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Abstract
The development of quantitative structure–activity relationship (QSAR) methods
is going very fast for the last decades. OSAR approach already plays an important
role in lead structure optimization, and nowadays, with development of big data
approaches and computer power, it can even handle a huge amount of data
associated with combinatorial chemistry. One of the recent developments is a
three-dimensional QSAR, i.e., 3D QSAR. For the last two decades, 3D-OSAR
has already been successfully applied to many datasets, especially of enzyme
and receptor ligands. Moreover, quite often 3D QSAR investigations are going
together with protein–ligand docking studies and this combination works syn-
ergistically. In this review, we outline recent advances in development and
applications of 3D QSAR and protein–ligand docking approaches, as well as
combined approaches for conventional organic compounds and for nanostruc-
tured materials, such as fullerenes and carbon nanotubes.
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Introduction

The methodology of quantitative structure–activity relationship (QSAR) is very well
described in various publications (Hansch et al. 1995; Kubinyi 1997a, b; Eriksson
et al. 2003). In short, QSAR is a method to find correlations and mathematical
models for congeneric series of compounds, affinities of ligands to their binding
sites, rate constants, inhibition constants, toxicological effect, and many other
biological activities, based on structural features, as well as group and molecular
properties, such as electronic properties, polarizability, or steric properties (Klebe
et al. 1994; Hansch et al. 1995; Karelson et al. 1996; Kubinyi 1997a, b; Perkins
et al. 2003; Isayev et al. 2006; Martin 2009; Rasulev et al. 2010; Puzyn et al. 2011).

Thus, QSAR approaches have been used for many types of biological activities
to describe correlations for series of drugs and drug candidates (Kubinyi 1997a, b;
Veber et al. 2002). In addition, in case of available crystallographic data on the
proteins, the QSAR models can be developed with the additional information
from the three-dimensional (3D) structures of these proteins, interacting with drug
candidates, by applying protein–ligand docking data for further QSAR analysis,
or, if there is no data on 3D structure of protein, then developing QSAR based
on three-dimensional features of investigated molecules (Moro et al. 2005; Ragno
et al. 2005; Gupta et al. 2009; Hu et al. 2009; Sun et al. 2010; Araújo et al. 2011;
Ahmed et al. 2013). The second approach was named as 3D3D QSAR QSAR
approach (Wise et al. 1983; Cramer and Bunce 1987; Cramer et al. 1988; Clark
et al. 1990). There are also many other multidimensional approaches, including
4D QSAR and 5D QSAR, but all of them are just extension of QSAR analysis to
a number of conformations (orientations, tautomers, stereoisomers, or protonation
states) per molecule, number of concentrations (dosages) per compound, etc (Lill
2007). In overall, when talking about 3D QSAR, computational chemists usually
assume that the QSAR analysis takes into account a three-dimensional structure of
the compound in minimal energy conformation and builds QSAR model based on
various 3D fields generated (Kubinyi 1997a, b).

A first similar to 3D QSAR approach was developed by Cramer in 1983, which
was the predecessor of 3D approaches called dynamic lattice-oriented molecular
modeling system (DYLOMMS) that involves the use of PCA to extract vectors
from the molecular interaction fields, which are then correlated with biological
activities (Wise et al. 1983). Later authors improved this approach and by combining
the two existing techniques, GRID and PLS, has developed a powerful 3D QSAR
methodology, so-called comparative molecular field analysis (CoMFA) (Cramer
et al. 1988; Clark et al. 1990). Soon after, CoMFA has become a prototype of 3D
QSAR methods (Kim et al. 1998; Todeschini and Gramatica 1998; Podlogar and
Ferguson 2000). CoMFA approach was then implemented in the Sybyl software
(Tripos 2006) from Tripos Inc.

As it was mentioned before, a good and fruitful approach is a combination
of molecular docking and 3D QSAR pharmacophore methods (Patel et al. 2008;
Gupta et al. 2009; Araújo et al. 2011; Ahmed et al. 2013). Molecular docking and
3D QSAR model are the two potent methods in drug discovery process. Thus,
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Fig. 1 A number of 3D QSAR-related papers for a period of 1990–2014 (Source – Web of
Science)

virtual screening using 3D QSAR approaches followed by docking has become
one of the reputable methods for drug discovery and enhancing the efficiency in
lead optimization (Oprea and Matter 2004). The main advantage of this combined
approach of 3D QSAR and pharmacophore-based docking is to focus on specific
key interaction for protein–ligand binding to improve drug candidates. Ameliorate
the selection of active compounds; it is optimal to use both methods like molecular
docking and 3D QSAR modeling (Gopalakrishnan et al. 2005; Klebe 2006; Perola
2006; Pajeva et al. 2009; Yang 2010).

Since the time of development of 3D QSAR approach, a number of papers
and methods’ developments were published within 3D QSAR methodology. Let’s
briefly list and explain these methods here and then discuss recent developments and
applications of these 3D QSARs in the assessment of the properties of biologically
active compounds and development of drugs and drug candidates. As can be seen
from Fig. 1, the number of publications related to 3D QSAR approach is increasing
every year, from 3 to 5 publications in the beginning of 1990s to about 150
publications per year in 2014. It confirms the increasing importance of the method
and successful application in many drug design projects.

Ligand-Based 3D QSAR Methods

To give some view on a number of 3D QSAR methods developed for the last
three decades, we listed below the ligand-based 3D QSAR methods and very short
description per each of them.

CoMFA – Comparative molecular field analysis is the method which correlates
the field values of the structure with biological activities. CoMFA generates an
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equation correlating the biological activity with the contribution of interaction
energy fields at every grid point (Cramer et al. 1988). The method was developed in
the 1988 and still one of the most popular ones for 3D QSAR modeling.

CoMSIA – Comparative molecular similarity indices analysis (CoMSIA)
method, where the molecular similarity indices calculated from steric and
electrostatic alignment (SEAL) similarity fields and applied as descriptors to encode
steric, electrostatic, hydrophobic, and hydrogen bonding properties (Klebe et al.
1994). This is a development of CoMFA method and also gets very popular in drug
design.

GRID – This method and program was designed as an alternative to the original
CoMFA approach. It is actually a force field which calculates the interaction energy
fields in molecular-field analysis and determines the energetically favorable binding
sites on molecules of known structure. The method to some extent is similar
to CoMFA, and it computes explicit nonbonded (or non-covalent) interactions
between a molecule of known 3D structure and a probe (i.e., a chemical group with
certain user-defined properties). The probe is located at the sample positions on a
lattice throughout and around the macromolecule. The method offers two distinct
advantages, one of them is the use of a 6–4 potential function for calculating the
interaction energies, which is smoother than the 6–12 form of the Lennard-Jones
type in CoMFA, and another advantage is the availability of different types of probes
(Goodford 1985). Moreover, the program in addition of computing the regular steric
and electrostatic potentials also calculates the hydrogen bonding potential using
a hydrogen bond donor and acceptor, as well as the hydrophobic potential using
a “DRY probe.” Later on, a water probe was included to calculate hydrophobic
interactions (Kim et al. 1998; Kim 2001).

MSA – Molecular shape analysis (MSA) is a ligand-based 3D QSAR method
which attempts to merge conformational analysis with the classical Hansch
approach. The method deals with the quantitative characterization, representation,
and manipulation of molecular shape in the construction of a QSAR model
(Hopfinger 1980).

HASL – Inverse grid-based approach represents the shapes of the molecules
inside an active site as a collection of grid points (Doweyko 1988). The methodology
of this approach begins with the intermediate conversion of the Cartesian coordi-
nates (x, y, z) for superposed set of molecules to a 3D grid consisting of the regularly
spaced points that are (1) arranged orthogonally to each other, (2) separated by a
particular distance termed as the resolution (which determines the number of grid
points representing a molecule), and (3) all sprawl within the van der Waals radii of
the atoms in the molecule.

Thus, the resulting set of points is referred to as the molecular lattice and
represents the receptor active site map (like in CoMFA). Quite important that the
overall lattice dimensions are dependent on the size of the molecules and the
resolution chosen.

GRIND – This is the method that uses grid-independent descriptors (GRIND)
which encode the spatial distribution of the molecular interaction fields (MIF) of
the studied compounds (Pastor et al. 2000). In the anchor-GRIND method (Fontaine
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et al. 2005), to compare the MIF distribution of different compounds, the user
defines a single common position in the structure of all the compounds in the series,
so-called anchor point. This anchor point does not provide enough geometrical
constrains to align the compounds studied; however, it is used by the method as
a common reference point, making it possible to describe the geometry of the MIF
regions in a more precise way than GRIND does. The anchor point is particularly
easy to assign in datasets having some chemical substituents well known as being
crucial for the activity. In the anchor-GRIND approach, the R groups are described
with two blocks of variables: the anchor-MIF and the MIFMIF blocks (Fig. 2). The
first one describes the geometrical distribution of the R MIF relative to the anchor
point, while the second one describes the geometrical distribution of the MIF within
each R group. These blocks are obtained after the following steps: (i) every R group
is considered as attached to the scaffold, (ii) the anchor point is set automatically
on an atom of the scaffold, (iii) a set of MIF are calculated with the program
GRID (Goodford 1985) as well as the shape field implemented in the program
Almond (Cruciani et al. 2004), and (iv), as the last step, the blocks of descriptors

Fig. 2 Calculation of the
anchor-GRIND descriptors
for an ACE inhibitor with the
anchor point set on the zinc
binder sulfur atom
(Reproduced with permission
from reference (Fontaine
et al. 2005) Copyright,
American Chemical Society,
2005)
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are computed from the anchor point and the filtered MIF. Authors also were able to
incorporate a molecular shape into the GRIND descriptors (Fontaine et al. 2004).

GERM – Genetically evolved receptor model (GERM) is a method for 3D QSAR
and also for constructing 3D models of protein-binding sites in the absence of
a crystallographically established or homology-modeled structure of the receptor
(Walters and Hinds 1994). As for many 3D QSAR datasets, the primary requirement
for GERM is a structure–activity set for which a sensible alignment of realistic
conformers has been determined. The methodology is the following: it encloses
the superimposed set of molecules in a shell of atoms (analogous to the first layer of
atoms in the active site) and allocates these atoms with explicit atom types (aliphatic
H, polar H, etc., to match the types of atoms found in the investigated proteins).

CoMMA – Comparative molecular moment analysis (CoMMA) is one of the
unique alignment-independent 3D QSAR methods, which involves the computation
of molecular similarity descriptors (similar to CoMSIA) based on the spatial
moments of molecular mass (i.e. shape) and charge distributions up to second-order
as well as related quantities (Silverman and Platt 1996).

COMBINE – Comparative binding energy analysis (COMBINE) method was
developed to make use of the structural data from ligand–protein complexes, within
a 3D QSAR methodology. The method is based on the hypothesis where free energy
of binding can be correlated with a subset of energy components calculated from the
structures of receptors and ligands in bound and unbound forms (Ortiz et al. 1995;
Lushington et al. 2007).

CoMSA – Comparative molecular surface analysis (CoMSA) is a non-grid
3D QSAR method that utilizes the molecular surface to define the regions of
the compounds which are required to be compared using the mean electrostatic
potentials (MEPs) (Polanski et al. 2002, 2006). In overall, the methodology proceeds
by subjecting the molecules in the dataset to geometry optimization and assigning
them with partial atomic charges.

AFMoC – Adaptation of fields for molecular comparison (AFMoC) is a close to
3D QSAR method that involves fields derived from the protein environments (i.e.
not from the superimposed ligands as in CoMFA); therefore, it is also known as a
“reverse” CoMFA (DAFMoC) approach or protein-dependent 3D QSAR (Gohlke
and Klebe 2002). The methodology is the following: a regularly spaced grid is
placed into the receptor binding site, followed by mapping of the knowledge-
based pair potentials between protein atoms and ligand atom probes onto the grid
intersections resulting in the potential fields. Thus, based on these potential fields,
specific interaction fields are generated by multiplying distance-dependent atom-
type properties of actual ligands docked into the active site with the neighboring
grid values. In result, these atom-type-specific interaction fields are then correlated
with the binding affinities using PLS technique, which assigns individual weighting
factors to each field value.

CoRIA – Comparative residue interaction analysis (CoRIA) is a 3D QSAR
approach which utilizes the descriptors that describe the thermodynamic events
involved in ligand binding, to explore both the qualitative and the quantitative
features of the ligand–receptor recognition process. The CoRIA methodology is
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the following: initially it simply consisted of calculating the nonbonded (van der
Waals and coulombic) interaction energies between the ligand and the individual
active site residues of the receptor that are involved in interaction with the ligand
(Datar et al. 2006; Dhaked et al. 2009). By employing the genetic algorithm-
supported PLS technique (G-PLS), these energies then correlated with the biological
activities of molecules, along with the other physiochemical variables describing the
thermodynamics of binding, such as surface area, lipophilicity, molar refractivity,
molecular volume, strain energy, etc.

SOMFA – Self-organizing molecular-field analysis, where firstly the mean
activity of training set is subtracted from the activity of each molecule to get their
mean-centered activity values. The methodology is the following:

• A 3D grid around the molecules with values at the grid points signifying the
shape or electrostatic potential is generated.

• The shape or electrostatic potential value at every grid point for each molecule is
multiplied by its mean-centered activity.

• The grid values for each molecule are summed up to give the master grids for
each property.

• Then the so-called SOMFAproperty,i descriptors from the master grid values are
calculated and correlated with the log-transformed molecular activities (Robin-
son et al. 1999).

kNN-MFA – This relatively new method was developed and reported in 2006 by
Ajmani et al. (2006). kNN-MFA is a k-nearest neighbor molecular-field analysis.
kNN-MFA adopts a k-nearest neighbor principle for generating relationships of
molecular fields with the experimentally reported activity. This method utilizes the
active analogue principle that lies at the foundation of medicinal chemistry. Like
many 3D QSAR methods, kNN-MFA requires suitable alignment of a given set of
molecules. This is followed by generation of a common rectangular grid around
the molecules. The steric and electrostatic interaction energies are computed at the
lattice points of the grid using a methyl probe of charge C1. These interaction
energy values are considered for relationship generation and utilized as descriptors
to decide nearness between molecules.

3D-HoVAIFA – This method based on three-dimensional holographic vector of
atomic interaction field analysis (Zhou et al. 2007). Initially the holographic vector
for 3D QSAR methods was developed by Zhou et al. in 2007 (Zhou et al. 2007).
Proceeding from two spatial invariants, namely, atom relative distance and atomic
properties on the bases of three common nonbonded (electrostatic, van der Waals,
and hydrophobic) interactions which are directly associated with bioactivities, 3D-
HoVAIF method derives multidimensional vectors to represent molecular steric
structural characteristics.

CMF – This is a recently introduced continuous molecular-field approach
(Baskin and Zhokhova 2013). This is a novel approach that consists in encapsulating
continuous molecular fields into specially constructed kernels. It is based on the
application of continuous functions for the description of molecular fields instead
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of finite sets of molecular descriptors (such as interaction energies computed at grid
nodes) commonly used for this purpose. The feasibility of using molecular-field
kernels in combination with the support vector regression (SVR) machine learning
method to build 3D QSAR models has been demonstrated by the same authors
earlier (Zhokhova et al. 2009). Authors claim that by combining different types of
molecular fields and methods of their approximation, different types of kernels with
different types of kernel-based machine learning methods, it is possible not only to
present lots of existing methods in chemoinformatics and medicinal chemistry as
particular cases within a single methodology but also to develop new approaches
aimed at solving new problems (Baskin and Zhokhova 2013). The example of
application of this approach is described later in this chapter.

PHASE – This is a flexible system (engine) (Dixon et al. 2006) for common
pharmacophore identification and assessment, 3D QSAR model development, and
3D database creation and searching (within Schrodinger Suite, Schrodinger, LLC).
It includes some subprograms, for example, LigPrep, which attaches hydrogens,
converts 2D structures to 3D, generates stereoisomers, and, optionally, neutralizes
charged structures or determines the most probable ionization state at a user-defined
pH. It also includes MacroModel conformational search engine to generate a series
of 3D structures that sample the thermally accessible conformational states. For
purposes of 3D modeling and pharmacophore model development, each ligand
structure is represented by a set of points in 3D space, which coincide with various
chemical features that may facilitate non-covalent binding between the ligand and
its target receptor. PHASE provides six built-in types of pharmacophore features:
hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic (H), negative
ionizable (N), positive ionizable (P), and aromatic ring (R). In addition, users may
define up to three custom feature types (x, y, z) to account for characteristics that
don’t fit clearly into any of the six built-in categories. To construct a 3D QSAR
model, a rectangular grid is defined to encompass the space occupied by the aligned
training set molecules. This grid divides space into uniformly sized cubes, typically
1 Å on each side, which are occupied by the atoms or pharmacophore sites that
define each molecule.

APF – In 2008, Totrov M (Totrov 2008) introduced atomic property fields (APF)
for 3D QSAR analysis. APF concept is introduced as a continuous, multicomponent
3D potential that reflects preferences for various atomic properties at each point in
space (Fig. 3). The approach is extended to multiple flexible ligand alignments using
an iterative procedure, Self-Consistent atomic Property Fields by Optimization
(SCAPFOld). The application of atomic property fields and SCAPFOld for virtual
ligand screening and 3D QSAR is tested on published benchmarks. The new method
is shown to perform competitively in comparison to current state-of-the-art methods
(CoMFA and CoMSIA).

Thus, there are studies with comparative analysis of these two methods, PHASE
and Catalyst (HypoGen). In 2007, Evans et al. (2007) provided a comparative study
of PHASE and Catalyst methods for their performance in determining 3D QSARs
and concluded that the performance of PHASE is better than or equal to that of
Catalyst HypoGen, with the datasets and parameters used. Authors found that within
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Fig. 3 An overall scheme of APF potentials visualized for an example of a drug molecule.
Transparent blobs are the equipotential contours of various APF components (Reproduced with
Permission from reference (Totrov 2008). Copyright John Wiley and Sons, 2008)

PHASE, the atom-based grid QSAR model generally performed better than the
pharmacophore-based grid, and by using overlays from Catalyst to build PHASE
grid QSAR models, they found evidence that better performance of PHASE on these
datasets was due to the use of the grid technique.

Recent Advances in 3D QSAR Studies of Organic Compounds

In this part of the review, we discuss the new developments in the methods and
in applications of 3D QSARs for various chemicals, including nanostructured
materials.

For the last 10 years, there was mainly improvement of the 3D QSAR approaches
which were developed before 2005. As it was discussed above, all these methods as
CoMFA, CoMSIA, GRID, SOMFA, etc., were developed in late 1990s and early
2000s. Some of the recently introduced methods are just improvements of old
approaches. However, if we take a look at applications, we can see many interesting
publications and novel ligand developments which were designed by 3D QSAR and
docking methods.

Recently, a quite interesting study was performed by Virsodia et al. (2008)
on antitubercular activity of 23 substituted N-phenyl-6-methyl-2-oxo-4-phenyl-
1,2,3,4-tetrahydropyrimidine-5-carboxamides by application of 3D QSAR using
CoMFA and CoMSIA methods. Authors synthesized and assessed the antitubercular
activity of all investigated compounds followed by comprehensive 3D QSAR
modeling. Authors were able to get good models with r2 D 0.98 and 0.95, with
cross-validated q2 D 0.68 and 0.58, respectively. Authors stated that CoMFA and
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CoMSIA contours helped them to design some new molecules with improved
activity (Virsodia et al. 2008).

Another CoMFA and CoMSIA study was performed by Ravichandran et al.
(2009) by analysis of anti-HIV activity of 96 1,3,4-thiazolidine derivatives. Authors
were able to get good models by CoMFA and CoMSIA with r2 values 0.931 and
0.972, respectively. The predictive model was evaluated using a test set comprising
of 17 molecules, and the predicted r2 values of CoMFA and CoMSIA models were
0.861 and 0.958, respectively.

With the use of CoMSIA method, Kumar et al. (2009) were able to investigate
novel Bignelli dihydropyrimidines with potential anticancer activity. The developed
model based on 32 compounds showed a good statistical data – for training set
q2 D 0.51, while for the test set r2 D 0.93.

Raparti et al. in 2009 (Raparti et al. 2009) reported a study based on a novel kNN-
MFA 3D QSAR which was discussed above, where authors synthesized, assessed
for antimycobacterial activity, and investigated by 2D and 3D QSAR approaches
a series of ten compounds (4-(morpholin-4-yl)-N0-(arylidene)benzohydrazides).
Authors were able to get satisfactory for this size of dataset statistical results for
3D QSAR model against M. tuberculosis (Raparti et al. 2009), with r2 D 0.910 and
q2 D 0.507, respectively.

Another kNN-MFA 3D QSAR study was conducted and published by Kishore
Jha et al. in 2010 (Jha et al. 2010). Authors evaluated the antimicrobial activity of 21
compounds by kNN-MFA combined with various selection procedures. As selection
methods, authors were using simulated annealing (SA), genetic algorithms (GA),
and stepwise (SW) forward–backward methods. The developed model showed
satisfactory results for this kind of studies, with q2 D 0.696 and r2

pred D 0.615.
Authors concluded that the 3D QSAR study has shown that less electronegative
substituent would be favorable for the activity, and therefore the future molecules
should be designed with less electronegative group to result in potentially active
molecules.

Thus, recently, Araújo et al. (2011) studied acetylcholine inhibitors (AChEIs) by
application of combined approach, so-called receptor-dependent 3D QSAR (RD 3D
QSAR) where they investigated a series of 60 benzylpiperidine inhibitors of human
acetylcholinesterase. They received two models with r2 D 0.86, q2 D 0.74 and
r2 D 0.90, q2 D 0.75, which were validated by a combined GA-PLS approach. Based
on those models, authors have proposed four new benzylpiperidine derivatives and
predicted the pIC50 for each molecule. The good predicted potency of one of the
benzylpiperidine derivatives indicated a promising potency for this candidate as a
new HuAChE inhibitor (Araújo et al. 2011).

In another similar study, in 2009 Gupta et al. (2009) conducted an interesting
combined study with protein–ligand docking-based 3D QSAR study of HIV-
1 integrase inhibitors. They were using protein–ligand docking to identify a
potential binding mode for 43 inhibitors at HIV-1 IN active site, and best docked
conformation of certain molecule was used as a template for alignment. The docking
was followed by CoMFA and CoMSIA modeling, and authors developed very
good models with r2

cv values of 0.728 and 0.794, respectively, and non-cross-
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validated ones r2
ncv D 0.934 and 0.928. This combined docking-based 3D QSAR

methodology showed really good predictive abilities and can be employed further
in the development of better inhibitors for various proteins.

One more study is worth to discuss where authors applied a combination of
docking and 3D QSAR to reveal the most important structural factors for the
activity. Here, Hu et al. (2009) applied a receptor- and ligand-based 3D QSAR
study for a series of 68 non-nucleoside HIV-1 reverse transcriptase inhibitors (2-
amino-6-arylsulfonylbenzonitriles and their thio and sulfinyl congeners). Authors
were applying docking simulations to position the inhibitors into RT active site
to determine the most probable binding mode and most reliable conformations.
This complex receptor-based and ligand-based alignment procedure and different
alignment modes allowed authors to obtain reliable and predictive CoMFA and
CoMSIA models with cross-validated q2 value of 0.723 and 0.760, respectively.
Authors concluded that the CoMFA steric and CoMSIA hydrophobic fields support
the idea that bulkier and hydrophobic groups are favorable to bioactivity in the
3- and 5-positions of the B (benzene)-ring. At the same time, these groups are
unfavorable in the 4-position. Also, the CoMSIA H-bond donor and acceptor fields
suggest that the sulfide and sulfone inhibitors are more active than the sulfoxide
ones due to H-bonding with protein residues.

It is good to mention here another interesting study where combination of
methods is used, including molecular docking and 3D QSAR to develop a predictive
QSAR model. Moro et al. (2006) suggested the use a combination of molecular
electrostatic potential (MEP) surface properties (autocorrelation vectors) with the
conventional partial least-square (PLS) analysis to produce a robust ligand-based
3D structure–activity relationship (autoMEP/PLS). They applied this approach to
predict human A3 receptor antagonist activities. First of all, the approach was sug-
gested as an efficient and alternative pharmacodynamic-driven filtering method for
small-size virtual libraries. For this, authors generated a small-sized combinatorial
library (841 compounds) that was derived from the scaffold of the known human
A3 antagonist pyrazolo-triazolo-pyrimidines (Moro et al. 2005). This is another
successful example of combined approach of docking and 3D QSAR to investigate
and design active analogue compounds. Authors were using MULTIDOCK code
that is part of MOE suite (Molecular Operating Environment (MOE) 2016) to get
a conformational sampling and then calculate interaction energies using MMFF94
(Halgren 1996) and use it for further steps. The MEPs were derived from a classical
point charge model: the electrostatic potential for each molecule is obtained by
moving a unit positive point charge across the van der Waals surface, and it is
calculated at various points j on this surface (Moro et al. 2006). Authors were able
to test the approach by synthesizing several predicted potent compounds, and they
found that all the newly synthesized compounds are correctly predicted as potent
human A3 antagonists (Moro et al. 2006).

As a continuation of development of pharmacophore- and docking-based meth-
ods for QSAR, the novel PHASE code was developed. This updated code then was
used by Amnerkar and Bhusari (2010) to investigate by 3D QSAR approach the
anticonvulsant activity of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives
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Fig. 4 Common pharmacophore generated from the best PHASE hypothesis. Pharmacophore
features are red sphere for hydrogen bond acceptors (A) with the arrows pointing in the direction
of lone pair, blue sphere for positively charged group (P), and orange torus for aromatic rings (R).
Compound 52 aligned to the pharmacophore for which blue indicates nitrogen, yellow refers to
sulfur, green indicates chlorine, gray indicates carbon, and white refers to hydrogen (Reproduced
with Permission from reference (Amnerkar and Bhusari 2010). Copyright Elsevier, 2010)

of aminobenzothiazole. They received a statistically significant 3D QSAR model
with r2 of 0.922 and q2 of 0.814. The model was analyzed in order to understand the
trends of investigated molecules for their anticonvulsant properties. Authors found
the influence of electron withdrawing, hydrogen bond donor, and negative/positive
ionic and hydrophobic groups to anticonvulsant activity. Authors believe that the
derived 3D QSAR as well as clues for possible structural modifications will be of
interest and significance for the strategic design of more potent molecules in the
benzothiazoles as anticonvulsant agents. The pharmacophore hypothesis generated
from PHASE-based 3D QSAR analysis can be seen in Fig. 4.

Another PHASE application for 3D QSAR study is published by Pulla et al.
(2016). Authors applied a 3D QSAR approach to investigate silent mating-type
information regulation 2 homologue 1 (SIRT1) which is the homologous enzyme of
silent information regulator-2 gene in yeast. SIRT1 was believed to be overexpressed
in many cancers (prostate, colon) and inflammatory disorders (rheumatoid arthritis);
that is why it has good therapeutic importance. Authors conducted both structure-
based and ligand-based drug design strategies with utilizing high-throughput virtual
screening of chemical databases. Then an energy-based pharmacophore was gen-
erated using the crystal structure of SIRT1 bound with a small molecule inhibitor
and compared with a ligand-based pharmacophore model that showed four similar
features. A 3D QSAR model was developed and applied to generated structures.
Among the designed compounds, Lead 17 emerged as a promising SIRT1 inhibitor
with IC50 of 4.34 �M and, at nanomolar concentration (360 nM), attenuated
the proliferation of prostate cancer cells (LnCAP) (Pulla et al. 2016). The 3D
QSAR model was developed using PHASE 3.4 module in Maestro 9.3 software
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package developed by Schrodinger, LLC (Dixon et al. 2006). Docking studies were
executed using Glide 5.8 module (Halgren et al. 2004). Authors were validating
the pharmacophore model by set composed of 1055 compounds, consisting of 1000
decoys and 55 known inhibitors. The drug-like decoy set of 1000 compounds was
obtained from the Glide module (Halgren et al. 2004). A final 3D QSAR model was
developed based on dataset of 79 molecules reported as SIRT1 inhibitors in various
literatures. To develop QSAR model, PHASE module relied on PLS regression
applied to a large set of binary-valued variables. Each independent variable in
the model originated from the grid of cubic volume elements spanning the space
occupied by the training set ligands. Each training ligand in the training set was
represented by binary code consisting of set of bit values (0 or 1) indicating the
volume of elements occupied by van der Waals model of the ligand. Authors
were able to get a very good 3D QSAR model with r2 D 0.953, q2 D 0.908, and
r2

ext D 0.941. A validated 3D QSAR model (for ADHRR 802) authors used to
generate contour maps could help in understanding the importance of functional
groups at specific positions toward biological activity. These insights could be
known by comparing the contour maps of the most and least active compounds, as
shown in Fig. 5 represented in Pulla et al. (2016). The blue and red cubes indicated
the favorable and unfavorable regions, respectively, of the hydrogen bond donor
effect, while light-red and yellow cubes indicated favorable and unfavorable regions,
respectively, of the hydrophobic effect, and the cyan and orange cubes indicated
favorable and unfavorable regions, respectively, of the electron-withdrawing effect.
From Fig. 5a, it can be seen that the blue favorable regions of the hydrogen
bond donor effect were nearer to the donor feature (D5) of the active molecule;
however, it could also be observed that blue boxes were also concentrated at the
amide group beside thiophen, thus illustrating that additional donor groups at these
regions (blue cubes) could increase biological activity. At the same time, in the
inactive molecule, red unfavorable boxes were observed around the donor feature
(D5), inferring the biological inactiveness of the molecule. In the case of the
hydrophobic effect, the light-red color cubes were seen surrounding the hydrophobic
feature (H8, piperidine) of the active molecule, whereas the presence of few yellow
unfavorable cubes indicated that these hydrophobic groups were not in the right
position in the inactive molecule, illustrating the weak biological activity. Next, in
the case of the electron-withdrawing effect of the active molecule, the favorable cyan
cubes were seen around the acceptor feature (A3), and cyan cubes were also seen
near the pyrimidine ring. It inferred that the acceptor features near the pyrimidine
ring could further increase the bioactivity of the molecule. However, in the case of
the inactive molecule, mostly unfavorable orange cubes were observed around the
acceptor feature (A3), illustrating the importance of the electron-withdrawing group
in the activity of lead molecules.

Thus, another new combined docking-based 3D QSAR study (Sun et al. 2010)
was published with the analysis of influenza neuraminidase inhibitors. The study
was based on novel 3D-HoVAIFA method which is based on three-dimensional
holographic vector of atomic interaction field analysis (Zhou et al. 2007). As it was
mentioned above, initially the holographic vector for 3D QSAR was developed by
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Fig. 5 Contour maps of the most active and inactive molecules: (a) the hydrogen bond donor
effect (most active), (b) the least active (blue denotes favorable, red denotes unfavorable), (c) the
hydrophobic effect (most active), (d) the least active (light red denotes favorable, yellow denotes
unfavorable), (e) electron-withdrawing effect (most active), and (f) the least active (cyan denotes
favorable, orange denotes unfavorable) (Reproduced with Permission from ref (Pulla et al. 2016).
Copyright, American Chemical Society, 2016)

Zhou et al. in 2007 (Zhou et al. 2007). The method uses atomic relative distance
and atomic properties on the bases of three common nonbonded (electrostatic,
van der Waals, and hydrophobic) interactions which are directly associated with
bioactivities, and then 3D-HoVAIF method derives multidimensional vectors to
represent molecular steric structural characteristics for further 3D QSAR analysis.
Similarly to previous study, authors conducted a docking study to find the best
docking pose and template for alignment. Then authors were able to get good
models for a large dataset of 124 compounds and received the following correlation
coefficients, r2 D 0.789 and r2

cv D 0.732. Authors claim that 3D-HoVAIFA can
be applicable to molecular structural characterization and bioactivity prediction.
In addition, it was showed that HoVAIFA and docking results are corresponding
(Sun et al. 2010), which illustrates that HoVAIFA is an effective methodology for
characterization of complex interactions of drug molecules.
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One more docking-based 3D QSAR study was published in 2010 by Sakkiah
et al. (2010), where authors conducted 3D QSAR pharmacophore-based vir-
tual screening and molecular docking for the identification of potential HSP90
inhibitors. Authors were using HYPO and HYPOGEN (Li et al. 2000) 3D-based
pharmacophore models. Based on the training set of 16 compounds, they were able
to develop a good model using pharmacophore generation module in Discovery
Studio (Accelrys) and then apply it for test set of 30 compounds. For predicting
activity, the correlation coefficients of the model for training and test sets were 0.93
and 0.91, respectively. Authors then applied the model to virtual screening of about
160,000 compounds (Maybridge and Scaffold databases) and finally selected 1150
compounds for docking studies. Finally, 36 selected compounds were reported that
were showing high activity based on 3D QSAR model and docking analysis. The
developed HYPOGEN pharmacophore model that was used for virtual screening of
160,000 compounds from the databases is represented in Fig. 6.

Recently introduced and discussed previously the CMF approach for 3D QSAR
analysis was successfully applied for several datasets (Baskin and Zhokhova 2013).
Authors applied CMF approach to build 3D QSAR models for eight datasets through
the use of five types of molecular fields (the electrostatic, steric, hydrophobic,
hydrogen bond acceptor and donor ones). The 3D QSAR models were developed for
the following datasets: 114 angiotensin converting enzyme (ACE) inhibitors, 111

Fig. 6 Catalyst HypoGen pharmacophore model, where H and HBA are illustrated in cyan and
green, respectively (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article) (Reproduced with Permission from reference Sakkiah
et al. 2010) Copyright Elsevier, 2010)
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acetylcholinesterase (AChE) inhibitors, 163 ligands for benzodiazepine receptors
(BZR), 322 cyclooxygenase-2 (COX-2) inhibitors, 397 dihydrofolatereductase
(DHFR) inhibitors, 66 glycogen phosphorylase b (GPB) inhibitors, 76 thermolysin
(THER) inhibitors, and 88 thrombine (THR) inhibitors. Authors were able to get
good models and then compare statistical characteristics of the developed models
with the same characteristics built earlier for the same datasets using the most
popular 3D QSAR methods, CoMFA and CoMSIA, based on the use of molecular
fields. Almost for all cases authors received better statistics than in original works.
For example, for ACE inhibitors, CMF approach showed q2 D 0.72, while CoMFA
and CoMSIA showed 0.68 and 0.65, respectively. 3D QSAR for AChE inhibitors
showed for CMF q2 D 0.58, while for CoMFA and CoMSIA, it was 0.52 and 0.48,
respectively. 3D QSAR for DHFR inhibitors showed for CMF q2 D 0.67, while
for CoMFA and CoMSIA, it was only 0.49 and 0.53, respectively. Other datasets
also showed better results. The only one dataset, for BZR receptors, showed not so
high values (q2 D 0.40) but comparable with previous data received by CoMFA and
CoMSIA – 0.32 and 0.41, respectively. As follows from the results presented in this
paper, this particular implementation of the CMF approach provides an appealing
alternative to the traditional lattice-based methodology. This method provides either
comparable or enhanced predictive performance in comparison with state-of-the-
art 3D QSAR methods, such as CoMFA and CoMSIA. Authors also discussed
advantages and disadvantages of this approach. The potential advantages of this
approach result from the ability to approximate electronic molecular structures with
any desirable accuracy level, the ability to leverage the valuable information con-
tained in partial derivatives of molecular fields (otherwise lost upon discretization)
to analyze models and enhance their predictive performance, the ability to apply
integral transforms to molecular fields and models, etc. The most attractive features
of the CMF approach are its versatility and universality. At the same time, of the
most serious limitations of the CMF approach, at least in its present form, comes
from the mere nature of kernel-based machine learning methods. The amount of
computational resources needed to calculate a kernel matrix scales as a square of
the number of compounds in the training set. The mean amount of computational
resources needed to calculate each element of a kernel matrix also scales as a square
of the average number of atoms in molecules. As a result, it becomes impractical
to build 3D QSAR models using a training set with more than 300 medium-sized
compounds (Baskin and Zhokhova 2013).

Another interesting combination approach, Shih et al. (2011) in 2011 proposed
a combination of 3D QSAR methods in order to get better predictivity for the
dataset. Authors proposed for the first time a combination approach to integrate the
pharmacophore (PhModel) (Taha et al. 2008), CoMFA, and CoMSIA models for
B-RAF (RAF family of serine/threonine kinases). The PhModel was implemented
by the program Accelrys Discovery Studio 2.1. First, authors established ten
PhModels and used them to align diverse inhibitor structures for generating the
CoMFA and CoMSIA models. Then the partial least-square (PLS) method was
used and known B-RAF inhibitors to validate the prediction ability of CoMFA
and CoMSIA models. Finally, the goodness of hit (GH) test score was used as a
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benchmark for appraising the prediction ability of CoMFA and CoMSIA models
to screen a compound database. Thus, ten PhModels were generated based on the
27 training set inhibitors. Each PhModel included four features: hydrogen bond
acceptor (A), hydrogen bond donor (D), hydrophobic (HY), and ring aromatic
(RA). The correlation coefficients for ten PhModels were very good and ranged
from 0.964 to 0.902. Authors claim that this approach could be applied to screen
inhibitor databases, optimize inhibitor structures, and identify novelty potent or
specific inhibitors (Shih et al. 2011).

One more combination study for RAF inhibitors is worth to mention, was
performed by Yang et al. (2011) which was applied as a combination of docking,
molecular dynamics (MD), molecular mechanics Poisson–Boltzmann surface area
(MM/PBSA) calculations, and 3D QSAR analysis to investigate the detailed binding
mode between B-RAF kinases with the series of inhibitors and also to find the
key structural features affecting the inhibiting activities. Considering the difficulty
in the accurate estimation of electrostatic interaction, the QM-polarized ligand
docking and GBSA rescoring were applied to predict probable poses of these
inhibitors bound into the active site of B-RAF kinase. To obtain the rational
conformation for developing 3D QSAR models, authors applied the docking-based
conformation selection strategy. Moreover, the detailed interactions were analyzed
on the basis of the results from MD simulation and the free energy calculation for
two inhibitors with much difference in their activity. Authors investigated 61 B-RAF
inhibitors and developed CoMFA and CoMSIA models with r2 D 0.917 and 0.940,
respectively. In result, the structure-based 3D QSAR models provided a further
structural analysis and modifiable information for understanding the SARs of these
inhibitors. The important hydrophobic property of the 3-substitution of B-ring was
required to be type 2 inhibitors. The five substitutable positions of the C-ring could
be further modified. Authors concluded that the results obtained from the combined
computational approach will be helpful for the rational design of novel type 2 RAF
kinase inhibitors.

Recently, a group of computational scientists is proposed to apply a protein–
protein interaction (PPI) analysis to target small molecules. Since currently in
worlds life science, research is going on the booming of interactome studies, a lot
of interactions can be measured in a high-throughput way, taking into account that
large-scale datasets are already available. Studies show that many different types
of interactions can be potential drug targets. This boom of HTS studies greatly
broadens the drug target search space, which makes the drug target discovery dif-
ficult. In this case, computational methods are highly desired to efficiently provide
candidates for further experiments and hold the promise to greatly accelerate the
discovery of novel drug targets. Thus, Wang et al. (2016) published a study where
they suggested a new method, where inhibition of protein–protein interaction (PPI)
analysis offered as a promising source to improve the specificity of drugs with fewer
adverse side effects. They proposed a machine learning method to predict PPI targets
in a genomic-wide scale. Authors developed a computational method, named as
PrePPItar (Wang et al. 2016), to predict PPIs as drug targets by uncovering the
potential associations between drugs and PPIs (Fig. 7). Authors investigated the
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databases and manually constructed a gold-standard positive dataset for drug and
PPI interactions. Their effort leads to a dataset with 227 associations among 63
PPIs and 113 FDA-approved drugs and allowed them to build models and learn
the association rules from the data. Also, authors were able to characterize drugs
by profiling in chemical structure, drug ATC-code annotation, and side-effect space
and represent PPI similarity by a symmetrical S-kernel based on protein amino acid
sequence. At the end, a support vector machine (SVM) is used to predict novel
associations between drugs and PPIs. The PrePPItar method was validated on the
well-established gold-standard dataset. Authors found that all chemical structures,
drug ATC code, and side-effect information are predictive for PPI target. Authors
claim that PrePPItar can serve as a useful tool for PPI target discovery and provide
a general heterogeneous data-integrative framework.

Fig. 7 The proposed flowchart for the PrePPITar. (a) The schematic plot for our PrePPItar method.
PrePPItar applies the kernel fusion method to integrate multiple information about drug, including
chemical structure, ATC code, and drug side effect to detect the interactions between drugs and
PPIs. (b) Collecting known associations between drugs and PPIs as gold-standard positives in
a bipartite graph. (c) Calculating drug–drug and PPI–PPI similarity metrics, where ti; i D 1; 2;
3; 4 are the sequence similarity among proteins. (d) Relating the similarity among drugs and
similarity among PPIs by Kronecker product kernel and applying SVM-based algorithm to predict
the unknown associations between drugs and PPIs (Reproduced with Permission from reference
(Wang et al. 2016). Copyright Oxford University Press, 2016)
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3D QSARs and Combined Docking Studies of Nanostructured
Materials

Nanomaterials are becoming an important component of the modern life and have
been the subject of increasing number of investigations involving various areas of
natural sciences and technology. However, theoretical modeling of physicochemical
and biological activity of these species is still very scarce. The prediction of
properties and activities of “classical” substances via correlating with molecular
descriptors is a well-known procedure, by application QSAR and 3D QSAR
methods. In spite of this, the application of QSAR for the nanomaterials is a very
complicated task, because of “nonclassical” structure of these materials. Here, we
would like to show first applications of the 3D QSAR and docking methods for
nanostructured materials, which are nevertheless possible and can be useful in
predicting their various properties and activities (toxicity).

Thus, one of the first 3D QSAR studies for nanostructured materials was
provided in 2008. Durdagi et al. 2008a have investigated novel fullerene analogues
as potential HIV PR inhibitors. It was the first work where authors analyzed
nanostructured compounds for anti-HIV activity using protein–ligand docking and
3D QSAR approaches. Moreover, authors conducted MD simulations of ligand-free
and the inhibitor bound HIV-1 PR systems to complement some previous studies and
to provide proper input structure of HIV-1 PR in further docking simulations. Then,
five different combinations of stereoelectronic fields of 3D QSAR/CoMSIA models
were obtained from the set of biologically evaluated and computationally designed
fullerene derivatives (where training set D 43 and test set D 6) in order to predict
novel compounds with improved inhibition effect. The best 3D QSAR/CoMSIA
model yielded a cross-validated r2 value of 0.739 and a non-cross-validated r2

value of 0.993. Authors stated that the derived model indicated the importance of
steric (42.6 %), electrostatic (12.7 %), H-bond donor (16.7 %), and H-bond acceptor
(28.0 %) contributions (Fig. 8). In addition, the derived contour plots together with
applied de novo drug design were then used as pilot models for proposing the novel
analogues with enhanced binding affinities. Interestingly, the investigated by authors
the nanostructured compounds have triggered the interest of medicinal chemists to
look for novel fullerene-type HIV-1 PR inhibitors possessing higher bioactivity.
Later this year, authors published a second study for the same type of fullerene-
based nanomaterials (Durdagi et al. 2008b).

The same group published in 2009 another study for fullerene derivatives but
functionalized by amino acids (Durdagi et al. 2009). Authors used in silico screening
approach in order to propose potent fullerene analogues as anti-HIV drugs. Two of
the most promising derivatives showing significant binding scores were subjected
to biological studies that confirmed the efficacy of the new compounds. The results
showed that new leads can be discovered possessing higher bioactivity. Authors
used docking approach together with MD simulations to get the best hits during the
virtual screening.
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Fig. 8 (i) CoMSIA steric/electrostatic contour maps of template compound 23 (template com-
pound; has best binding affinity in training set, left on the figure) and compound 36 (has worst
binding affinity in training set, right on the figure). Sterically favored areas are shown in green color
(contribution level of 80 %). Sterically unfavored areas are shown in yellow color (contribution
level of 20 %). Positive potential favored areas are shown in blue color (contribution level of 80 %).
Positive potential unfavored areas are shown in red color (contribution level of 20 %). (ii) CoMSIA
H-bond donor/H-bond acceptor contour maps of compounds 23 and 36 (on the left and right of the
figure, correspondingly). The individual contributions from the H-bond donor and H-bond acceptor
favored and disfavored levels are fixed at 80 % and 20 %, respectively. The contours for H-bond
donor favored fields have been shown in cyan color, while its disfavored fields have been shown in
purple color. H-bond acceptor favored fields have been shown in orange color, while its disfavored
fields have been shown in white color (Reproduced with Permission from ref (Durdagi et al. 2008a).
Copyright Elsevier, 2008)

In 2011, the same group provided further analysis to design better anti-HIV
fullerene-based inhibitors (Tzoupis et al. 2011). In this study authors employed
a docking technique, two 3D QSAR models, MD simulations and the MM–
PBSA method. In particular, authors investigated (1) hydrogen bonding (H-bond)
interactions between specific fullerene derivatives and the protease, (2) the regions
of HIV-1 PR that play a significant role in binding, (3) protease changes upon
binding, and (4) various contributions to the binding free energy, in order to identify
the most significant of them. The CoMFA and CoMSIA methods were applied too,
to build 3D QSAR models, where good correlation coefficients were received, for
both methods, r2 D 0.842 and 0.928, respectively. Authors claim that the computed
binding free energies are in satisfactory agreement with the experimental results.
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Fig. 9 The binding site interactions. H-bonds formed by the ligand 42 in the binding site (Glide)
(Reproduced with Permission from reference (Ahmed et al. 2013). Copyright, Royal Society of
Chemistry, 2013)

Another group published in 2013 a study that conducted a comprehensive
investigation of fullerene analogues by combined computational approach including
quantum chemical, molecular docking, and 3D descriptors-based QSAR (Ahmed
et al. 2013). Authors stated that the protein–ligand docking studies and improved
structure–activity models have been able both to predict binding affinities for the
set of fullerene-C60 derivatives and to help in finding mechanisms of fullerene
derivative interactions with human immunodeficiency virus type 1 aspartic protease,
HIV-1 PR. Protein–ligand docking revealed several important molecular fragments
that are responsible for the interaction with HIV-1 PR (Fig. 9). In addition, a density
functional theory method has been utilized to identify the optimal geometries and
predict physicochemical parameters of 49 studied compounds. The five-variable
GA-MLRA-based model showed the best predictive ability (r2

train D 0.882 and
r2

test D 0.738), with high internal and external correlation coefficients.
Calvaresi and Zerbetto (2010) published a study where they investigated a

fullerene binding with a set of proteins. Authors investigated about 20 proteins
that are known to modify their activity upon interaction with C60. The set was
examined using PatchDock (Schneidman-Duhovny et al. 2005) software with an
algorithm that appraises quantitatively the interaction of C60 and the surface of
each protein. The redundancy of the set allowed them to establish the predictive
power of the approach that finds explicitly the most probable site where C60 docks
on each protein. About 80 % of the known fullerene-binding proteins fall in the top
10 % of scorers. The close match between the model and experiments vouches for
the accuracy of the model and validates its predictions. Authors identified the sites
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of docking and discussed them in view of the existing experimental data available
for protein � C60 interaction. In addition, authors identified new proteins that can
interact with C60 and discussed for possible future applications as drug targets and
fullerene derivative bioconjugate materials.

Later, Calvaresi and Zerbetto (2011) published another study, where they
investigated the binding of fullerene C60 with 1099 proteins. They one more time
confirmed that hydrophobic pockets of certain proteins can accomodate a carbon
cage either in full or in part. Since the identification of proteins that are able
to discriminate between different cages is an open issue, they were interested in
investigating much larger library than in Calvaresi and Zerbetto (2010). Prediction
of candidates is achieved with an inverse docking procedure that accurately accounts
for (i) van der Waals interactions between the cage and the protein surface, (ii)
desolvation free energy, (iii) shape complementarity, and (iv) minimization of the
number of steric clashes through conformational variations. A set of 1099 protein
structures is divided into four categories that either select C60 or C70 (p-C60 or p-
C70) and either accommodate the cages in the same pocket or in different pockets.
Thus, authors also confirmed the agreement with the experiments, where the KcsA
potassium channel is predicted to have one of the best performances for both
cages.

Recently, in 2015 Xavier et al. (Esposito et al. 2015) published a QSAR study
of decorated carbon nanotube investigation for toxicity using 4D fingerprints. In
this study, authors proposed detailed mechanisms of action, relating to nanotoxicity,
for a series of decorated (functionalized) carbon nanotube complexes based on
previously reported QSAR models. Possible mechanisms of nanotoxicity for six
endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin
along with cell viability, and nitrogen oxide production) have been extracted from
the corresponding optimized QSAR models. The molecular features relevant to each
of the endpoint respective mechanism of action for the decorated nanotubes are also
discussed in the study. Based on the molecular information contained within the
optimal QSAR models for each nanotoxicity endpoint, either the decorator attached
to the nanotube is directly responsible for the expression of a particular activity,
irrespective of the decorator’s 3D geometry and independent of the nanotube, or
those decorators having structures that place the functional groups of the decorators
as far as possible from the nanotube surface most strongly influence the biological
activity.

A docking study, together with comprehensive DFT analysis was conducted
by Saikia et al. (2013). Authors made a simulation to analyze the interaction of
nanomaterials with biomolecular systems, where they performed density functional
calculations on the interaction of pyrazinamide (PZA) drug with functionalized
single-wall CNT (fSWCNT) as a function of nanotube chirality and length, followed
by docking simulation of fSWCNT with pncA protein. The functionalization of
pristine SWCNT that facilitates in enhancing the reactivity of the nanotubes and
formation of such type of nanotube-drug conjugate is thermodynamically feasible.
Docking studies predicted the plausible binding mechanism and suggested that PZA
loaded fSWCNT facilitates in the target-specific binding of PZA within the protein
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following a lock and key mechanism. Authors noticed that no major structural
deformation in the protein was observed after binding with CNT, and the interaction
between ligand and receptor is mainly hydrophobic in nature. Authors anticipate
that these findings may provide new routes toward the drug delivery mechanism by
CNTs with long-term practical implications in tuberculosischemotherapy.

In another study, Turabekova et al. (2014) published a comprehensive study of
carbon nanotube and pristine fullerene interactions with Toll-like receptors (TLRs),
which are responsible for immune response. Having experimental data on hands
and conducting comprehensive protein–ligand investigation, authors were able to
show that CNT and fullerenes can bind to certain TLRs. Authors suggested a
hypothetical model providing the potential mechanistic explanation for immune and
inflammatory responses observed upon exposure to carbon nanoparticles. Specif-
ically, authors performed a theoretical study to analyze CNT and C60 fullerene
interactions with the available X-ray structures of TLR homo- and heterodimer
extracellular domains. This assumption was based on the fact that similar to the
known TLR ligands, both CNTs and fullerenes induce, in cells, the secretion
of certain inflammatory protein mediators, such as interleukins and chemokines.
These proteins are observed within inflammation downstream processes resulting
from the ligand molecule-dependent inhibition or activation of TLR-induced signal
transduction. The computational studies have shown that the internal hydrophobic
pockets of some TLRs might be capable of binding small-sized carbon nanostruc-
tures (5,5 armchair SWCNTs containing 11 carbon atom layers and C60 fullerene).
High binding scores and minor structural alterations induced in TLR ectodomains
upon binding C60 and CNTs further supported the proposed hypothesis (Fig. 10).
Additionally, the proposed hypothesis is strengthened by the indirect experimental

Fig. 10 5,5 CNT-bound TLR1/TLR2 ECDs: (a) 5,5 CNT is bound to the TLR1 and TLR2 ECD
interface dimerization area, (b) aligned structures of TLR2 ECDs before (green carbon atoms)
and after (blue carbon atoms) the impact OPLS2005 refinement upon binding 5,5 CNTs. The
orientation of two parallel entrance loops and the side chains of hydrophobic Phe349, Phe325,
and Leu328 preventing the nanotube from intrusion are shown to be optimized (Reproduced with
Permission from reference (Turabekova et al. 2014). Copyright, Royal Society of Chemistry, 2014)
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findings indicating that CNTs and fullerenes induce an excessive expression of
specific cytokines and chemokines (i.e., IL-8 and MCP1).

Later, this kind of interaction was confirmed by MD simulation provided by
Mozolewska et al. (2014). In this study, authors made an attempt to determine if the
nanotubes could interfere with the innate immune system by interacting with TLRs.
For this purpose, authors used the following TLR structures downloaded from
the RCSB Protein Data Bank: TLR2 (3A7C), TLR4/MD (3FXI), TLR5 (3V47),
TLR3 (2A0Z), and the complexes of TLR1/TLR2 (2Z7X) and TLR2/TLR6 (3A79).
The results of steered molecular dynamics (SMD) simulations have shown that
nanotubes interact very strongly with the binding pockets of some receptors (e.g.,
TLR2), which results in their binding to these sites without substantial use of the
external force.

Concluding Remarks

In this chapter, we discussed 3D QSAR and protein-ligand docking methods,
recent applications of them for conventional organic compounds design and for
nanostructured materials. Despite of all pitfalls, the 3D QSAR approach confirmed
the importance and value in drug design and medicinal chemistry. Moreover, the
combination of 3D QSAR approach with other techniques, including protein–
ligand docking study gives much better improvement in predictions of biologically
active compounds and drug candidates. The development of methods for 3D QSAR
still continues, giving improved predictions for conventional organic compounds.
Thus, we believe that 3D QSAR methods in the near future will be able to
encode and model various organic and nanomaterials for important biological and
physicochemical property improvement.
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