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Synopsis
Ketoacids (KA) are known to preserve muscle mass among patients with chronic kidney disease (CKD) on a low-
protein diet (LPD). The present study was to compare the effects of KA supplemented diet therapy in autophagy and
inflammation in CKD rats’ skeletal muscle. Rats with 5/6 nephrectomy were randomly divided into three groups and
fed with either 11 g/kg/day protein [normal-protein diet (NPD)], 3 g/kg/day protein (LPD) or 3 g/kg/day protein which
including 5% protein plus 1% KA (LPD + KA) for 24 weeks. Sham-operated rats with NPD intake were used as control.
LPD could improve body weight, gastrocnemius muscle mass, as well as gastrocnemius muscle cross-sectional area,
with the effect being more obvious in the LPD + KA group. The autophagy marker LC3 (microtubule-associated
protein 1 light chain 3), p62, Parkin and PTEN induced putative kinase 1 (PINK1) were significantly attenuate in LPD
+ KA group than LPD group. LPD + KA group had the lower total mtDNA (mitochondiral DNA) and cytosol mtDNA,
NACHT-PYD-containing protein 3 (NALP3) inflammasome than LPD group, but its reactive oxygen species (ROS),
caspase-1 and apoptosis-associated speck-like protein containing a CARD (ASC) level was higher. Immunoblotting
showed IL-1β (interleukin-1-beta) was lower in LPD and LPD + KA group than the NPD group, but IL-18 showed no
significant difference among control and CKD group; toll-like receptor signalling-dependent IL-6 was higher in LPD +
KA group than LPD group, but tumor necrosis factor-α (TNF-α) was not significantly changed between LPD + KA and
LPD group. Systematic changes of the four cytokines were different from that of the tissue. Although LPD + KA
could further ameliorate-activated autophagy than LPD, its effect on the activated inflammation state in CKD was not
distinctly. Further study is still required to explore the method of ameliorating inflammation to provide new therapeutic
approaches for CKD protein energy wasting (PEW).
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INTRODUCTION

The number of chronic kidney disease (CKD) patients has been
constantly increasing around the globe. As long-term survival of
CKD patients has been greatly improved thanks to the develop-
ment of dialysis techniques, malnutrition is more prevalent and
serious than ever before. Malnutrition and inflammatory state
positively promote each other in a circle that accelerates arter-
ial lesions and finally results in the malnutrition-inflammation-
atherosclerosis syndrome; increasing mortality. Protein-energy
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wasting (PEW) was proposed to denote concurrent losses in pro-
tein and energy stores [1] and skeletal muscle wasting was the
main characteristic of PEW. Identifying the mechanism of PEW
and exploring interventions for it will help to provide practical
and effective treatment approaches for improving the clinical
prognosis of CKD patients.

Currently, it is believed that protein degradation resulting
from chronic complications of CKD (e.g. metabolic acidosis,
insulin resistance and micro-inflammatory state) has over-
taken protein synthesis as the leading characteristic of skeletal
muscle wasting. Besides the ubiquitin-proteasome system, the
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Figure 1 Body weights and gastrocnemius muscle mass of the experimental groups
*Compared with control group, P < 0.05. #Compared with NPD group, P < 0.05. Abbreviation: Control, sham group with
NPD.

autophagy-lysosomal system presents an alternative system of
degradation in eukaryotic cells. The primary role of autophagy
(here means macrophagy), a highly conserved homoeostatic pro-
cess, is to protect cells under stressful conditions, such as star-
vation and maintaining the amino acid pool essential for sur-
vival. However, if autophagy is excessively induced, it can res-
ult in pathological changes including cell death and apoptosis.
Previously, the activation of autophagy has been demonstrated
in skeletal muscle in a variety of conditions and in disease
states ranging from fasting [2,3], oxidative stress [4], denerva-
tion [5,6] and drug effects [7,8] to some systemic diseases such
as sepsis [9], laminin-deficient congenital muscular dystrophy
(MDC1A) [10] and cancer [11]. In a previous study, this research
team reported the up-regulation of mRNA and protein expres-
sion of microtubule-associated protein 1 light chain 3 (LC3),
Gabarapl1 and Cathepsin L in the skeletal muscle of diabetic
complicated with uraemia rats induced by subtotal nephrectomy
[12].

Mitophagy, a kind of specific mitochondria-degrading auto-
phagy, is capable of clearing abnormal mitochondria and con-
trolling mitochondrial mass. In previous studies, this research
team discovered that CKD could result in activation of mito-
phagy and increased mitochondiral DNA (mtDNA) levels in
skeletal muscle [13]; consistently, we found this time that activ-
ated mitophagy is not capable of clearing abnormal mitochondria
which aggravate skeletal muscle wasting through activation of in-
flammasome mediated by mtDNA and reactive oxygen species
(ROS).

CKD is currently considered a low-grade inflammatory dis-
ease that can further promote protein wasting in skeletal muscle
[14]. Moreover, increased proteolytic activity of caspase-1 in
skeletal muscle by tumour-induced cachexia has been repor-
ted [15]. In addition, Rawat et al. [16] reported activation of
NALP3 inflammasome in dyferlin-deficient skeletal muscle and
proved that, in addition to immune cells, skeletal muscle cells can
also form inflammasome when stimulated under certain condi-
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Figure 2 Urinary protein and biochemical parameters of the experiment groups
Urinary protein, serum, serum creatinine, blood urea nitrogen of Control, NPD, LPD and LPD + KA group. Data are
expressed as mean +− S.D. *Compared with control group, P < 0.05. #Compared with NPD group, P < 0.05.
Abbreviations: Alb, albumin; BUN, blood urea nitrogen; Control, sham group with NPD; sCr, serum creatinine.

tions. Activation of NACHT-PYD-containing protein 3 (NALP3)
could recruitment apoptosis-associated speck-like protein con-
taining a CARD (ASC) and caspase-1, leading to the cascade of
inflammation.

It is well known that protein-restricted diet therapy, as one of
the main therapeutic strategies for CKD, can reduce glomerular
hyper-transfusion and hyper-filtration [17]; whereas α-ketoacid
(KA) supplemented low-protein diet (LPD) therapy can delay
progression of renal disease and maintain nutritional status in
CKD patients [18]. Previous studies from this research team
found in the Ketosteril Research Award 2010 Foundation Pro-
ject that, compared with normal-protein diet (NPD) therapy and
LPD therapy, LPD+KA therapy could relieve skeletal muscle
wasting in rats with diabetic nephropathy and improve the mor-
phological and functional abnormalities of mitochondria [13].
In addition, it was also shown that rats treated with LPD+KA
therapy had a lower level of autophagy in skeletal muscle than

those in the normal protein and LPD groups [12]. These findings
indicated that LPD+KA therapy relieves skeletal muscle wasting,
most probably by reducing levels of activated mitophagy.

In previous studies by this research team, it has been shown that
LPD+KA therapy can inhibit chronic inflammatory reaction in
kidney tissues [19], but there are currently no reports of its effects
on the chronic inflammatory state of skeletal muscle in CKD or
that LPD+KA therapy could improve mitochondrial abnormality
and resolve autophagy up-regulation and skeletal muscle wasting,
inferring that mitophagy, as an adaptive protection mechanism, is
capable of reducing inflammasome activation and consequently
resolve skeletal muscle wasting by removing and clearing abnor-
mal mitochondria. LPD+KA therapy can resolve skeletal muscle
wasting by improving the abnormal mitophagy-inflammasome
pathway.

Therefore, by using rats with 5/6 nephrectomy as the
chronic renal insufficiency model, the present study was in-
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Figure 3 Change of autophagy/mitophagy in the experimental groups
(A) Representative immunoblotting of P62, LC3, PINK1, Parkin and GAPDH. The ratio of P62–GAPDH (B); LC3–GAPDH
(C); PINK1–GAPDH (E); Parkin–GAPDH (F) normalized to the control group of Control, NPD, LPD and LPD + KA group. (D)
Decrease in MMP of the four groups presented as fluorescent JC-1 dye (FLU 6 SEM/mgP). *Compared with control group,
P < 0.05. #Compared with NPD group, P < 0.05. &Compared with LPD group, P < 0.05. Abbreviation: Control, sham group
with NPD.

tended to observe changes in mitophagy, mtDNA, ROS, in-
flammasome and other inflammatory factors in skeletal muscle
in CKD, to compare the effects of LPD+KA therapy in im-
proving such changes and explain the molecular mechan-

ism of LPD+KA therapy for improving skeletal muscle wast-
ing in CKD, thus providing experimental evidence for clin-
ical application of LPD+KA therapy in the treatment of CKD
patients.
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Figure 4 Representative electron micrograph of a section of gastrocnemius muscle in the experiment groups detected
by TEM
Autophagosomes (black arrows) or autolysosomes (white arrows). The autophagy of NPD was significantly higher than that
of the other three groups, LPD + KA group was significantly more attenuated than LPD group. Abbreviation: Control, sham
group with NPD.
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Figure 5 CT value of mtDNA of Control, NPD, LPD and LPD + KA group normalized to control group
Abbreviation: Control, sham group with NPD.

MATERIALS AND METHODS

Animals and experimental design
All the experiments were approved by the Animal Care and Use
Committee of Shanghai Jiao Tong University and were performed
in accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals. Male Sprague–Dawley rats
(200–250 g), purchased from the Chinese Academy of Sciences,
Shanghai, China, were maintained in cages at 22◦C under a 12-
h light/12-h dark cycle and were allowed free access to water.
The animals were randomly assigned to either the 5/6 nephrec-
tomy group or the sham-operated control group. Surgery was
performed according to a previous method [20]. Briefly, after an-
aesthetized with pentobarbital, each animal in the nephrectomy
group underwent 5/6 nephrectomy by surgical resection of the
upper and lower thirds of the left kidney followed by right neph-
rectomy 7 days later. In the sham-operated rats, a sham operation
was performed. On day 7 after the operation, the 5/6 nephrectomy
group was then randomly divided into three groups maintained
on three different diets: normal-protein diet (NPD; 11 g/kg/day
protein, n=15), a LPD (3 g/kg/day protein, n=15) or a LPD
supplemented with KA (3 g/kg/day protein, including 5 % pro-
tein and 1 % KA; LPD + KA, n=15). The sham group with the
intake of the NPD acted as the control (n=10). KA (compound α-
ketoacid) were provided by Fresenius-Kabi. All three diets were
modified from AIN-93 (American Institute of Nutrition Rodent
Diets) and contained the same calorie content [3.8 kcal/g (1 kcal
≡ 4184 J)] and the same vitamins and minerals. Study diets las-
ted for 24 weeks; at the end of the study, nine NPD rats, two
LPD rats and two LPD + KA rats had died, but all controls
survived.

Blood and urine examination
The 24 h urine samples were collected in metabolism cages for
protein analysis. Blood samples were collected after the animals

received anaesthesia for the measurement of the serum albumin,
creatinine and urea nitrogen levels. All assays were performed
according to routine procedures in the Biochemical Laborat-
ory of the Shanghai Jiaotong University Affiliated First People’s
Hospital.

ELISA
Cytokine concentrations were determined by ELISA. The
plasma levels of interleukin tumor necrosis factor-α (TNF-
α), interleukin-6 (IL-6), IL-1β and IL-18 were analysed ac-
cording to manufacturer’s instructions. Hundred microlitres of
each serum was mixed with assay buffer and absorbance was
measured at 420 nm using a Synergy 2 ELISA plate reader
(Bio-Tek).

Histology
Gastrocnemius muscle samples were collected after the anim-
als were killed. Samples were divided into three groups for either
electron microscope(EM), Haematoxylin and Eosin (H&E) stain-
ing or were immediately frozen and kept at –80 ◦C for real-time
PCR and western blotting analyses.

Transmission electron microscope (TEM)
For observation by TEM, muscle samples were fixed in 2 % glut-
araldehyde in 0.1 M cacodylate buffer. Specimens were post-
fixed in 1 % osmium tetroxide in the same buffer, dehydrated
with graded series of ethanol and embedded in epon, as previ-
ously described [21]. Ultrathin sections were stained with uranyl
acetate and lead citrated and were analysed by a Philips CM120
TEM (FEI).

Haematoxylin and Eosin
Muscle samples were cleaned of any visible connective and
adipose tissue and blood and then weighed. The gastrocnemius
muscles were freeze-fixed in liquid-nitrogen-cooled isopentane
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Figure 6 ROS of Control, NPD, LPD, LPD + KA group detected by mitoSOX
Representative image of Control (A), NPD (B), LPD (C) and LPD + KA (D) group. (E) Average of ROS of each group.
*Compared with control group, P < 0.05. #Compared with NPD group, P < 0.05. &Compared with LPD group, P < 0.05.
Abbreviation: Control, sham group with NPD.



c© 2015 Authors. This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution License 3.0. 7



Y.-y. ZHANG and others

Figure 7 Change of inflammatory factor in the experimental groups detected by immunoblotting
(A) Representative immunoblotting of IL-1β, IL-18, IL-6, TNF-α, NALP3, ASC, caspase-1 and GAPDH of Control, NPD,
LPD and LPD + KA group. The ratio of NALP3–GAPDH (B); caspase-1–GAPDH (C); ASC–GAPDH (D); IL-1β–GAPDH (E);
IL-18–GAPDH (F); IL-6–GAPDH (G); TNF-α–GAPDH (H) normalized to the control group of Control, NPD, LPD, LPD + KA group.
*Compared with control group, P < 0.05. #Compared with NPD group, P < 0.05. &Compared with LPD group, P < 0.05.
Abbreviation: Control, sham group with NPD.
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and stored at –70 ◦C, as previously described [22]. Serial trans-
verse sections of 10 mm thickness were stained with H&E. The
myofibre sizes were measured using Image-Pro Plus software
(Media Cybernetics) and the muscle fibre cross sectional area
(CSA) was calculated via the analysis of 50 myofibres of a muscle
from each rat. The fibre CSA was determined from five areas at
40× magnification.

Mitochondrial membrane potential
Mitochondrial membrane potential (MMP) was de-
termined using the JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimidazolcarbocyanine iodide) MMP detection kit
(Beyotime). JC-1 is a cationic fluorescent dye probe (green as
monomer/red as aggregates) which accumulates in mitochon-
dria in a potential-dependent manner. Cells with functional
mitochondria incorporate JC-1 leading to the formation of
JC-1 aggregates, which show a red spectral shift resulting in
higher levels of red fluorescence emission measured in the red
(fluorescence, FL-2 channel) and green monomers (detectable
in FL-1 channel). Cells with collapsed mitochondria contain
mainly green JC-1 monomers. These were performed as previous
described [23]. All of the standards, controls and samples were
read in duplicate.

Western blot analysis
Tissue lysates were prepared from samples frozen in liquid ni-
trogen. The samples were pulverized and lysed in Radio Im-
munoprecipitation Assay (RIPA) buffer for 2 h at 4 ◦C. Lysates
were centrifuged at 10 000 g for 10 min at 4 ◦C and the su-
pernatants were transferred into separate tubes. Equal volumes
(20 mg) of protein were separated using SDS/PAGE and trans-
ferred on to nitrocellulose membranes. The membranes were
incubated overnight at 4 ◦C in 5 % skim milk with primary an-
tibodies. Antibodies used were: PTEN induced putative kinase
1 (PINK1) (Abcam); Parkin (Abcam); LC3 (Abcam); P62 (Ab-
cam); TNF-α (Abcam); IL-6 (Abcam); NALP3 (Abcam); IL-
18 (Abcam); ASC (Santa); caspase-1 (Santa); IL-1β (Santa);
GAPDH (glyceraldehyde-3-phosphate dehydrogenase; Cell Sig-
naling Technology). Membranes were then washed and incub-
ated using a secondary anti-rabbit IgG (Beyotime Institute of
Biotechnology), antibody or anti-mouse IgG (Beyotime Insti-
tute of Biotechnology) or antibody conjugated with horseradish
peroxidase (Beyotime Institute of Biotechnology). Band visual-
ization was performed using an ECL Western Blotting Substrate
kit (Millipore).

ROS
Mitochondrial ROS was measured by MitoSOX (Invitrogen)
staining (5 μM for 15 min at 37 ◦C). To measure mitochondrial
mass, tissues were stained with 25 nM of MitoTracker Green FM
and MitoTracker Deep Red FM (Invitrogen; 15 min at 37 ◦C).
Data were acquired with a BD FACS Canto II flow cytometer
(BD Biosciences) and analysed with FlowJo analytical software
(Treestar).

Quantitative real time PCR
Total genomic DNA was isolated from muscle samples with the
TIANamp Genomic DNA kit (Tiangen) according to the instruc-
tions from the manufacturer. Relative mitochondrial DNA level
was measured by performing quantitative real-time PCR per-
formed in an ABI PRISM7300 Sequence Detection System. Two
independent reactions were performed using established primers
for mitochondrial and nuclear genes. mtDNA copy number was
measured by quantitative PCR and normalized to nuclear DNA
levels in a ratio of cytochrome c oxidase 1 (mtCOI) DNA over
nuclear DNA (encoding 18S ribosomal RNA) [24]. The following
primers were used:

18S forward, 5′-GAGAAACGGCTACCACATCC-3′;
18S reverse, 5′-CACCAGACTTGCCCTCCA-3′;
and COI forward, 5′-CATCCTCCATAGTAGAAGC-3′;
COI reverse, 5′-CCTAAGATAGAAGACACCC-3′.
For measurement of mtDNA in cytosol, the protein concentra-

tion and volume of the supernatant was normalized, followed by
centrifugation at 10 000 g for 30 min at 4 ◦C to produce a super-
natant corresponding to the cytosolic fraction. DNA was isolated
from 200 μl of the cytosolic fraction. Copy number of mtCOI
DNA was measured by quantitative real time PCR using same
volume of the DNA solution.

Statistical analysis
SPSS 17.0 (SPSS) was used for statistical analysis. For data that
were normally distributed, one-way ANOVA was implemented
followed by pairwise comparison by the least significant differ-
ence test. When the experimental groups were unequal and non-
parametric, data were analysed by ANOVA on ranks and then by
Dunn’s method for pairwise comparison. Data are expressed as
means and S.D.s. P < 0.05 was considered as statistically signi-
ficant.

RESULTS AND DISCUSSION

PEW of CKD is closely associated with major adverse clinical
outcomes and results with increased rates in hospitalization and
death in these patients, especially with end-stage renal disease
and maintenance dialysis [25]. Approximately 70 %–75 % of the
patients with end-stage renal disease were found to have PEW
[26]. For decades, protein restriction has been used to alleviate
uremic symptoms, to protect the function of remnant kidneys, as
well as improve complications such as abnormal glucose meta-
bolism and hypertension in patients with CKD [27–29]. In studies
on CKD, several reports have demonstrated that a LPD preven-
ted the progression of renal injury in both humans and animals
[30].With sufficient energy intake and careful monitoring for
dietary compliance, a LPD is nutritionally safe in patients with
early CKD. KA capture excess nitrogen residues and utilize these
residues for essential amino acid production. Thus, nitrogen in-
take may be restricted and endogenous urea formation reduced.
Furthermore, if there is a sufficient amount of essential amino
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acids, an accumulation of non-excreted, potentially toxic ions
and metabolic products arising from the breakdown of foods
rich in protein may be avoided [31]. Several studies report that
the keto-diet could also slow the rate of decline in renal func-
tion, with better outcomes after the initiation of dialysis [32–34].
Results of a single-centre randomized controlled trial addressing
the rate of CKD progression revealed a 57 % slower decline in
renal function with the keto-diet compared with a conventional
LPD. The keto-diet allowed the safe management of selected pa-
tients with stages 4–5 CKD, delaying dialysis for almost 1 year,
with a major impact on patient quality of life and health expendit-
ures [35]. Previous animal studies found that the addition of KA
to an LPD prevents weight loss and completely normalizes serum
albumin levels, indicating that LPD supplemented with KA can
maintain nutritional status [36], ameliorating protein malnutrition
and oxidative stress injury in remnant kidney tissue [37].

Ketoacid treatment could further improve body
weight and gastrocnemius muscle atrophy caused
by CKD than LPD
A low body mass index is associated with a poor outcome and
a high risk of death [38]. The present study found that the body
weights and gastrocnemius muscle mass of rats from the CKD
groups were significantly lower than those of the control group.
Among the CKD groups, the body weights and gastrocnemius
muscle mass in the NPD group were the lowest, which was higher
in LPD + KA group than LPD group, but the difference was not
significant. The cross-sectional area of muscle fibre was con-
sidered as the best indicator for muscle atrophy, thus avoiding
potential confounding factors related to changes in extracellular
space. The mean cross-sectional area of NPD group was 56 %
lower than the control group. Fibre atrophy was attenuated in the
LPD and LPD + KA group. LPD + KA group was higher than
LPD group, but the difference was not significant (Figure 1).

Ketoacid treatment could further improve urinary
protein and biochemical parameters
Serum albumin, a biochemical indicator in the diagnosis of PEW,
is a strong predictor of mortality in maintenance haemodialysis
patients [39]. Serum albumin was lower in the CKD groups than
the control group. Among the CKD groups, the LPD group was
lower than NPD group, LPD + KA group was higher than the
LPD group, but differences were not significant. Blood urea nitro-
gen and creatinine were highest in the NPD group and reduced in
the LPD group; the LPD + KA group had the lowest values, but
the difference was not significant among CKD groups. Urinary
protein was found to be highest in the NPD group, significantly
decreased in the LPD group and lowest in the LPD + KA group
(Figure 2).

Ketoacid treatment could further improve
autophagy/mitophagy in gastrocnemius muscle
In autophagy–lysosomal pathway, p62 is an ubiquitin-binding
scaffold protein that directly binds to LC3 to facilitate ubiquit-
inated protein aggregates degradation. Immunoblotting showed

that p62 and LC3 increased in the CKD groups, among which,
p62 and LC3 were distinctly higher in the NPD group than the
control group, but were lower in LPD group, although p62 did
not change significantly. In addition, KA supplementation fur-
ther reduced the p62 and LC3, but the difference was also not
significant (Figures 3A–3C).

Mitochondria depolarization, a decrease in MMP, is a marker
of the initiation of mitophagy. The NPD group showed significant
decrease in MMP than the control group, LPD could attenuate the
decrease in MMP, whereas LPD + KA could further decrease
MMP (Figure 3D). As is known, mitochondrial-localized PINK1,
which is normally undergoes rapid degradation, is stabilized on
the outer mitochondrial membrane (OMM) when mitochondria
are depolarized [40]. Accumulated PINK1 recruits cytosolic Par-
kin on to depolarized mitochondria, resulting in activation of its
E3 activity and Parkin then ubiquitinates mitochondrial substrate.
The phosphorylation of substrates by PINK1 primes protein of
OMM to either interact with Parkin, thus sequestering cytosolic
Parkin to the mitochondria or to be ubiquitinated by Parkin [41].
Parkin and PINK1 were highest in the NPD group and decreased
in the LPD group, although the difference was not significant.
KA supplementation further reduced Parkin and PINK1 and the
difference between NPD group and LPD + KA group was sig-
nificant (Figures 3E and 3F).

As to the TEM images, we found distinctly more autophago-
some or autolysosome in NPD group than control group, but in
the LPD group the autophagosome or autolysosome were sig-
nificantly decreased and further decreased in the LPD + KA
group, with the LPD + KA group similar to the control group
(Figure 4).

Effects of ketoacid treatment on inflammation
state
Although insufficient food intake (true under-nutrition) due to
poor appetite and dietary restrictions contributes to these prob-
lems, there are features of the syndrome that cannot be explained
by under-nutrition alone. Many contributing causes are directly
related to kidney disease, including increased resting energy ex-
penditure, persistent inflammation, acidosis, multiple endocrine
disorders and the dialysis procedure itself and muscle wasting
is considered one of the most valid markers of PEW in CKD,
associated with inflammation and increased mortality [42].

As the generator of ATP and the main site that produces ROS,
mitochondria are easily damaged due to change of environment
inside and outside cells. In addition, abnormal mitochondria lead
to cell injury through a disorder of energy metabolism, oxidation
disorder, ROS and mtDNA released to cytosol. Recent research
highlighted that mitochondria-produced ROS could promote re-
lease of mtDNA into the cytoplasm [24], and activation of inflam-
masome to mediate inflammatory reactions [43]. In the present
study, total mtDNA and mtDNA released into cytosol was higher
in the NPD group compared with control group, LPD group was
lower than the NPD group, whereas KA supplement further re-
duced mtDNA (Figure 5). ROS was higher in the NPD group than
control group, the LPD group was lower than the NPD group,



10 c© 2015 Authors. This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution License 3.0.



LPD with keto-acids in 5/6 nephrectomized rats

Figure 8 Change of inflammatory factor in the experimental groups detected by ELISA IL-1β (A); IL-18 (B); IL-6 (C);
TNF-α(D) of Control, NPD, LPD and LPD + KA group.
*Compared with control group, P < 0.05. #Compared with NPD group, P < 0.05. &Compared with LPD group, P < 0.05.
Abbreviation: Control, sham group with NPD.

whereas KA supplement increased ROS again and the difference
was significant between the LPD + KA and the LPD groups,
but remained significantly lower than the NPD group (Figure 6).
We further studied NALP3 inflammasome and caspase-1 and
found they were higher in the NPD group compared with control
group, the LPD group was lower than the NPD group, whereas
KA supplement further reduced NALP3 inflammasome but not
caspase-1; but ASC showed a slight difference (Figures 7A–7C).
ASC was lower in NPD group and further decreased in LPD
group, but distinctly increased in LPD + KA group (Figure 7D).

Inflammasome is a molecular platform for activation of
caspase-1, which, when intracellular signals identify danger or
microbial infection, becomes activated by binding with inflam-
masome to cleave such precursors of inflammatory factors as
pro-IL-1β and pro-IL-18 resulting in secretion of ‘mature’ IL-1β

and IL-18, consequently promoting the inflammatory cascade
[43]. In the present study, immunoblotting showed IL-1β was
higher in the NPD group, was lower in LPD and LPD + KA
than the NPD group; IL-18 gradually increased among control,
NPD, LPD and LPD + KA group, but there’s no significant
difference(Figures 7E and 7F); the secretion of IL-6 or TNF-α,
which depends on toll-like receptor signalling, were not similar
with that of IL-1β and IL-18 (Figures 7G and 7H). IL-6 was

lowest in NPD group, higher in LPD + KA group than LPD
group, but the change was not significant. TNF-α was highest in
NPD group, lower in LPD + KA group than LPD group, but
the change was not significant. Systematic changes were slightly
different from those seen in tissue as shown by the ELISA results:
IL-1β was highest in NPD group, LPD + KA group was a little
higher than the LPD group, but the difference was not significant.
IL-18 was highest in NPD group, was a little lower in LPD + KA
group than the LPD group, but the difference was not significant
(Figures 8A and 8B). Meanwhile, IL-6 and TNF-α did not have
a similar change, they gradually increased among control, NPD,
LPD and LPD + KA group, but there’s no significant difference
between CKD groups (Figures 8C and 8D).

In summary, the present study demonstrated that auto-
phagy/mitophagy was increased and inflammation was aggrav-
ated in skeletal muscle in CKD rats. In addition, a LPD supple-
mented with KA improved the loss in muscle mass and blocked
the activation of autophagy/mitophagy and inflammation in the
skeletal muscle of CKD rats. Thus, these findings may provide
relevant preclinical data for the use of a LPD supplemented
with KA in patients with CKD. Besides inflammation, acidosis
could also lead to muscle atrophy, Marino et al. [44] found that
acute acidic stress stimulates a protective autophagic response in
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melanoma cells, which may also be a new therapy perspective to
CKD muscle atrophy.
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