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zinc phosphate cement (ZPC), glass-ionomer (GI), and ICON permeable resin (IPR). Six volunteers wore a plaque-
collection device equipped with the 4 restorative material sheets for 48 hours. Plaque samples were collected, 
and Miseq sequencing was applied to obtain template DNA fragments for microbial diversity analysis. The data 
were analyzed with nonparametric tests.

	 Results:	 The microbial diversity on the ZPC surface was significantly lower than that on GI and IPR surfaces. The abun-
dance of Firmicutes and Streptococcus on the ZPC surface was significantly higher than on the surfaces of GI 
and IPR. In contrast, the abundance of Porphyromonas on the surface of ZPC was significantly lower than that 
on GI and IPR surfaces. (P<0.05).

	 Conclusions:	 The results of the present study might serve as a basis for material selection under different oral microbial con-
ditions to provide more accurate treatments and restorative procedures in the oral cavity.
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Background

There are hundreds of bacteria species in the oral cavity. Oral 
bacteria-associated conditions are the most general diseases 
affecting the oral health and even general health [1,2]. It is well 
established that caries is a chronic infectious disease that has 
been listed by the World Health Organization (WHO) as one 
of the 3 major human diseases requiring focal infection pre-
vention and treatment. The term “periodontal disease” refers 
to a disease status that affects the tooth-supporting struc-
tures, and it is the most common cause of tooth loss in the 
adult population. Moreover, periodontal disease has been con-
firmed to have a role in cardiovascular diseases, adverse preg-
nancy outcomes, Alzheimer’s disease, etc. [3–6]. A number of 
studies have confirmed that in the complex oral environment, 
dental plaque plays a critical role in the development of car-
ies and periodontitis [7,8]. The treatment of lesions affecting 
the tooth crown, root caries caused by gingival recession, and 
wedge-shaped defects mainly rely on the use of a wide vari-
ety of dental restorative materials. Dental plaque can form on 
the surfaces of natural teeth and restorative materials [9,10].

To a large extent, the adhesion, growth, and colonization of 
bacteria are decided by the nature of the applied restorative 
materials, which in turn dramatically affects the components 
and properties of plaque biofilm, and consequently influenc-
es the effectiveness and durability of restorations. Currently, 
a wide variety of restorative materials are used in restorative 
procedures; however, the selection of these materials depends 
on patient’s choice and wishes, aesthetics, cost, and the ma-
terial’s properties and strength. Nonetheless, there is a lack of 
scientific criteria and clinical guidelines to consider different 
oral microbial environments in the material selection process. 
Therefore, it is necessary to investigate microbial diversity on 
the surfaces of different dental restorative materials to pro-
vide theoretical guidance for the selection of these materials.

All the experimental designs for the adhesion and biofilm for-
mation experiments were based on the use of known single or 
multiple oral bacteria on different restorative materials [11,12]. 
These designs also reportedly detect demineralization and bac-
terial invasion of adjacent tooth surfaces and restorative ma-
terials [13,14], as well as the width of the gaps between the 
restorative material and the tooth structure, and the effect of 
microleakage on secondary or recurrent caries [15–17]. These 
studies have been in vitro investigations, however, oral micro-
ecology is a complex and variable environment [18]. While more 
than 700 different bacterial species have been authenticat-
ed in the oral cavity, more than 50% cannot be cultured [19], 
and it is almost impossible to simulate such an environment 
in vitro. Therefore, in studies focusing on the oral microbial 
ecosystem, an in vivo design could provide more reliable sci-
entific evidence. Currently, limited in vivo data are available 

on microbial diversity on different surfaces of dental restor-
ative materials; it is difficult to carry out such studies. In addi-
tion, the in situ dental plaque models in many previous studies 
have been too big and uncomfortable to wear, further making 
such in vivo research difficult.

In recent years, the concept of precision medicine has attracted 
more and more attention. It is a new medical concept; medical 
models have developed because of rapid advances in genome 
sequencing technology, the cross-application of biological in-
formation, and the use of data technology. With the develop-
ment of molecular biology, bacteria that could not be cultured 
and expanded could be detected by molecular biological tech-
niques with a small sample size [20]. 16S rDNA gene-based 
techniques have already been used to identify oral microbi-
omes [21–23]. 16S rDNA gene-based techniques have shown 
changes in the composition and structure of the dental plaque 
under the disease states [23–25]. Therefore, it is believed that 
the 16S rDNA gene-based techniques can also be used to in-
vestigate microbial diversity on the surface of dental restor-
ative materials in vivo.

In the present study, a novel lightweight delivery device was 
designed and constructed to place restorative materials on 
the coronal surfaces of teeth comfortably and conveniently. 
The in vivo biofilm samples were assayed by the Miseq se-
quencing technique (Illumina, Inc., San Diego, CA, USA) and 
the differences in bacterial species and their frequencies and 
concentrations on different restorative materials were ana-
lyzed. The results are expected to serve as a guide for the se-
lection of restorative materials for proper restorative proce-
dures according to the oral conditions of in different patients. 
It is also hoped that this study will provide a theoretical basis 
for clinically precise treatments.

Material and Methods

Restorative materials

Four different dental restorative materials, including 3M Z350 
composite resin (ZR, 3M Filtek™ Z350XT, USA), zinc phosphate 
cement (ZPC, Stomatology Dental Medicine Material Factory 
of Wuhan University, China), 3M glass ionomer (GI, 3M ESPE 
KetacTM Molar Easymix, USA), and ICON permeable resin (IPR, 
DMG, Germany) were respectively placed in prefabricated sterile 
molds (3 mm×10 cm) to prepare the cylindrical material block 
samples. After curing the materials, the blocks were cut into 
2–3 mm thick pieces and single-side polished (320–800 mesh) 
for 30 seconds to 1 minute. Then the samples were subjected 
to ultraviolet (UV) light for 30 minutes.
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Preparation of intraoral appliances

Maxillary and mandibular dental casts of the volunteers were 
prepared according to the complete denture requirements. 
The dental casts were trimmed and checked for occlusal re-
lationship, maintaining the occlusal relationship when placed 
on a flat surface. The following design was used for sticking 

the 4 restorative material sheets on the models: the right up-
per quadrant, IPR; the left upper quadrant, GI; the left lower 
quadrant, ZPC; and the right lower quadrant, ZR. Then, algi-
nate impression material was mixed and used to gently fixed 
a layer of the material sheets on the dental casts; the next 
step was undertaken after its setting.

Figure 1. �Schematic of the model and intraoral photographs. (A) Front view of the model. (B) Top view of the model (maxillary). 
(C) Top view of the model (mandibular). (D) Coronal plane. (E) Transverse plane (maxillary). (F) Transverse plane (mandibular). 
1 refers to material sheet.
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The dental lamination machine (vacuum-molding machine) was 
used to form an invisible retainer. The maxillary and mandibu-
lar dental casts were placed, respectively, in the laminated con-
tainer, and the model was covered with stainless steel sand only 
enough to expose the dental casts of the teeth, using a vestibular 
ditch as a standard. Then the lamination machine started to run. 
The hard-pressed film was softened at 90–150°C for 30–60 sec-
onds, then the film was firmly pressed against the incisors and 
gingivae of the maxillary or mandibular working model. After the 
lamination machine was vacuumed, the plywood was automati-
cally disengaged from the maxillary or mandibular dental casts.

Subsequently, the round material sheets were exposed us-
ing a special slow-speed handpiece to open a window on the 
polished sheet and remove the alginate impression material. 
The edge of the model was trimmed so that it exceeded the 
gingival margin by 1.8–2.2 mm. Then, the in situ dental plaque 
model was used. The model was wiped with alcohol and placed 
under UV light for 30 minutes. Figure 1A–1F presents the sche-
matic representation of the model and its intraoral photographs.

Participant selection and sample collection

This study was approved by the Ethics Committee in the 
Affiliated Stomatology Hospital of the Zhejiang University 
Medical College. All the research steps were performed fol-
lowing the relevant guidelines after informed consent was ob-
tained from all the volunteers. Six volunteers were selected, 
based on the following inclusion criteria: healthy adults with no 
systemic disease, no use of antibiotics or fluoride compounds 
within 6 months, no other bacterial or fungal infection in other 
sites, the presence of at least 24 teeth in the oral cavity, and 
the absence of caries or periodontal disease.

Each volunteer wore an in situ dental plaque device contain-
ing the 4 kinds of circular sheets for 48 hours (removed only 
during eating and brushing), the same teeth in different vol-
unteers had the same restorative material. The device was re-
moved after 48 hours. The material sheets were removed on 
a clean bench in the laboratory according to their type and 
subjects, divided into 24 frozen tubes, labeled and transferred 
into a freezer at –80°C for storage.

DNA extraction and PCR amplification

According to the manufacturer’s protocols, microbial DNA 
was extracted from 24 samples using the Omega-soil DNA kit 
(Omega Bio-Tek, Norcross, GA, USA). The V4-V5 region of the 
bacteria 16S ribosomal RNA gene was amplified by PCR using 
primers 338F 5’-barcode- ACTCCTACGGGAGGCAGCAG-3’ and 
806R 5’-GGACTACHVGGGTWTCTAAT-3’ (95°C for 3 minutes, 95°C 
for 30 seconds with 27 cycles, 55°C for 30 seconds, and 72°C 
for 45 seconds and a final extension at 72°C for 10 minutes). 

PCR reactions were performed in triplicate with a 20 μL mix-
ture containing 4 μL of 5×FastPfu Buffer (TransGen, China), 
2 μL of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of 
FastPfu polymerase (TransGen, China), and 10 ng of the tem-
plate DNA [26].

Illumina MiSeq sequencing

The amplicons were extracted from 2% agarose gels (Biowest 
Agarose, Biowest, Spain) and purified by the AxyPrep DNA Gel 
Extraction Kit (Axygen Biosciences, Union City, CA, USA) and 
quantified using QuantiFluor™-ST (Promega, USA). The puri-
fied amplicons were integrated into equimolar and paired end 
sequenced (2×250) on an Illumina MiSeq platform (TruSeq™ 
DNA Sample Prep Kit, Illumina, USA) conforms to the stan-
dard protocols. The raw readings were stored into the NCBI 
Sequence Read Archive (SRA) database [27].

Processing of sequencing data

Raw fastq files were decomposed and quality-filtered using 
QIIME (Version 1.17). The criteria are as follows: 1) the 300 bp 
readings were truncated at any site receiving an average qual-
ity score of <20 over a 50 bp sliding window, discarding the 
truncated reads that were shorter than 50 bp. 2) Exact bar-
code matching, 2 nucleotide do not match in primer matching, 
readings containing indeterminate characters were removed. 
3) Only sequences with overlapping length greater than 10 bp 
were assembled according to their overlap sequence. Readings 
that could not be gather together were discarded. Operational 

Figure 2. �Rarefaction curves. It was used to calculate richness of 
the total bacterial communities. Vertical axis displays 
the number of OTUs that would be anticipated to 
be found after sampling the number of sequences 
displayed on the horizontal axis. OTUs – operational 
taxonomic units.
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taxonomic units (OTUs) were clustered using Usearch (Vsesion 
7.0 http://drive5.com/uparse/) with 97% similarity cutoff and 
using UCHIME to identify and removed chimeric sequences. 
The taxonomy of each 16S rRNA gene sequence was ana-
lyzed using an RDP Classifier (http://rdp.cme.msu.edu/) and 
Silva (ssu115) 16S rRNA database (confidence threshold of 
70%). In order to obtain the information of the species corre-
sponding to each OTU, the RDP classifier Bayesian algorithm 
was used to analyze the 97% similar level of OTU represen-
tative sequence. Statistical comparisons were made at each 
taxonomic level (domain, kingdom, phylum, class, order, fam-
ily, genus, species) and the corresponding data were obtained.

Statistical analysis

The variance homogeneity test and the normality test (SPSS 21.0, 
IBM, USA) of the operational taxonomic unit (OTU) data were 
obtained. The results showed the inconsistency and non-nor-
mal distribution of the data; the variance was not homogeneous. 
Therefore, the Kruskal-Wallis test with Benjamini-Hochberg false 
discovery rate (FDR) was performed between the multiple groups 
and the Wilcoxon rank-sum tests were used for comparison of 2 
groups. Statistical significance was set at 0.05 probability level.

Results

General sequencing data analysis

Twenty-four samples were sequenced by Miseq 16S rDNA. The to-
tal bacterial load was measured from different dental restor-
ative materials, and 850 378 sequences with an average length 
of 448.12 bp were obtained. The rarefaction curves (Figure 2) of 
all the samples already reached a platform at this sequencing 
depth, indicating that the sequencing was deep enough. The se-
quencing results were blasted with the Silva database, being 
located to 12 phyla, 75 genera, and 136 species; there were 
5 phyla, 22 genera, and 35 species with a proportion of >1%.

At the phylum and genus level (Figure 3), the bacteria on the sur-
faces of the materials belonged to 5 phyla including Firmicutes, 
Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria, 
and 22 genera involving Streptococcus, Neisseria, Haemophilus, 
Veillonella, Porphyromonas, Fusobacterium, Alloprevotella, 
Prevotella, Gemella, Lautropia, Rothia, Granulicatella, Prevotella 
7, Acinetobacter, Unclassified_o_Lactobacillales, Abiotrophia, and 
Parvimonas. Then the differences between the groups were 
analyzed in the proportion of >1% of the species.

Species diversity analysis

Differences in bacterial species between the groups were de-
termined by the diversity index, the results of Shannon and 

Simpson index measurements and statistical analyses to mea-
sure the diversity of species are shown in Figure 4. The Shannon 
index and Simpson indexes (Figure 4A, 4B, * P£0.05, ** P£0.01) 
both showed that the species diversity of the ZPC group was 
lower than that of the GI and IPR groups, with a significant 
difference. This means that the adhesion of bacteria to dif-
ferent materials was different. Many research studies have 
shown that a reduction in microbial diversity in dental plaque 
often indicates the occurrence of stomatology diseases, such 
as caries and periodontal disease [8,24,25]. The microbial di-
versity in oral plaques will change 6 months before caries hap-
pens. Therefore, the decline in microbial diversity on the sur-
face of ZPC also reflects the potential problems of traditional 
oral restorative materials in clinical applications compared to 
some new materials.

Differences in bacterial abundance between the 4 groups

The results showed that at the phylum and genus level 
(Figure 5A, 5B), Firmicutes (P=0.043), Streptococcus (P=0.013), 
and Porphyromonas (P=0.032) exhibited significant differenc-
es between the 4 kinds of restorative materials.

These differences between bacteria species have played a 
role in oral diseases, which cannot be ignored. The increase in 
Firmicutes has been confirmed as being closely related to dental 
caries in many studies [20,25,28,29], Streptococcus are Gram-
positive bacteria and are often presented in the supragingival 
plaque; they are associated with the occurrence of dental car-
ies [30,31]. Porphyromonas species is a Gram-negative bacteri-
um that is often found in the subgingival plaque and is often 
associated with periodontal disease [8,32,33]. These results in-
dicate that ZPC and ZR had a high abundance of Streptococcus 
on their surfaces compared to the GI and IPR. In addition, GI, 
IPR, and ZR exhibited a high abundance of Porphyromonas 
compared to ZPC. Therefore, the differences in the type and 
abundance of bacteria adhering to the surface of the materi-
als have a significant role in helping the selection and appli-
cation of clinical restorative materials.

Two-by-two differences in bacterial abundance

After discovering the different adhesion patterns of bacteria 
between the 4 restorative materials, the Wilcoxon nonparamet-
ric test was applied for the 2-by-2 comparison of data. Figure 
6A–6C presents the results (* represents P£0.05). At the phy-
lum level, Firmicutes on the IPR surface was lower than that 
on the ZPC. At the genus level, Streptococcus on the ZPC sur-
face was more numerous than that on the GI and IPR surfaces, 
Porphyromonas on the ZPC surface was less numerous than 
that on the GI and IPR surfaces. There was no statistically sig-
nificant difference between the ZR group and other groups at 
the phylum level and genus level.
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Figure 3. �Community barplot at phylum level (A) and genus level (B). The abscissa represents the percent of community abundance on 
the surface of the materials. The ordinate represents the sample names. Different colors correspond to the different types of 
phylum and genus on the right side, it can be seen that the bacterial species and abundance on the surface of 4 materials 
are different. Unclassifed_La refers to unclassified Lactobacillalles.
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Figure 4. �Shannon index (A) and Simpson index (B). These indices were used to estimate microbial diversity between 2 groups. 
The Shannon index larger, the diversity of the community is higher. In contrast, the Simpson index larger, the diversity of 
the community is lower. The Shannon index (A) and Simpson index (B) both showed that the species diversity of ZPC group 
was lower than that of GI and IPR group, and there was a significant difference. * P£0.05, ** P£0.01. ZPC – zinc phosphate 
cement; GI – glass-ionomer; IPR – ICON permeable resin.
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Figure 5. �Different taxon analysis among 4 groups at phylum level (A) and genus (B) level. (A) Firmicutes (P=0.043 <0.05) have 
significant differences at phylum level among 4 groups. (B) Streptococcus (P=0.013 <0.05) and Porphyromonas (P=0.032 
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Comparisons between the 4 groups were similar to those of 
the IPR-ZPC group at phylum and genus levels, indicating that 
the distinction between the 2 groups was very noticeable, 
which directly affected the analysis of the results in multiple 
groups. These conclusions can be seen from the PLS-DA di-
agram (Figure 7). PLS-DA analysis is a method of testing the 
similarities and differences between groups. In Figure 7, at the 
OTU level, IPR and GI sample scatters show the extreme dis-
tance from the ZPC samples. However, the ZR and other group 
samples are close to each other. This is also the reason why 
ZR exhibited no significant difference from the other groups.

Discussion

At present, many novel restorative materials have antimicro-
bial effects, including effects on caries-related and periodon-
titis-related microorganisms [34–37], mainly through the inhi-
bition of the formation of bacterial biofilms and inhibition of 
the destruction of tooth structure by acid-producing metabolic 
pathways [38,39]. However, the application of clinical restor-
ative materials is mostly dependent on the cost, aesthetics, the 
properties of the materials, and patients’ choice and econom-
ic conditions, rather than on the individual differences and the 
effects on micro-ecological diversity in the oral cavity [40,41].

The traditional culture-based methods severely limit the in-
depth analysis of the samples. In contrast, Miseq sequenc-
ing can provide numerous readings of many samples in a sin-
gle run, enabling the analysis of several samples at one time. 
Previous single-bacterial studies and in vitro tests have ig-
nored the integrity and complexity of the oral microecology. 
Moreover, the effect of the interaction of multiple bacteria on 
bacterial adhesion has been ignored. Therefore, it is necessary 
to investigate the adhesion of bacteria to the surface of mate-
rials in vivo. A novel plaque-collection device was used in the 
current study, which was placed in the oral cavity of 6 volun-
teers. The device increased the scientific validity and clinical 
value of the study.

The oral microecology is basically in a dynamic equilibrium 
state. Two studies reported that the difference in setting po-
sition did not affect the formation of plaque biofilm [7,42]. 
Therefore, the location of the material does not affect the ex-
perimental results. Accordingly, the 4 materials were placed in 
4 different quadrants in the oral cavity of each volunteer. To 
circumvent the differences in bacterial counts due to surface 
roughness, the same grinding and polishing procedures were 
carried out on the surfaces of the material sheets to be tested 

Figure 6. �Differential species analysis between 2 groups at phylum level (A) and genus level (B, C). (A) Firmicutes on the IPR 
surface is lower than ZPC at phylum level. (B) Streptococcus on the ZPC surface is higher than GI and IPR at genus level. 
(C) Porphyromonas on the ZPC surface is lower than GI and IPR at genus level. * Represents P£0.05. ZPC – zinc phosphate 
cement; GI – glass-ionomer; IPR – ICON permeable resin.
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because the surface roughness is positively correlated with the 
weight of the plaque [11]. To prevent excessive plaque accumu-
lation on the surfaces of the test samples, restorative materi-
als with smooth surfaces were used to inhibit bacterial growth. 
This is also the reason for the emergence of nano-filled mate-
rials that are now available on the market [43], which can be 
used to provide dental restorations with a smoother surface.

The properties of the restorative materials have been report-
ed to determine the outcomes of bacterial adhesion to a great 
extent [44–47]. Based on the results of this study (Figure 6), 
the materials were classified into 3 groups in terms of the abil-
ity of different bacterial species to adhere to the materials as 
follows: the Streptococus-sensitive group, the Porphyromonas-
sensitive group, and the 2-insensitive group. This classification 
can be used as a basis for material selection under different oral 
conditions, for more accurate oral treatments and restorations. 
Unfortunately, there was no significant difference in bacterial 
counts on ZR and other groups, which might be owing to the 
limited 48 hours experimental time. Considering the bacterial 
growth rate, the biofilms formed were only in the early stage. 
Previous studies have shown no significant differences in the 
plaque surface structure between different materials, which 
might have a bearing on the formation of biofilms on the sur-
face of the materials without any distinction in their initial stage, 
or a lack of the involvement of antimicrobial agents [48,49].

Interestingly, this study involved the use of a fluoride-contain-
ing restorative material, i.e., GI. Previous studies showed that GI 
has an anti-streptococcal effect that could influence the plaque 
formation in the early stage [50,51], coincided with the result of 
the current study, in which the Streptococcus counts on the GI 
surface were lower than those on ZPC and ZR surfaces. In addi-
tion, the bacterial counts of Streptococcus on GI surfaces were 
lower than those on IPR surfaces; however, the difference was 
not statistically significant by the definition of P<0.05 in the 
present study. Therefore, the properties of dental restorative 
materials greatly influence bacterial adhesion in the early stage.

In general, the rarefaction curve indicated (Figure 2) that the 
sample size in this study reached the required sequencing 
depth; therefore, the microbial diversity on the surface of the 
material obtained in the present study is valid. There were 
significant differences in the types and abundance of bac-
teria adhering to the material surfaces in the present study. 
Firmicutes and Streptococcus have been reported to be relat-
ed with dental caries [20,28,52]. Streptococcus is an acid-pro-
ducing bacterial species, which directly cause carious lesions. 

Porphyromonas might be involved in the susceptibility of an 
individual to periodontal disease [33,53,54]. Therefore, this 
study is of clinical value to serve as a guide for material se-
lection for proper treatments and restorations in patients with 
dental caries and periodontal disease.

However, Miseq sequencing was not useful at species levels; 
therefore, the differences between caries- and periodontal 
disease-related bacteria, such as Streptococcus mutans and 
Porphyromonas gingivalis had no statistically significant dif-
ference. In the current study, the sample size was still insuf-
ficient, and both the individual differences in the oral micro-
ecology between the volunteers and the process of wearing 
the device could have impacted the results. The volunteers in 
this study were adults, but the oral microecology undergoes 
changes with age; therefore, there was a selection bias. Thus, 
in future studies, other sequencing methods should be used, 
with larger sample sizes, to verify the results of this study more 
effectively. In addition, the research population should be ex-
panded to study different age groups and collect more reliable 
data on the treatment and restorative procedures. The plaque-
collection device used in this study caused only 1 ulcer, and 2 
volunteers had mild pain in their anterior teeth after remov-
ing the device. The others reported no discomfort.

Finally, this in vivo study showed that the types and abundance 
of bacterial species were significantly influenced by the phys-
icochemical properties of the restorative materials. According 
to the results, Gl and IPR might be superior to ZPC for patients 
with a high predisposition to dental caries. For patients with 
periodontal disease, ZPC restorative material might be a bet-
ter choice than GI and IPR. The results of the present study 
can serve as a basis for material selection under different oral 
conditions to render much better oral treatments. Based on 
conventional evaluation methods, this study further demon-
strated a novel point of view and a feasible method to evalu-
ate the dental restorative materials comprehensively and sci-
entifically. Moreover, considering the concept of proper oral 
treatments and restorations first proposed in this study, spe-
cific caries or periodontal restorative materials could be fur-
ther developed.

Conclusions

The results of the present study can serve as a basis for se-
lecting materials under different oral microbial conditions to 
optimize oral treatments and restorative procedures.
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