the death of tumor cells (Yoshida et al.,

2008). Quercetin may enhance the action of TRAIL through

TABLE 4 The antitumor effects of flavonoids through control the expression inflammation mediators.

Flavonoids Tumor
type

Study
model

Gene-targets Mechanism of
action

References

Quercetin Lung cancer In vitro NF-κB Induce tumor cell apoptosis Youn et al. (2013)

Luteolin Lung cancer In vitro NF-kB (p65) Induce TNF-mediated apoptotic cell death Cai et al. (2011)

EGCG Lung cancer In vitro AP-1, MAPK, NF-
κB, and COX-2

Inhibits tumor growth and metastasis Zhang et al. (2019)

Genistein Gastric
cancer

In vitro and
In vivo

NF-κB/COX-2 Inhibits angiogenesis and metastasis. Suppresses mortality, tumor
number, tumor burden and chemical-induced inflammatory
responses

(Ma et al., 2011), (Khan
et al., 2012)

Quercetin Colorectal
cancer

In vitro NF-κB Induce tumor cell apoptosis Zhang et al. (2015)

Naringenin Colorectal
cancer

In vitro NF-κB/p65 Induce apoptosis and cell cycle arrest Abaza et al. (2015)

Xanthohumol Liver cancer In vitro NF-κB/p53 Induce apoptosis, modulating the NF-κB/p53 and the
Notch1 signaling pathways

Zhao et al. (2016)

Xanthohumol Cervical
cancer

In vitro NF-κB Decrease expression of CXCR4, inhibits cell invasion induced by
CXCL12

García-Zepeda et al.
(2013)

Apigenin Prostate
cancer

In vitro NF-κB/Akt Induce apoptosis, inhibits cell invasion, motility Erdogan et al. (2016)

Apigenin Breast cancer In vitro NF-κB Reduce TNF-α and IL-1β expression Nicholas et al. (2007)

EGCG, epigallocatechin-3-gallate; IL-1β, interleukin -1β; NF-κB, nuclear and cytoplasmic nuclear factor kappa B; TNF-α, tumor necrosis factor-alpha; MAPK, mitogen-activated protein

kinase; COX-2, cyclooxygenase 2; AP-1, activating protein-1; CXCR4, C-X-C chemokine receptor type 4; CXCL12, chemokine (C-X-C motif) ligand 12.
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dephosphorylation of the Akt pathway and activation of caspases

in human adenocarcinoma cells (Moon et al., 2015). However, no

cytotoxicity was found in relation to normal cells. The same

authors showed that quercetin is able to activate caspases-3,

-8 and -9. The ability of quercetin to interact with the survivin

promoter and prevent the expression of this protein was also

found (Özsoy et al., 2020). Information on the effect of flavonoids

on various components of the signaling system of TRAIL-

dependent apoptosis is given in Table 5 (Ismail et al., 2015;

Han et al., 2016; Park et al., 2016; Li et al., 2017; Xu et al., 2018;

Kim et al., 2020; Wu et al., 2020; Huang et al., 2021).

3.3 Receptor tyrosine kinases

RTKs play an essential role in the regulation of processes

associated with cell proliferation or death. In addition, this

receptor is a therapeutic target for many drugs used in the

treatment of tumors (Trenker and Jura, 2020). The receptor is

a transmembrane protein with which various growth factors,

cell division and some hormones interact. Accordingly, about

20 different types of RTK are distinguished. These include the

insulin receptor (IR), epidermal growth factor receptor

(EGFR), the ephrin (Eph) receptor, a protein that regulates

intracellular interactions and cell migration, and the

angiopoietin receptor responsible for angiogenesis (Choura

and Rebaï, 2011).

Catechins may have a therapeutic effect on many types of

scrotum cells, as well as on the development and progression of

tumors in vivo, due to the suppression of RTK signals (Larsen

et al., 2010). Being located in the plasma membrane, this receptor

is sensitive to changes in the physical properties of lipids, which

can be influenced by flavonoids. Among them, catechins are

perhaps one of the most effective anticarcinogenic agents among

plant polyphenols. One possible explanation for their activity

suggests that flavonoids are mimetics of the adenine portion of

the adenosine triphosphate (ATP) molecule and are able to block

the ATP-binding sites of protein kinase receptors (Baranwal

et al., 2022). In addition, attention is drawn to their ability to

influence the lateral segregation of plasma membrane lipids and

the formation of lipid rafts, which disrupts the functioning of

membrane receptors, such as RTK or the epithelial growth factor

receptor EGFR (Choura and Rebaï, 2011; Talukdar et al., 2020).

Thus, EGCG prevents the binding of the epithelial growth factor

to the corresponding receptor and inhibits the functioning of

other RTKs, which determines the anticarcinogenic effect of this

flavonoid (Shimizu et al., 2011). The flavonoid silibinin probably

also has a similar effect on RTK (Rho et al., 2010). Table 6

presents preclinical studies on the inhibitory effect of some

flavonoids on RTK activity in various tumors (Peterson and

TABLE 5 The antitumor effects of flavonoids by regulation the expression of TRAIL-induced apoptosis.

Flavonoids Tumor type Study
model

Gene-targets Mechanism of
action

References

Irigenin Gastric cancer In vitro and
in vivo

Caspase-8/-9/-3, PARP,
FADD, DR5, Bax, c-FLIP, Bcl-
2 and Survivin

Reduce tumor growth and suppresses tumor
progression

Xu et al. (2018)

2-(3-hydroxyphenyl)-5-
methylnaphthyridin-4-one (CSC-
3436)

Triple-negative
breast cancer

In vitro c-FLIPS/L, Bcl-Xl, Bcl-2,
Survivin, XIAP, and ROS/p38/
C/EBP- CHOP signaling
pathway

Sensitizes of tumor cell to chemotherapy Huang et al.
(2021)

Icariin Colon cancer In vitro and
In vivo

ROS, ERK and CHOP Sensitizes of tumor cell to chemotherapy and
reduce tumor growth

Kim et al.
(2020)

Luteolin non-small cell lung
cancer

In vitro DR5 and Drp1 Sensitizes of tumor cell to chemotherapy Wu et al.
(2020)

2’-hydroxy-4-
methylsulfonylchalcone (RG003)

Prostate cancer In vitro Bcl-2, PI3K/Akt, NF-κB, and
COX-2

Increases poly-ADP-ribose polymerase
cleavage and DNA fragmentation. Reduces
inflammation and stimulate of apoptosis

Ismail et al.
(2015)

Morusin Glioblastoma In vitro EGFR, DR5, Survivin, XIAP,
PDFGR, STAT3

Decreases cell viability and increases
apoptosis

Park et al.
(2016)

EGCG Nasopharyngeal
carcinoma

In vitro Bcl-XL, Bcl-2, FADD, c-FLIP,
caspase-8/-9/-3, p65, NF-κB,
XIAP and Survivin

Modulate of intrinsic and extrinsic apoptotic
pathways

Li et al. (2017)

Galangin Renal carcinoma In vitro NF-κB, Bcl-2, c-FLIP, Mcl-1
and Survivin

Increases apoptosis and tumor growth Han et al.
(2016)

EGCG, epigallocatechin-3-gallate; PARP, poly (ADP-ribose) polymerase; FADD, FAS-associated protein with death domain; DR5, death receptor 5; c-FLIP, cellular-FLICE inhibitory

protein; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; Bcl-Xl, B-cell lymphoma-extra-large; XIAP, X-linked inhibitor of apoptosis protein; ROS, reactive oxygen species;

CHOP, C/EBP-homologous protein; ERK, extracellular signal-regulated kinase; DR5, death receptor 5; Drp1, dynamin-related protein 1; PI3K, phosphoinositide 3-kinases; NF-κB, nuclear
factor kappa-light-chain-enhancer of activated B cells; COX-2, cyclooxygenase-2; EGFR, epidermal growth factor receptor; PDFGR, platelet-derived growth factor receptor alpha; STAT3,

signal transducer and activator of transcription 3; FADD, FAS-associated death domain protein; Mcl-1, myeloid-cell leukemia 1.
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Barnes, 1993; Lee et al., 2004; Shimizu et al., 2010; Kim et al.,

2014; Suh et al., 2015; Lee et al., 2017; Namiki et al., 2020; Kim

et al., 2021).

3.4 Integrins

Integrins are surface cellular receptors that transmit signals

to the cytoplasm about changes in the chemical composition of

the matrix surrounding cells. Integrins are present on the cell

surface of most multicellular organisms, and usually consist of

two α and β subunits that form 24 different dimeric molecules.

Each subunit has a transmembrane segment, extracellular and

cytoplasmic domains (Desgrosellier and Cheresh, 2010).

Integrins are of great importance in the regulation of

intercellular interaction, cell adhesion and migration. Integrins

are involved in various diseases, including tumor development

and metastasis processes (Sonnenberg, 1993). Accordingly,

integrins serve as targets for the therapeutic effects of various

drugs in tumors. EGCG is able to influence the activity of

monocytes due to a decrease in the expression of

α5β3 integrins, which is essential in the regulation of tumor

growth and metastasis (Sen and Chatterjee, 2011). EGCG can

inhibit the migration and adhesion of B-lymphocytes, which are

also involved in the development of the immune response by

blocking the expression of CD11b integrin (Kawai et al., 2004).

EGCG is also able to suppress the expression of the EGFR

through its action on the α5β1 integrin, which is of great

importance in the development of human carcinoma (Ye

et al., 2017). There are also data on the effect of EGCG on

the motility and migration of fibroblasts due to the suppression

of the expression of the α2β1 integrin, whichmay be important in

the antitumor activity of this catechin (Hung et al., 2005).

Apigenin, present in many medicinal herbs (chamomile,

adonis, lemon balm, etc.) can block p5 integrin in breast

cancer cells (Imran et al., 2020). Kaempferol, a flavonoid from

cumin, tea, viburnum, and others, suppresses TNF-α-induced
β2 integrin expression of eosinophils, which prevents them from

infiltrating the airway epithelium in vivo, suggesting preventive

properties for lung cancer (Kuo et al., 2015). Glabridin, a licorice

flavonoid, suppresses the expression of αnuβ3 integrin, which,

along with the suppression of the activity of some other

components of the signaling system (FAC/Src, Akt, and Ras

homolog family member A (RhoA)), prevents migration,

invasion, and angiogenesis of lung cancer cells (Tsai et al.,

2011). Table 7 presents preclinical studies on the inhibitory

effect of some flavonoids on integrins activity in various

tumors (Pilorget et al., 2003; Dastpeyman et al., 2012; Ruan

et al., 2012; Deep et al., 2014; Li et al., 2018; Min et al., 2018; Liu

et al., 2021; Qiao et al., 2022).

4 Crossing the blood-brain barrier

In order to assess the potential of various polyphenolic

compounds to have an effect on tumors of the central

nervous system (CNS), it is first necessary to consider the

ability of these substances to crossing the blood-brain barrier

(BBB). The bioavailability of polyphenolic compounds for the

CNS is very low. For example, direct administration of large

amounts of EGCG into the stomach during the day made it

possible to obtain very high concentrations of this substance in

TABLE 6 The antitumor effects of flavonoids by regulation of receptor tyrosine kinases (RTKs) and integrins.

Flavonoids Tumor type Study
model

Gene-targets Mechanism of
action

References

Luteolin Non-small cell lung
cancer

In vitro Tyro3, Axl and MerTK Anti-proliferative effect Lee et al. (2017)

EGCG Lung cancer In vitro Axl Inhibits stemness and tumourigenicity Namiki et al. (2020)

Apigenin Non-small cell lung
cancer

In vitro Axl, p21 and XIAP Anti-proliferative effect Kim et al. (2014)

Quercetin and
luteolin

Pancreatic cancer In vitro FAK, PTK, EGFR, and MMP Suppresses of invasive potential and cell
migration. Induce apoptosis

Lee et al. (2004)

Apigenin Ovarian cancer In vitro IL-6, STAT3, Bcl-xl, and Axl Inhibits of apoptosis and tumor cells
proliferation

Suh et al. (2015)

Quercetin Glioblastoma In vitro Axl, IL-6 and STAT3 Induces apoptosis Kim et al. (2021)

Genistein and
biochanin A

Prostate cancer In vitro EGF Inhibits the tumor growth Peterson and Barnes,
(1993)

EGCG Colorectal cancer In vitro VEGFR, HIF-1alpha, IGF-1/2, epidermal
growth factor (EGF), and heregulin

Inhibits of angiogenesis Shimizu et al. (2010)

EGCG, epigallocatechin-3-gallate; MerTK, myeloid-epithelial-reproductive tyrosine kinase; XIAP, X-linked inhibitor of apoptosis protein; FAK, focal adhesion kinase; PTK, protein

tyrosine kinases; EGFR, epidermal Growth Factor Receptor; MMP, matrix metalloproteinases; IL-6, interleukin-6; STAT3, signal transducer and activator of transcription 3; Bcl-xl, B-cell

lymphoma-extra large; EGF, epidermal growth factor; VEGFR, vascular endothelial growth factor; HIF-1alpha, hypoxia-inducible factor 1-alpha; IGF-1/2, insulin-like growth factor 1/2;

EGF, epidermal growth factor.
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the blood plasma, but its concentration in the brain was 5–10% of

the concentration in the blood in vivo (Ferri et al., 2015). Thus, in

order to achieve therapeutic concentrations of EGCG in the

brain, it was necessary to increase its concentration in the blood

to excessively high values. The study of other flavonoids showed

that quercetin penetrates poorly through the BBB, but after

penetrating, it accumulates in such parts of the brain as the

hippocampus, striatum, cerebellum, where its concentration can

reach 1 mg per gram of brain tissue (Pervin et al., 2019).

Kaempferol and isorhamnetin penetrate better, and the

average concentration of these substances in the brain can

reach several hundred nanograms per gram of healthy tissue

(Rangel-Ordóñez et al., 2010). At present, doubts have arisen

about the adequacy of estimates of the degree of penetration of

polyphenolic compounds into the CNS, as well as the

effectiveness of the action of low concentrations of these

substances, since, despite the apparent low content of these

substances in the tissues of the CNS, there is a lot of

experimental evidence of their effective effect on behavioral

reactions and cognitive functions of animals and humans. In

addition, it was found that after penetration into the brain tissue,

flavonoids can undergo significant modification. Thus, catechins

are conjugated with glycosides and are present in the form of

glucuronides, which also have the ability to protect cells from

oxidative stress. Moreover, chemical modification of flavonoids

and other plant polyphenols can be used to deliver these

substances to the brain, where they can be highly active

(Rudrapal et al., 2021; Zhou et al., 2022). Thus, it is proposed

to use a fully acetylated form of EGCG as a drug precursor. It was

shown that active EGCG is released in the cytoplasm of cells due

to the action of intracellular esterases (Lambert et al., 2006). The

use of flavonoids as building blocks for the creation of substances

capable of penetrating the BBB and exhibiting drug activity is one

of the most promising research strategies in the therapy of CNS

tumors.

5 Mechanisms of protective action
against ultraviolet radiation

Prolonged intense exposure to UV radiation on the surface of

the skin leads to the development of oxidative stress, damage to

DNA molecules and the development of inflammatory processes

(Aphalo et al., 2015). Exposure to ultraviolet light can cause

various skin diseases, not only premature aging, but also serious

diseases such as melanoma and non-melanoma skin cancers

(Watson et al., 2016). Most polyphenolic compounds of plant

origin are able to absorb radiation in the UV range and, therefore,

can act as a screen. Indeed, it has been experimentally shown that

when extracts from plants are applied to the surface of the skin,

the reaction of the skin to ultraviolet light irradiation is

significantly reduced (Cavinato et al., 2017). However, the

protective effect of these substances is not limited to shielding

tissues from the action of the ultraviolet part of the spectrum.

Protection is also carried out due to the action on the regulatory

systems of the cell.

It was found that the appearance of ROS is associated with

the activation of the factor NF-kB and the subsequent expression

of NADPH oxidase and cyclooxygenase-2 (COX-2), the activity

of which is the cause of the accumulation of ROS in keratinocytes

TABLE 7 The antitumor effect of flavonoids by regulation of integrins.

Flavonoids Tumor type Study
model

Gene-targets Mechanism of
action

References

Pristimerin Triple-negative breast
cancer

In vitro and
in vivo

E-cadherin, N-cadherin and integrin β3 Inhibits tumor growth and EMT
reversion

Liu et al. (2021)

Deguelin Non-small cell lung
cancer

In vitro and
in vivo

CtsZ/FAK/Src/Paxillin and integrin β3 Anti-metastatic effect Li et al. (2018)

Baicalein Gastric cancer In vitro miR-7/FAK/AKT signaling pathway Inhibits cell proliferation,
metastasis and angiogenesis

Qiao et al. (2022)

Erybraedin A Non-small-cell lung
cancer

In vitro Integrin β1, integrin β3 and Src Block the Src-mediated adhesion
and survival of tumor cells

Min et al. (2018)

Silibinin Prostate cancer In vitro and
in vivo

Integrins (α5, αV, β1 and β3), FAK, Src, GTPases,
ARP2 and cortactin, cPARP, caspase 3),
E-cadherin, β-catenin, survivin, and Akt

Inhibits tumor cells motility,
invasiveness and survival

Deep et al. (2014)

Luteolin Non-small cell lung
cancer

In vitro Integrin β1 and FAK Inhibits hypoxia-induced
proliferation, motility and adhesion
in the cells

Ruan et al. (2012)

Silibinin Highly metastatic
human breast cancer

In vitro β1-integrin, Raf-1, Cdc42 and D4-GDI Inhibits proliferation, migration
and adhesion of tumor cells

Dastpeyman et al.
(2012)

EGCG Medulloblastoma In vitro α2-integrin, α3-integrin and β1-integrin Inhibits cell invasion Pilorget et al.
(2003)

EGCG, epigallocatechin-3-gallate; CtsZ, cathepsin Z; FAK, focal adhesion kinase; ARP2, actin related protein 2; cPARP, cleaved poly-ADP ribose polymerase; Cdc42, cell division cycle 42;

D4-GDI, D4-guanine diphosphate (GDP)–dissociation inhibitor (GDI).

Frontiers in Cell and Developmental Biology frontiersin.org13

Sufianova et al. 10.3389/fcell.2022.1011435

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1011435


(Wang et al., 2019b). The activity of cyclooxygenase in the

cytoplasm and the accumulation of products of lipid

peroxidation (LPO) are associated with an increase in the

concentration of calcium cations in the cytoplasm during

ultraviolet irradiation. Antioxidants do not appear to be able

to protect the skin from the effects of UV radiation (Sourivong

et al., 2007). Thus, it was experimentally shown that the

antioxidant ionol was not effective in protecting cells exposed

to UV radiation, while the blocker of COX-2 cyclooxygenase

aspirin reduced the concentration of lipid peroxidation in

keratinocytes (Ponomareva et al., 1985). Due to the fact that

UV radiation induces the activity of COX-2 cyclooxygenase, the

concentration of prostaglandins formed from arachidonic acid

increases in skin cells (De Leo et al., 1984). As a result,

inflammation processes develop, edema is observed,

keratinocyte proliferation accelerates, epidermal hyperplasia

accelerates, oxidation products accumulate, which leads to

oxidative damage to DNA. Therefore, as a result of chronic

irradiation, mutations accumulate, which leads to malignant

degeneration of keratinocytes and the development of

oncogenesis (Leonardi et al., 2018). On the contrary, the

action of COX-2 inhibitors or agents that interfere with the

expression of this enzyme can significantly prevent the

carcinogenic degeneration of epidermal cells (Leonardi et al.,

2018).

The ability of some flavonoids to suppress the expression of

COX-2 may underlie the mechanisms of the protective action of

these substances against the action of UV radiation, as was shown

for baicalein and wogonin, hesperetin, magniferin and tangeritin

(Fischer et al., 2018; Farjadmand et al., 2021). It is possible that

this regulation is carried out through the mitogen-activated

protein kinase (MAPK) regulatory pathway, as was shown for

luteolin (Aziz et al., 2018). Using the methylated flavonol 5,7-

dimethoxyflavone as an example, it was shown that not only

COX, but also other components of the regulatory chain, such as

peroxisome proliferator-activated receptor (PPAR), NF-kB, can

be regulated, resulting in a decrease in the concentration of IL-6

and IL-8 (Walle andWalle, 2007). In addition, there is a decrease

in the expression of MMPs, a decrease in the concentration of

oxidative stress components, and suppression of the activity of

inflammation components through the regulatory pathways NF-

kB and MAPK (Walle and Walle, 2007). As a result, damage to

the skin and the subsequent possible development of oncology

associated with the action of UV radiation are prevented.

Flavonoids may also affect other regulatory systems. Silibinin

has recently been found to prevent damage to the epidermis after

UV radiation by activating the tumor suppressor protein p53,

resulting in the activation of the GADD45α protein, which

contributes to the protection of cells under conditions of

stress and DNA damage (Rigby et al., 2017). Chrysin protects

epidermal keratinocytes from damage by UV irradiation,

primarily by restoring the expression of aquaporin 3 (AQP-3),

which ensures the normalization of the osmotic and salt balance

of the cell, disturbed by irradiation. In a study on the protective

effects of eriodictyol on keratinocytes, this flavanoid was found to

act through activation of the p38/MAPK/Akt signaling pathway

(Wu et al., 2011). Blackberry anthocyanins protect keratinocytes

from UV radiation by significantly increasing the expression of

antioxidant enzymes such as catalase, mitochondrial superoxide

dismutase and glutathione peroxidase, thus preventing the

development of oxidative stress (Murapa et al., 2012). Grape

procyanidins also prevent the production of reactive oxygen

species in cells, but using a different mechanism - suppression

of p38 (MAPK14) and c-Jun NH1-terminal kinase/c-Jun NH2-

terminal kinase (JNK1/2) (MAPK8) expression (Matito et al.,

2011). The soy isoflavone metabolite daidzein, 7,3’,4’-trihydroxy-

isoflavone, prevents the development of melanoma induced by

UV irradiation and by acting on the ATP-binding sites of protein

kinases Cot and mitogen-activated protein (MAP) kinase kinase

4 (MKK4) (Ravindranath et al., 2004). It is noteworthy that the

original daidzein molecule is not able to interact with these

proteins and does not exhibit anticarcinogenic activity under

these conditions.

6 Polyphenols and viruses

According to current data, viruses are the etiological agents of

about 15% of human tumors. These viruses include: human

T-leukemia/lymphoma virus, human immunodeficiency virus

(HIV), human papillomavirus (HPV), hepatitis B and C

viruses, Epstein-Barr virus (EBV), and other (Cao and Li,

2018). It is important to note that some viruses are associated

with tumors of only one localization, while others are associated

with various malignant neoplasms, which is probably due to the

tropism of viruses for certain types of cell systems. The virus-

genetic theory of the occurrence of tumors, proposed back in the

40 s of the 20th century by Zilber, has received numerous

confirmations over the years (Cao and Li, 2018; Haley et al.,

2019). At present, it is clear that although viruses are not the only

cause of tumors, they play a large role in the occurrence of

malignant neoplasms (for instance, the presence of hepatitis B

virus increases the risk of developing hepatocellular carcinoma)

in both humans and animals. A characteristic feature of tumor

diseases associated with viruses is a long latent period, years and

even decades can pass from the moment of infection to the

manifestation of the disease (Mui et al., 2019; Blackard and

Sherman, 2021).

The creation of antiviral drugs based on natural compounds

is undoubtedly one of the promising real directions. The

expansion of the number of compounds used and the use of

the synergism of their biological action provide a large reserve of

therapeutic antiviral action and, along with the prevention of

oncological diseases. Along with a number of different natural

substances, polyphenolic compounds with antioxidant activity

can also be used, in particular flavanoids, which occupies one of
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the leading positions in antioxidant activity. The mechanism of

the antiviral action of polyphenolic compounds includes both

direct interference with the mechanism of viral replication and

suppression of cellular signaling pathways necessary for

replication (Di Petrillo et al., 2022) (Figure 5). Numerous

studies have shown that some polyphenols have an effect

against influenza A, herpes virus, hepatitis B and C, HPV and

others. Table 8 lists the polyphenols for which their antiviral

activity has been confirmed (Docherty et al., 2004; Docherty

et al., 2005; Yiu et al., 2010; Ciesek et al., 2011; Fatima et al., 2014;

Pang et al., 2014; Rastogi et al., 2015; Sun et al., 2021).

Significant progress has been made in the use of plant

polyphenolic compounds for the treatment of HIV infection.

Flavonoids have been found to inhibit viral fusion,

integration, and reverse transcription. Inhibition of

protease, reverse transcriptase, replication, and maturation

are among the anti-HIV mechanisms of some polyphenols

(Yu and Zhao, 2012; Andrae-Marobela et al., 2013).

Flavonoids, alkaloids, anthocyanins, chalcones, xanthones

and homoisoflavonoids, which inhibit neuraminidase, are

proposed to be used as anti-influenza agents

(Bahramsoltani et al., 2016). Polyphenol, isochlorogenic

acid, dehydrocheilantifoline and some other amide

alkaloids have an effect against hepatitis B virus (Man

et al., 2021). Curcumin inhibits the replication and

expression of the hepatitis B virus gene (Thongsri et al.,

2021). In cell model studies, it was found that quercetin

inhibits the entry of the influenza virus at an early stage of

infection, due to its pronounced anti-inflammatory

properties, reduces the effects of pro-inflammatory

FIGURE 5
Targets and processes affected by some natural polyphenolic compounds in viral infections. This scheme shows the possible mechanisms of
the antiviral action of the main classes of natural polyphenolic compounds. Flavonoids have been found to inhibit merger, integration, and reverse
transcription. Inhibition of protease, reverse transcriptase, replication and maturation are among the anti-HIV mechanisms of some terpenoids.
Coumarins inhibit transcriptase and activation of nuclear factor-kappa B (NF-kB). Note: PGC-1α, Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; TLR-3, Toll-like receptor 3; TLR-7, Toll-like receptor 7; ErbB1, Receptor tyrosine-protein kinase; CCR5, C-C chemokine
receptor type 5; CXCR4, C-X-C chemokine receptor type 4.
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cytokines and the risk of developing lung inflammation

(Mehrbod et al., 2020; Nile et al., 2020). In addition, it

enhances the effect of other drugs.

In general, polyphenols are able to interfere with different

stages of the life cycle of viruses, which characterizes them as

multipurpose drugs that act on vital proteins of the pathogen

(Table 8). At the same time, many researchers pay attention to

the fact that for the development of drugs based on polyphenols,

it is necessary to overcome quite a lot of difficulties, since these

compounds are characterized by complex structures, low

bioavailability, and rapid excretion from the body. In addition,

in-depth studies in vitro (ex vivo), in vivo, as well as multicenter

clinical studies are required. Despite all the difficulties,

polyphenols should eventually find their place as candidates

for creating on their basis not only antiviral drugs, but also

for the prevention of cancer.

7 Chemosensitization of tumors with
polyphenols

The search for effective methods of treatment and

prevention of tumors, despite the successes achieved in

recent decades, remains one of the most urgent tasks in

medicine. Antitumor therapies (e.g., chemotherapy) use

approaches based on induction of cell death by increasing

the intracellular concentration of ROS (Wang et al., 2017).

Since ROS are formed in cells not only as a result of the action

of external physicochemical factors, but also in the processes

of cellular metabolism, pharmacological correction of the

redox properties of tumor cells is a promising approach to

improve the effectiveness of antitumor therapy. In

chemotherapy, drugs that enhance the production of ROS

by cells are widely used. In recent decades, it has been shown

that ROS generation is an important step in the process of

induction of apoptosis of tumor cells by such widely used

chemotherapeutic agents as cisplatin and doxorubicin (Li

et al., 2020; Xia et al., 2020).

To increase the effectiveness of chemotherapeutic agents,

approaches are proposed aimed at inducing oxidative stress in

tumor cells. Therefore, pharmacological correction of the redox

properties of tumor cells is a promising approach to improve the

effectiveness of antitumor therapy. Currently, natural

polyphenolic compounds are considered as preparations for

the development of selective chemosensitizers. Due to the

large number and variety of phenolic compounds, the

antitumor properties of many of them have not been studied.

In recent years, the regulatory properties of EGCG, the main

catechin in green tea, resveratrol, one of the main polyphenols

contained in the skin of grapes and red wines, and curcumin, the

main curcuminoid that is part of the turmeric root, have been

most actively studied (NavaneethaKrishnan et al., 2019).

Polyphenols at low micromolar concentrations cause a

protective antioxidant effect. At high concentrations,

polyphenolic compounds exhibit pro-oxidant and cytotoxic

properties. At the same concentrations in tumor and normal

TABLE 8 List of polyphenols with antiviral activity.

Polyphenols Virus type Targets/
signaling
pathways

Mechanism of action References

Resveratrol Human herpesvirus 1 and
Human herpesvirus 2

ND Significantly reduced skin lesions, and the effectiveness of the
drug depended on its concentration, the time of initiation of
treatment and the number of applications per day

(Docherty et al., 2004),
(Docherty et al., 2005)

Epigallocatechin-3-
gallate

Hepatitis C Virus E1/E2 Inhibition of virion attachment Ciesek et al. (2011)

Epigallocatechin-3-
gallate

Hepatitis C Virus GT3a and
NS3 helicase

Binding interaction of virus NS3 helicase active pocket Fatima et al. (2014)

Epigallocatechin-3-
gallate

Hepatitis B Virus HBsAg, HBeAg and
virus DNA

Strong anti-HBV activity through decreasing the secretion of
HBsAg, HBeAg and extracellular HBV DNA, although
perhaps in such a way that the mechanism may interfere with
the replication cycle of HBV DNA

Pang et al. (2014)

Resveratrol Human papillomavirus p-pRb1, p53, virus
E6 and E7 genes

Inhibits cervical cancer development by suppressing the
transcription and translation of E6 and E7, and also by
promoting the apoptosis and G1/S phase transition arrest.

Sun et al. (2021)

6-Gingerol Human papillomavirus p53, p21, caspase-3
and PARP

Inhibits the chymotrypsin activity of proteasomes; induce
reactivation of p53, and DNA damage and G2/M cell cycle
arrest; increases levels of p21; and potentiates the cytotoxicity
of cisplatin.

Rastogi et al. (2015)

Resveratrol Epstein-Barr virus Rta, Zta, and EA-D Inhibits virus lytic cycle Yiu et al. (2010)

GT3a, genotype 3a; NS3, nonstructural protein 3; HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B e-antigen; p-pRb1, phosphorylated retinoblastoma protein; PARP, Poly (ADP-

ribose) polymerase; HBV, Hepatitis B Virus; ND, not mentioned.
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cells, polyphenols can induce oppositely directed effects (Oalđe

Pavlović et al., 2021).

EGCG inhibits ROS generation in normal epithelial cells

but induces ROS generation in tumor cells. In transformed

cells, EGCG activates a mitochondria-mediated pathway of

cell death, accompanied by the generation of ROS, a decrease

in the transmembrane mitochondrial potential, and the

release of apoptotic proteins (Min and Kwon, 2014).

Similar results have been obtained in pancreatic cancer,

lung cancer, colon cancer, and melanoma cell lines, as well

as in breast cancer xenograft animal models (Gan et al., 2018;

Khan and Mukhtar, 2018; Ravindran Menon et al., 2021;

Romano and Martel, 2021). At concentrations of 5–20 μM,

EGCG induced apoptosis only in melanoma cells, without any

toxic effect on normal melanocytes (Ravindran Menon et al.,

2021). At concentrations of 10–80 mg/ml, EGCG induced

apoptosis in hepatocellular carcinoma cells, but not in the

normal liver cells (Sojoodi et al., 2020). Sensitization of EGCG

tumor cells to the action of a number of antitumor drugs has

been shown in both in vitro and in vivo studies. EGCG

enhances the effects of doxorubicin, 5-fluorouracil,

cisplatin, trizenox (As2O3), bortezomib, and etoposide

(Lecumberri et al., 2013; Almatroodi et al., 2020; Huang

et al., 2020). Among the proposed mechanisms of tumor

cell chemosensitization, the key role is played by redox

modulation as a result of increased intracellular ROS

production. For example, in ovarian cancer cells, EGCG

increased cisplatin toxicity three to six fold, including in

cisplatin-resistant cells (Zhou et al., 2014). However, the

selectivity of the action of the compound in relation to

tumor cells is not justified.

Numerous in vitro and in vivo studies have shown high

antitumor activity of curcumin (see section “THE

EFFECTIVENESS OF POLYPHENOLS”). It has been shown

that the antitumor properties of curcumin are realized with the

participation of ROS (Wan et al., 2019). It is assumed that curcumin

causes ROS-induced decrease in transmembrane mitochondrial

potential, resulting in activation of apoptosis (Wan et al., 2019).

A number of studies have shown the ability of curcumin to activate

autophagy through increased intracellular production of ROS (Tang

et al., 2021). When autophagy is activated, mitochondria are the

main source of ROS. At the same time, it is known that the

functional relationship between apoptosis and autophagy is

complex, that is, in some cases, autophagy is part of the cellular

adaptation mechanism that protects cells from apoptosis, while in

other conditions, autophagy can cause cell death or initiate apoptosis

(Maiuri et al., 2007). It has recently been found that the molecular

mechanism of sensitization ofMCF-7 cells to the action of paclitaxel

and adrenomycin by curcumin involves inhibition of the flap

structure-specific endonuclease 1 (Fen1) endonuclease with the

participation of ROS and NF-E2–related factor 2 (Nrf2) (Chen

et al., 2014).

During therapy, resveratrol sensitizes tumor cells to the

action of radiation therapy, cisplatin, doxorubicin, paclitaxel,

and bortezamib (Fu et al., 2021; Ren et al., 2021). Synergy of

action has been observed with the combined use of resveratrol

and curcumin in relation to breast cancer, colon cancer, lung

cancer and hepatocellular cancer (Niedzwiecki et al., 2016;

Pavan et al., 2016; Arena et al., 2021). An increase in

intracellular ROS production also plays a key role in the

mechanism of cell sensitization under the action of

resveratrol. It has been shown that resveratrol increases the

sensitivity of pancreatic cancer cells as a result of

Nrf2 activation and increased ROS production (Cheng

et al., 2018). It is important to note that during radio- and

chemotherapy, resveratrol protects normal cells from

radiation damage and the toxic effects of chemotherapy drugs.

8 Conclusion and final remarks

Man consumes polyphenolic compounds throughout the

evolutionary process, and these substances have been and

remain a constantly present component of the internal

environment of the body. Once in the body, they are

involved in numerous processes of cell signaling, gene

expression and various metabolic functions. Polyphenolic

compounds, in particular flavonoids, are sometimes an

inconspicuous but necessary link in the assembly and

functioning of proteins, in the formation of biological

membranes, and in the transmission of information in the

cell. Being always available, they serve as helpers in many

processes. It can be hoped that further research on

polyphenols will make it possible to make many interesting

discoveries, and the creation of artificial derivatives of

flavonoids will make it possible to obtain new effective

medicinal substances.

Targeting the stage of oncogenesis and development of

tumors with polyphenolic compounds is a promising

strategy for their use in both prevention and treatment

(including increasing sensitivity to chemotherapy) of

tumors. Data published in the literature that meet the

requirements of evidence-based medicine confirm the

beneficial effect of turmeric and rosemary with a high

content of polyphenols, such as curcumin and carnazole

acid, in pathological disorders in the body’s division

processes, in particular, in oncological processes. Studies

of the action of flavonoids show their ability to influence

various life processes, both individual cells and the body as a

whole. Although epidemiological studies of the relationship

between the spread of cancer and the consumption of

flavonoids have not yielded unambiguous results, in

experimental conditions in vitro and in vivo, as well as in

studies of volunteers, quite convincing evidence has been
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obtained of the promise of the use of certain flavonoids in the

prevention and even in the treatment of tumors.
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