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Kidney injury caused by anticancer agents is a common problem that can interfere with and affect the dose intensity of anticancer 
therapy, thus restricting patient survival. Recent advances in targeted and immunotherapeutic agents have transformed the land-
scape of medical oncology, and these agents have been widely employed in clinical practice. While typically associated with favorable 
toxicity profiles, several novel anticancer drugs present distinctive nephrotoxicities. It remains urgent to closely monitor renal injuries 
associated with these agents, and medical practitioners should be familiar with general principles for managing nephrotoxicity associ-
ated with novel cancer drugs. This review provides an in-depth investigation of the literature and guidelines regarding the prevalence, 
clinical presentations, mechanisms, and management of nephrotoxicity for each drug. 
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Introduction 

In recent decades, advances in cancer chemotherapeutics 

have improved both the survival and quality of life of pa-

tients with cancer. Novel chemotherapeutic agents, such as 

targeted molecular agents and immunotherapeutics, have 

been developed and widely adopted in clinical practice 

[1,2]. Compared to cytotoxic agents, these drugs present 

fewer conventional adverse events such as alopecia, nausea/

vomiting, fatigue, and bone marrow suppression. However, 

drug-induced kidney injury remains a frequent challenge. 

Review Article
Kidney Res Clin Pract 2021;40(3):344-354
pISSN: 2211-9132 • eISSN: 2211-9140
https://doi.org/10.23876/j.krcp.21.037

A variety of renal complications can occur among patients 

with malignancy, and these drugs can affect every structural 

component of the kidney, including the glomerulus, tubules, 

interstitium, or renal microvasculature via distinct mecha-

nisms, presenting with clinical manifestations ranging from 

asymptomatic elevation of serum biochemical markers (e.g., 

creatinine or cystatin C) and electrolyte imbalances to acute 

kidney injury (AKI) or chronic kidney disease necessitating 

renal replacement therapy [3]. Furthermore, the nephrotoxic 

potential of these agents may limit their therapeutic efficacy 

and increase patient morbidity and mortality. Thus, under-
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standing the nephrotoxicity of cancer therapeutics is critical 

for effectively managing oncologic patients. 

The mechanisms underlying drug-induced nephrotox-

icity associated with most cancer therapeutic drugs have 

not been thoroughly investigated or established. Hence, 

generating appropriate strategies to prevent or minimize 

nephrotoxic injuries, and to maintain the dose intensity of 

agents, can be challenging. In the present review, we collate 

the incidence, risk factors, clinical features, and manage-

ment of drug-related nephrotoxicity of specific anticancer 

drugs based on the currently available literature, focusing on 

targeted molecular therapies and immunotherapies. With 

the growing usage of novel cancer therapies, oncologists and 

nephrologists should be aware of the attributes and charac-

teristics of each chemotherapeutic drug. Table 1 summariz-

es the indications, mechanisms of action, and types of renal 

involvement of novel anticancer drugs.  

Targeted therapy-induced nephrotoxicity 

Molecular targeting anticancer therapies have been devel-

oped to exploit the oncogenic addictive nature of cancer and 

explicitly block the growth and spread of cancer by inhibit-

ing specific molecules or pathways. Typically, these agents 

are associated with higher response rates than those by cyto-

toxic agents, with fewer adverse events. However, they have 

also been associated with various renal injuries. 

Epidermal growth factor receptor inhibitors 

Epidermal growth factor receptor (EGFR) is a transmem-

brane protein, and the binding of EGFR to its ligand results 

in phosphorylation of the EGFR tyrosine kinase domain, 

thus activating downstream pathways [4]. The most widely 

used agents that interfere with EGFR pathways are EGFR 

Table 1. Novel cancer therapeutics and their renal manifestations

Drug Target or mode of 
action U.S. FDA-approved indication Renal manifestations

Need for dosage
adjustment in renal 

insufficiency

Gefitinib, erlotinib, afatinib, 
osimertinib, dacomitinib

EGFR TKI NSCLC Minimal change disease, mem-
branous nephropathy (rare)

No

Cetuximab, panitumumab EGFR mAb Head and neck cancer, col-
orectal cancer

Hypomagnesemia No

Crizotinib, ceritinib, brigatinib, 
alectinib, lorlatinib

ALK TKI NSCLC Renal cyst (crizotinib), pseudo 
or true AKI, Acute tubular 
necrosis

Yes in severe cases

Imatinib BCR-ABL and PDGFR 
TKI

Chronic myelogenous leuke-
mia, gastrointestinal stromal 
tumor

AKI Yes

Dasatinib BCR-ABL and PDGFR, 
VEGF TKI

Chronic myelogenous leukemia AKI, proteinuria, TMA No

Bevacizumab, ramucirumab, 
aflibercept

VEGF ligand binding 
inhibition

Colorectal cancer, NSCLC Proteinuria, TMA, hypertension, 
AKI, glomerulonephropathy

No

Sunitinib, sorafenib, axitinib, 
pazopanib

VEGF receptor TKI RCC, hepatocellular carcinoma Proteinuria, hypertension, AKI, 
glomerulonephropathy, TMA

No

Everolimus, temsirolimus mTOR inhibitor RCC, breast cancer, neuroen-
docrine tumor

Proteinuria, hypertension, AKI, 
glomerulonephropathy, acute 
tubular necrosis

No

Dabrafenib, vemurafenib BRAF inhibitor Melanoma AKI, hypokalemia, hyponatremia No

Pembrolizumab, nivolumab PD-1 inhibitor NSCLC, SCLC, melanoma, RCC, 
bladder cancer, and so on

AKI, glomerulonephropathy 
acute interstitial nephritis

No

Atezolizumab, durvalumab, 
avelumab

PD-L1 inhibitor NSCLC, SCLC, RCC, bladder 
cancer, and so on

AKI, glomerulonephropathy 
acute interstitial nephritis

No

Ipilimumab CTLA-4 inhibitor Melanoma, NSCLC, RCC AKI, glomerulonephropathy 
acute interstitial nephritis

No

AKI, acute kidney injury; ALK, anaplastic lymphoma kinase; BCR-ABL, breakpoint cluster region-Abelson leukemia; BRAF, v-Raf murine sarcoma viral onco-
gene homolog B; CTLA-4, cytotoxic T-lymphocyte antigen-4; EGFR, epidermal growth factor receptor; mAb, monoclonal antibody; mTOR, mammalian target 
of rapamycin; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein-1; PD-L1, programmed death-ligand 1; PDGFR, platelet-derived 
growth factor receptor; RCC, renal cell carcinoma; SCLC, small cell lung cancer; TKI, tyrosine kinase inhibitor; TMA, thrombotic microangiopathy; U.S. FDA, U.S. 
Food and Drug Administration; VEGF, vascular endothelial growth factor.
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tyrosine kinase inhibitors (EGFR-TKIs) targeting EGFR mu-

tations in non-small cell lung cancer (NSCLC), including 

gefitinib, erlotinib, afatinib, dacomitinib, osimertinib, and 

the recently developed lazertinib [5]. EGFR mutations re-

portedly account for more than 40% of Asian NSCLC cases 

and approximately 20% of NSCLC cases in Western coun-

tries [6]. EGFR-TKIs predominantly undergo hepatic metab-

olism, with less than 4% undergoing renal excretion; thus, 

these agents can be safely used in patients with decreased 

renal function without necessitating dose adjustment [7,8]. 

In some case reports, these drug families have been safely 

used in patients with end-stage renal disease receiving he-

modialysis [9,10]. Despite their excellent safety profile, rare 

glomerular injuries such as minimal change disease and 

membranous nephropathy associated with gefitinib have 

been reported in a case report series [11,12]. Although these 

events were mainly reported in Asian patients, whether eth-

nic differences or specific EGFR-TKIs can be linked to these 

events remains unknown. 

EGFR monoclonal antibodies targeting EGFR, such as 

cetuximab, panitumumab, or necitumumab, are indicated 

in patients with colon cancer, NSCLC, and head and neck 

squamous cell carcinoma; typically, these agents are not 

associated with a decline in renal function [13]. However, 

EGFR monoclonal antibodies are well known for their ca-

pacity to induce magnesium wasting as these agents prevent 

EGFR activation in the distal tubule, thus resulting in renal 

magnesium wasting [14]. One meta-analysis study (n = 

3,081) reported that the overall incidence of hypomagnese-

mia in patients treated with cetuximab was 36%, presenting 

grade 3 or more hypomagnesemia (5.6%) [15]. Furthermore, 

the frequency of hypomagnesemia was reportedly higher 

with panitumumab therapy and was associated with other 

adverse events such as diarrhea or dehydration. However, 

hypomagnesemia was not related to serious irreversible 

complications [16]. 

Anaplastic lymphoma kinase inhibitors 

Anaplastic lymphoma kinase (ALK) fusions have been ob-

served in various malignancies, including NSCLC, Hodgkin 

lymphoma, anaplastic large-cell lymphoma, and sarcoma. 

ALK fusions have been observed in 4% to 6% of NSCLC cas-

es, and the advent of ALK inhibitors has profoundly altered 

the management of ALK-positive NSCLC. Currently, ALK 

inhibitors approved by the U.S. Food and Drug Administra-

tion (FDA) include crizotinib, ceritinib, alectinib, brigatinib, 

and lorlatinib, and these agents are known to be associated 

with renal cysts, pseudo or true AKI, peripheral edema, and 

hypophosphatemia. 

Although the mechanism implicated in the growth of renal 

cysts remains to be clarified, crizotinib has been shown to 

result in renal cysts and to induce renal cyst progression. Ac-

cording to a safety database of 1,375 patients, 9% of patients 

treated with crizotinib acquired new cysts within 6 months 

of treatment initiation [17]. Furthermore, 2% of patients 

with preexisting cysts developed new cysts or experienced 

enlargement of preexisting cysts. Additionally, the risk of 

renal cyst formation or progression was increased in Korean 

patients [17]. As these phenomena have not been observed 

with other ALK inhibitors, including ceritinib, brigatinib, and 

lorlatinib, they have been considered specific to crizotinib. 

However, a recent case described alectinib usage and renal 

cyst development [18]. As these lesions can be easily mistak-

en for lung cancer progression or development of primary 

renal cell carcinoma (RCC), clinical awareness is essential to 

avoid cessation of an otherwise efficacious drug. Generally, 

close monitoring of renal cyst development is recommend-

ed without dose adjustment or interruption, and most pa-

tients can continue ALK inhibitor treatment. 

Another interesting observation related to ALK inhibitors 

is the presence of pseudo or true AKI. A large retrospective 

analysis of 1,868 patients reported an acute decline in renal 

function within 2 weeks of crizotinib initiation, with minimal 

cumulative effects and was mostly reversible after treatment 

discontinuation [19]. Camidge et al. [20] suggested that the 

decline in creatinine clearance reflects creatinine excretion 

rather than true renal injury, thus termed pseudo AKI. An 

in vitro study demonstrated that crizotinib impeded renal 

creatinine excretion by the organic cation transporter 2 in 

the proximal tubule [21]. Some patients demonstrate normal 

glomerular filtration rates when non-creatinine-based mea-

surements (iothalamate assessment) of glomerular filtra-

tion rate are performed [20]. Therefore, most patients with 

elevated serum creatinine levels can continue crizotinib 

without dose adjustment under close monitoring. Howev-

er, ALK-TKIs can also induce true kidney injury associated 

with acute tubular necrosis; thus, the use of a non-creati-

nine-based assessment of renal function should be consid-

ered before the final decision [22,23]. 
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Breakpoint cluster region-Abelson leukemia and KIT tyro-
sine kinase inhibitors 

Imatinib mesylate was the first approved TKI that targets the 

gene product of breakpoint cluster region-Abelson leukemia 

(BCR-ABL) in chronic myeloid leukemia, with additional 

activity on KIT and platelet-derived growth factor receptor 

(PDGFR). Several cases of imatinib-related nephrotoxicity 

have been reported [24]. Two possible mechanisms have 

been proposed; tumor lysis syndrome and toxic tubular 

damage, and tubular damage possibly associated with PDG-

FR inhibition by imatinib. Among 105 patients treated with 

imatinib and a median follow-up of 4.5 years, 7% of patients 

reportedly experienced AKI, with 12% of patients presenting 

with chronic kidney disease [25]. Treatment duration may be 

a determinant of the declining glomerular filtration rate. On-

cologists and nephrologists should be aware that long-term 

treatment with imatinib may cause an irreversible and clin-

ically significant decrease in the glomerular filtration rate, 

as well as chronic kidney disease. Close attention should be 

paid to avoid the concomitant use of nephrotoxic agents and 

dehydrating conditions, and clinicians in charge of these pa-

tients should regularly monitor renal function. 

Dasatinib, a second-generation TKI indicated for chronic 

myelogenous leukemia, is known to inhibit vascular en-

dothelial growth factor (VEGF), along with BCR-ABL and 

PDGFR. In a phase I trial (n = 33), 12% of patients developed 

proteinuria, with 3% presenting grades 3 and 4; the pro-

posed underlying mechanisms include VEGF co-inhibition 

or podocyte disruption [26–28]. Ochiai et al. [29] reported 

that dasatinib induced nephrotic syndrome, with complete 

recovery observed after switching to nilotinib. Switching to 

imatinib or nilotinib, which are believed to be unrelated to 

proteinuria development, is currently a popular manage-

ment strategy for dasatinib-associated proteinuria. 

Vascular endothelial growth factor inhibitors 

VEGF A and VEGF receptors (VEGFR) play a major role in 

angiogenesis, promoting cancer cell proliferation, migra-

tion, and invasion. There are two kinds of VEGF pathway 

inhibitors: VEGF ligand inhibitors, such as bevacizumab, ra-

mucirumab, and aflibercept; and tyrosine kinase inhibitors 

that block the VEGFR intracellular kinase domain, including 

sunitinib, sorafenib, and axitinib. Various renal effects have 

been observed following treatment with VEGF pathway in-

hibitors.  

Notably, the occurrence of proteinuria after inhibiting 

VEGF signaling pathways represents the importance of the 

VEGF pathway in normal kidney functions. Both monoclo-

nal antibodies and TKIs are known to induce proteinuria, 

with frequency and severity differing slightly between drugs. 

Among these agents, bevacizumab has been extensively 

investigated, and frequencies of all proteinuria grades were 

21% to 62%, with individuals presenting with grade 3 or 

more proteinuria comprising 2% to 6.5% [30–32]. The severi-

ty of proteinuria appears to be dose-dependent and general-

ly reversible. However, persistent proteinuria is not unusual. 

Thus, in the case of nephrotic syndrome, bevacizumab must 

be discontinued permanently [30,33,34]. Underlying diseas-

es, such as chronic kidney disease and RCC, may increase 

the risk of proteinuria. Furthermore, the combination of cy-

totoxic chemotherapy may worsen the degree of proteinuria. 

Regular monitoring via urinary analysis of proteinuria prior 

to each cycle is recommended [34]. Table 2 summarizes the 

management of proteinuria. Common glomerulopathies 

associated with VEGF inhibition include intraglomerular 

thrombotic microangiopathy, minimal change disease, and 

focal segmental glomerulosclerosis (FSGS) [35]. The use of 

angiotensin receptor blockers or angiotensin-converting 

enzyme inhibitors may be recommended for renoprotec-

tion. However, these agents have not been investigated in 

randomized placebo-controlled prospective trials for the 

management of VEGF inhibitor-associated proteinuria or 

glomerulonephropathy [34]. 

Hypertension has been observed in 8% to 36% of patients, 

with grade 3 or 4 hypertension ranging from 1.8% to 22% 

[32,36,37]. Increased risk of hypertension might be dose-de-

pendent and associated with cancer types such as RCC, 

NSCLC, and pancreatic cancer [37]. Recent data suggest 

that patients who develop hypertension during VEGF inhi-

bition might experience more effective VEGF antagonism, 

resulting in superior anticancer activity. The development 

of hypertension is associated with better tumor control and 

survival [38–40]. The management of hypertension is sum-

marized in Table 2, and blood pressure should be monitored 

and managed when hypertension is detected [34]. Except 

for patients in hypertensive crisis, clinicians should attempt 

continuing VEGF inhibitor treatment without interruption 

by administering suitable antihypertensive drugs. There are 
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no evidence-based guidelines for selecting the most appro-

priate antihypertensive agents to manage and treat VEGF 

inhibitor-induced hypertension [41]. 

Mammalian target of rapamycin inhibitors 

A serine/threonine protein kinase, termed mammalian tar-

get of rapamycin (mTOR), is implicated in RCC [42]. mTOR 

inhibitors, everolimus and temsirolimus, are known to be 

associated with proteinuria, hypertension, and renal failure, 

and their proposed mechanisms include VEGF pathway dis-

ruption [43]. Large prospective everolimus studies reported 

proteinuria ranging from 10% to 14% and grade 3 or more 

of proteinuria occurred approximately 1% or 2% [44,45]. 

However, there have been no reports of nephrotic syndrome. 

These studies also reported that the frequencies of all grades 

of hypertension were 8% to 10% and that patients with hy-

pertension grade 3 or more comprised 1% to 4%. In the case 

of temsirolimus, the incidence of proteinuria has not been 

formally reported, but Izzedine et al. [46] reported four pa-

tients with acute kidney injuries, along with biopsy-proven 

acute tubular necrosis during mTOR inhibitor treatment 

with everolimus and temsirolimus. Moreover, FSGS was ob-

served in a patient receiving temsirolimus [47]. Worsening 

AKI was reported in 57% of patients (with grade 3 to 4 AKI 

in approximately 3% of patients) in temsirolimus treatment 

[48]. As patients with RCC may be elderly and many have 

undergone previous nephrectomy, such patients are at high 

risk of developing renal failure. Thus, although the incidence 

is low and most cases are mild, regular monitoring of high 

blood pressure, proteinuria, and worsening renal function 

are recommended for mTOR inhibitor treatment, especially 

in patients with RCC.  

The BRAF inhibitor  

The v-Raf murine sarcoma viral oncogene homolog B 

(BRAF), one of three members of the RAF kinase family, 

plays an essential role in the carcinogenesis pathway [49]. 

The BRAFV600E mutation, which substitutes glutamic acid for 

Table 2. Guidelines for the management of proteinuria and hypertension in patients receiving VEGF inhibitors
Variable Grade* Description Management

Proteinuria 1 1+ proteinuria; Continue VEGF inhibitors

urinary protein ≥ ULN to <1.0 g/24 hr

2 2+ and 3+ proteinuria; Give VEGF inhibitors and collect 24-hr urine

urinary protein 1.0 to <3.5 g/24 hr Resume VEGF inhibitor if less than 2 g/24 hr

If 2 g/24 hr or more, discontinue VEGF inhibitor for 3 mo

3 4+ proteinuria; Collect 24-hr urine

urinary protein ≥ 3.5 g/24 hr Discontinue in case of 3.5 g/24 hr or more

Hypertension 1 SBP 120–139 mmHg or DBP 80–89 mmHg Continue VEGF inhibitors

2 SBP 140–159 mmHg or DBP 90–99 mmHg if previously 
WNL;

Continue VEGF inhibitors with antihypertensive agents

change in baseline medical intervention indicated;

recurrent or persistent (≥24 hr);

symptomatic increase by >20 mmHg (DBP) or to 
>140/90 mmHg;

monotherapy indicated initiated

3 SBP ≥ 160 mmHg or DBP ≥ 100 mmHg;
medical intervention indicated;
more than one drug or more intensive therapy than previ-

ously used indicated

Hold VEGF inhibitors and control hypertension with antihy-
pertensive agents

Resume VEGF inhibitors if grade 2 or less hypertension

4 Life-threatening consequences (e.g., malignant hyperten-
sion, transient or permanent neurologic deficit, hyper-
tensive crisis);

Discontinue VEGF inhibitors and control hypertension with 
antihypertensive agents

urgent intervention indicated

*Grading follows the National Cancer Institute-Common Toxicity Criteria (NCI-CTC) version 5.0.
DBP, diastolic blood pressure; SBP, systolic blood pressure; ULN, upper limit of normal; VEGF, vascular endothelial growth factor; WNL, within normal limits.
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valine at codon 600, accounts for 40% to 60% of melanoma 

and 1% of NSCLC cases [50,51]. Dabrafenib and vemurafenib 

are standard treatments for metastatic BRAFV600E-mutant 

melanoma [52]. Although renal insufficiency has not been 

reported in large prospective trials and the true incidence 

might be very low, AKI related to vemurafenib has been not-

ed in several case series [53–55]. The Food and Drug Admin-

istration Adverse Event Reporting System (FAERS) database, 

maintained by the U.S. FDA, has recorded 132 and 13 AKI 

cases following treatment with vemurafenib and dabrafenib, 

respectively, between 2011 and 2014 [56]. Vemurafenib 

seems to induce greater nephrotoxicity than dabrafenib. Hy-

pokalemia and hyponatremia were also observed at an ex-

tremely low frequency. Based on available data, renal func-

tion should be monitored during BRAF inhibitor treatment. 

Nephrotoxicity of immunotherapies 

The expanding use of immune checkpoint inhibitors (ICIs), 

including programmed cell death protein-1 (PD-1)/pro-

grammed death-ligand 1 (PD-L1) inhibitors and cytotoxic 

T-lymphocyte antigen-4 (CTLA-4) inhibitors, has altered the 

treatment paradigms for several cancer types [57]. Compared 

with conventional cytotoxic chemotherapy, immunotherapy 

has a favorable safety profile, with most patients experienc-

ing only mild adverse events. However, unusual phenomena 

have been observed—so-called immune-related adverse 

events (irAEs)—including immune-mediated pneumonitis, 

hypothyroidism, hyperthyroidism, infusion reaction, colitis, 

myositis, and rashes [58]. Generally, the incidence and sever-

ity of irAEs are higher with CTLA-4 inhibitor monotherapy 

and ICI combination than those with PD-1/PD-L1 blockade 

monotherapy [59]. This autoimmune activity also involves 

the kidneys, but at a lower incidence than other organs, such 

as the thyroid, lung, or colon. Renal irAEs include AKI, pro-

teinuria, and electrolyte imbalance [60]. In a meta-analysis of 

11,482 patients in 48 PD-1 inhibitor clinical trials, the overall 

AKI incidence was 2.2%, with hypocalcemia observed in 1.0% 

[61]. In patients with AKI treated with PD-1 inhibitors, the es-

timated rate of interstitial nephritis was 16.6%. In one series 

that included 574 melanoma patients treated with nivolum-

ab, the overall incidence of nephrotoxicity was 2%, with a 

median onset time of 15.1 weeks after treatment initiation 

[62]. In another series of 3,695 patients treated with various 

ICIs, the overall incidence of AKI was 2.2%, and it was more 

frequent in patients receiving combination therapy with ipili-

mumab and nivolumab (4.9%) than that in patients receiving 

ipilimumab (2.0%), nivolumab (1.9%), and pembrolizumab 

(1.4%) [63]. Wanchoo et al. [64] reported that acute interstitial 

nephritis (AIN) occurs 6 to 12 weeks and 3 to 12 months after 

initiation of CTLA-4 and PD-1 inhibitors, respectively. These 

data suggest that the incidence of nephrotoxicity in ICI treat-

ment is generally low, but higher incidence can be observed 

following combination therapy. Interestingly, ICI-induced 

AKI sometimes follows other extrarenal irAEs, such as rash, 

thyroiditis, and colitis [65,66]. The concomitant use of proton 

pump inhibitors and lower baseline glomerular filtration rate 

have been indicated as potential risk factors [63,65–67]. Ac-

cording to the current literature, the most common kidney le-

sion is AIN, followed by minimal change disease, thrombotic 

microangiopathy, lupus-like nephritis, and FSGS [63,67–70]. 

ICI-induced AIN is characterized by its variable onset and 

frequent relapse when compared with traditional drug-in-

duced AIN, highlighting a unique mechanism of action for 

ICIs [63]. Additionally, ICI-induced AIN is characterized by its 

excellent response to steroids. However, its frequent relapsing 

nature requires long-term corticosteroid therapy [71]. 

The precise mechanisms of immune-related nephrotox-

icity remain unknown. However, self-antigen-specific T cell 

activation involving various components of the kidney is one 

suggested mechanism [64]. Data regarding the management 

of ICI-induced nephritis are limited, but glucocorticoids are 

the mainstay of treatment. ICI therapy should be withheld 

following grade 2 or more nephritis. Although the optimal 

dose and duration remain unclear, prednisone 0.5 to 2 mg/

kg/day is recommended in guidelines [72,73]. Table 3 sum-

marizes the management of ICI-induced nephrotoxicity [72].

An important issue in clinical practice is administering 

ICIs to patients with solid organ transplants, especially renal 

allografts. In several prospective clinical trials involving ICI, 

patients with organ transplantation have been excluded, 

and their safety in organ transplant recipients is not well 

defined and established [57,58]. However, a high incidence 

of renal allograft rejection (40.9%) was reported in 44 kidney 

transplant patients administered ICIs, with a higher rate 

recorded in those receiving PD-1/PD-L1 inhibitors (40.7%) 

than in those administering CTLA-4 inhibitors (22.2%). 

Among these 44 patients, 15 (34.1%) experienced allograft 

failure and 8 (18.1%) died [74]. Based on the observed impli-

cations of PD-1/PD-L1 signaling in solid organ transplant, 
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blockade of the PD-1/PD-L1 pathway may result in a higher 

rate of graft rejection than CTLA-4 blockade [75]. Another 

case series of 23 patients reported a similar renal allograft 

rejection rate of 47%, with 81% graft loss and 46% death [76]. 

The median time from ICI initiation to acute rejection was 

less than a month in both reports [74,76]. At present, the ex-

act mechanism of graft rejection remains to be elucidated. 

Graft rejection is a complex process involving both humoral 

immunity and cellular immunity, and both the CTLA-4 and 

PD-1 pathways are implicated in the immune tolerance of 

transplanted organ [77]. Since their positions in the immune 

tolerant context differ, the proposed mechanisms are con-

sidered distinct between PD-1 inhibitors and CTLA-4 inhib-

itors [60]. PD-L1 is known to be essential for peripheral graft 

tolerance and protection from chronic rejection and its path-

way inhibition produces the activation of cellular immunity 

via the effector T cell and the downregulation of regulatory T 

cell, subsequently inducing allograft rejection. On the other 

hand, the suggested mechanism of CTLA-4 inhibition is that 

CTLA-4 inhibitor could prime and generate new donor-spe-

cific T cell activation and cytotoxicity, and guard alloreactive 

T cells against apoptotic death, ultimately prompting rejec-

tion [78]. Despite a paucity of data, prior history of rejection, 

presence of donor-specific antibodies, and PD-L1 expression 

in transplant patients have been associated with increased 

risk of rejection [79,80]. High allograft rejection shortly after 

ICI initiation accompanied by a high mortality rate has led to 

the development of preventive approaches, including close 

monitoring of renal function and preemptive immunosup-

pressant usage in joint with ICI treatment. However, there 

are no current management guidelines regarding this issue. 

Some authors recommend careful monitoring of kidney 

function, such as frequent serum creatinine measurement 

starting on a weekly basis and then switching to biweekly 

or monthly if renal function remains stable [60]. In the pres-

ence of worsening renal function without other causes, renal 

biopsy should be considered, and careful administration of 

contrast dye with appropriate hydration during computed 

tomography imaging evaluation is suggested. The treatment 

of ICI in transplant recipients should be thoroughly dis-

cussed with patients about the potential benefit and risk of 

graft loss before initiation. 

Table 3. Management of renal immune-related adverse events of immune checkpoint inhibitor
General principles

For suspected immune-related kidney injury, exclude other causes such as urinary tract obstruction, sepsis, dehydration, or other concomi-
tant nephrotoxic agents.

Monitor renal function of patients at regular intervals.

Routine urinalysis is not recommended.

If there are no other potential causes of acute kidney injury, biopsy and use of immune suppressive therapy (mainly glucocorticoid) should 
be considered.

Grading*

Grade 1, mild: Consider temporal holding immunotherapy

  creatinine 1.5–2× above baseline; Closely monitor renal function and urine analysis

  creatinine level increase of ≥0.3 mg/dL

Grade 2, moderate: Hold immunotherapy

  creatinine 2–3× above baseline Consult to nephrologists

Consider renal biopsy

Start prednisone 0.5–1 mg/kg/day or its equivalent if other causes ruled out

If worsening or no improvement, increase prednisone to 1–2 mg/kg/day or its equivalent

If improved to grade 1 or less, taper glucocorticoid slowly over 4–6 wk

Grade 3, severe: Permanently discontinue immunotherapy

  creatinine > 3× above baseline or 4.0 mg/dL Consult to nephrologists

Consider renal biopsy

Grade 4, life-threatening: dialysis indicated Start prednisone to 1–2 mg/kg/day or its equivalent

If no improvement, consider adding other immunosuppressive agents (azathioprine, cyclo-
phosphamide, cyclosporine, infliximab, mycophenolate)

* Grading follows the National Comprehensive Cancer Network. Management of Immunotherapy-Related Toxicities (version 1.2021). Available at: https://
www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf (accessed 2021 Feb 1).
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advent of novel anticancer drugs such as targeted molecular 

agents and immune checkpoint modulators has improved 

patient survival while simultaneously increasing the preva-

lence of renal injuries. Despite their relatively low incidence, 

it is crucial for medical oncologists and nephrologists to be 

familiar with possible renal toxicities and complications and 

regularly monitor renal function in patients exposed to these 

agents. 
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