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As an important economic insect, Bombyx mori is also a useful model organism for lepidopteran insect. SET-domain-containing
proteins belong to a group of enzymes named after a common domain that utilizes the cofactor S-adenosyl-L-methionine (SAM) to
achieve methylation of its substrates. Many SET-domain-containing proteins have been shown to display catalytic activity towards
particular lysine residues on histones, but emerging evidence also indicates that various nonhistone proteins are specifically targeted
by this clade of enzymes. To explore their diverse functions of SET-domain superfamily in insect, we identified, cloned, and
analyzed the SET-domains proteins in silkworm, Bombyx mori. Firstly, 24 genes containing SET domain from silkworm genome
were characterized and 17 of them belonged to six subfamilies of SUV39, SET1, SET2, SUV4-20, EZ, and SMYD. Secondly, SET
domains of silkworm SET-domain family were intraspecifically and interspecifically conserved, especially for the catalytic core
“NHSC” motif, substrate binding site, and catalytic site in the SET domain. Lastly, further analyses indicated that silkworm SET-
domain gene BmSu(var)3-9 owned different characterization and expression profiles compared to other invertebrates. Overall, our

results provide a new insight into the functional and evolutionary features of SET-domain family.

1. Introduction

SET-domain superfamily includes all but one of the methyl-
transferases that methylate specific site of histone lysine (K)
residues involved in epigenetic regulation. This family is
characterized by the highly conserved SET (Su(var)3-9, E(z),
Trithorax) domain that consists of approximately 130 amino
acids and is responsible for the catalytic activity of these
methyltransferases. Through transferring a methyl group
from S-adenosyl-L-methionine (AdoMet) to the amino
group of a lysine residue on different sites of histone proteins,
SET-domain methyltransferases function in making different
histone methylation marks. Histone methylation is very
important for the chromatin modification and regulation
of gene expression [1-4], which plays a crucial role in the
animal development and a number of other biological pro-
cesses, such as heterochromatin establishment, transcription
regulation, parental imprinting, and cell fate destination.
Researches also suggest that SET-domain proteins are closely
related to many human diseases [5-10].

Based on the substrate specificity towards histones, SET-
domain-containing lysine methyltransferases can be clas-
sified into subgroups like KMT1 (H3K9), KMT2 (H3K4),
KMT3 (H3K36), KMT4 (H3K79), KMT5 (H4K20), and
KMT6 (H3K27) methyltransferases [11]. SET-domain pro-
teins can be divided into seven main subfamilies (SUV39,
SET1,SET2,EZ,SUV4-20, SMYD, and RIZ families) as well as
some unclassified members like SET7/9 and SET8. Members
in each subfamily have very high similarity not only in the
SET-domain amino acid sequence but also in the flank motifs
of SET domain.

Members of this family have been studied extensively for
their function in modifying histones by methylating them
directly and thus changing the mode of chromatin to regulate
the binding of cofactors in many research models, such as
human, mouse, Drosophila, Arabidopsis, and yeast. On the
other hand, more and more recent studies give sufficient
evidence of the fact that SET-domain-containing proteins
also regulate many nonhistone substrates, including some
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transcriptional factors and tumor suppressors [12-17]. Epige-
netic regulation of SET-domain family remains to be studied
in lepidopteron insects. Based on silkworm genome database,
we identified, cloned, and analyzed the SET-domains proteins
in silkworm, Bombyx mori. Here, we provide an overview of
the common and unique features of silkworm SET-domain
family members, which will provide more information and
important reference to the whole SET-domain proteins.

2. Materials and Methods

2.1. Silkworm. The silkworm strain, Dazao (p50), used in this
study is maintained by the State Key Laboratory of Silkworm
Genome Biology. The silkworm larvae were reared with fresh
mulberry leaves under 25°C, with a 12h/12 h photoperiod.

2.2. Datasets. We combined the updated Silkworm 9x
genomic sequencing database, silkworm EST database, CDS
database, and silkworm predicted protein database (all
found at SilkDB, http://silkworm.swu.edu.cn/silkdb/). Gene
sequences of mammals, C. elegans, D. melanogaster, and some
other insects were downloaded from GenBank (http://www
.ncbi.nlm.nih.gov/).

2.3. Screening of SET-Domain Family Genes. Protein sequen-
ces of SET-domain family members from other species were
used to query the silkworm database with E-value less than
0.1. The hits in the screening were furthermore confirmed by
blast in NCBI protein database. Besides, the conserved SET-
domain sequences of other species were also used as query
sequence to blast in silkworm database. Moreover, we used
online protein domain prediction program SMART (http://
smart.embl-heidelberg.de/) and Pfam (http://pfam.sanger.ac
.uk/) to validate the SET domain in screening hits from silk-
worm database.

2.4. RNA Extraction. Different tissues of silkworm larvae
were collected and stored in liquid nitrogen until use. Trizol
reagent (Invitrogen, USA) was used to extract the total RNA
of silkworm tissues. RNA concentration was calculated by
spectrophotometer. RNA samples were digested by RNase-
free DNase I (TaKaRa, Japan) to get rid of genomic DNA con-
tamination. 2 ug of each RNA sample was used to synthesize
the first strand of cDNA by M-MLV Reverse Transcriptase
following the manufacturer’ instructions (Promega, USA).

2.5. Verification of Identified Genes and Expression Analysis.
Primers were designed for most of the identified silkworm
SET-domain family members to clone them from silkworm
cDNA. Silkworm cytoplasmic gene Actin3 (forward primer:
5'-AACACCCCGTCCTGCTCACTG-3'; reverse primer: 5'-
GGGCGAGACGTGTGATTTCCT-3') was used as an inter-
nal control. PCR amplification was performed using cDNA
of deferent silkworm tissues to examine their expression
profile. The 20 uL PCR reaction volume is as follows: initial
denaturation at 94°C for 3 min, followed by 30 cycles of 30's
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at 94°C, annealing at temperatures T,, (usually set at 55°C)
for 45s and 1 min extension at 72°C, and extension at 72°C
for 10 min. The PCR products were analyzed by 1% agarose
gels.

2.6. Phylogenetic Analysis. SET-domain amino acid sequen-
ces of silkworm SET-domain family candidates were aligned
to each other and also with the representative SET domains
of other species by the program ClustalX. The sequences of
silkworm SET-domain-containing proteins were applied to
construct phylogenetic trees by neighbor-joining algorithm
(1000 bootstrap replicates) with the program MEGA4.0.

3. Results and Discussion

3.1. Identification of Silkworm SET-Domain Family. We have
identified the silkworm SET-domain family genes from silk-
worm database SilkDB for the first time. We have found
25 genes containing SET domain from silkworm genome
by screening. Referring to the classification method of SET-
domain family members in other species which is based on
the SET-domain sequence and the feature of its flank motifs
or domains, we were able to characterize 17 of them into six
subfamilies of SUV39, SET1, SET2, SUV4-20, EZ, and SMYD
(see Table 1). Silkworm SET-domain genes are mainly located
on chromosomes 1, 3, 4, 15, 16, and 23, and 12 of them have
ESTs in the database. We did not find any homologous genes
of mammal RIZ subfamily in silkworm database; this may
be the species difference like the SET proteins SET1, SET2
can be found in yeast while homolog genes of Su(var)3-9 and
EZH1/2 are missing.

3.2. Cloning and Bioinformatics Analysis. According to the
gene sequence from silkworm genome database, we designed
primers to clone and verify whether these genes are true hits.
We have cloned most members of the silkworm SET-domain
family (see Table1). Through bioinformatics analysis, we
found that SET domains of silkworm SET-domain family are
intraspecifically and interspecifically conserved, especially
for the catalytic core “NHSC” motif, substrate binding site,
and catalytic site in the SET domain (Figure 1).

3.3. Phylogenetic Analysis of Silkworm SET-Domain Subfam-
ilies. We have selected the representative subfamily to make
phylogenetic analysis; we found that the domain architecture
of SUV4-20 subfamily and SETDBI and Su(var)3-9 of SUV39
subfamily is highly conserved to other species. The three
members of silkworm SET2 subfamily are clustered to their
homolog of other species, respectively.

3.3.1. SUV4-20 Subfamily. SUV4-20 subfamily methylates
H4K?20 in other species. Human, mouse, and Xenopus laevis
have two SUV4-20 members, while in Drosophila and several
other insects there is only one member. In silkworm, we
identified only one SUV4-20 member like other insects.
Phylogenetic analysis of SUV4-20 subfamily suggests that
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FIGURE 1: SET-domain sequence alignment analysis. The figure shows invariant residues in binding to the catalytic substrate AdoMet (S-
adenosyl-L-methionine) the target lysine, catalytic site, the most conserved NHSC motif, F/Y switch controlling whether the product is a
mono-, di-, or trimethylated histone, and the pseudoknot structure formed by two conserved SET motifs to form an active site in a location
immediately next to the peptide-binding cleft. Sc: Saccharomyces cerevisiae; Hs: Homo sapiens; Dm: Drosophila melanogaster.

BmSuv4-20 clusters with Suv4-20 proteins of Drosophila,
Anopheles gambiae, and other insects (Figure 2). Besides,
SUV4-20 proteins of vertebrates cluster together. Among
vertebrates, Suv4-20h2 (Suv4-20 homolog 2) of human
and Rattus norvegicus are shorter than Suv4-20hl (Suv4-20
homolog 1) and cluster together. BmSuv4-20 has the same
domain structure as SUV4-20 proteins of other species that
there is only one domain the SET located on the N-terminal
of them (all shown in Figure 2).

3.3.2. SUV39 Subfamily. SUV39 methyltransferase subfamily
functions in specifically methylating H3K9. In mammals,
this subfamily consists of six main members, SUV39HI,
SUV39H2, G9a, GLP1 (G9a-like protein 1/EuHMTI),
SETDBI (ESET), and CLLL8 (SETDB2). The SET domains of
this subfamily are located on the C-terminal of the proteins
which are flanked by Pre-SET and Post-SET domain. The
Pre-SET domain close to SET domain is a special character
of this subfamily’s proteins which assists SET domain in

carrying out the enzyme activity (Figure 3). We identified
three members of this subfamily in silkworm, BmG?9a-like,
BmSetdbl, and BmSu(var)3-9 (actually, we found two
variants of Su(var)3-9 in silkworm; see details in Study
of Silkworm SET-Domain Gene BmSu(var)3-9). We have
not identified the highly similar homolog proteins of G9a
and SETDB2 in silkworm. There is one protein that we
name BmGO9a-like, because it has very similar domain
structure to G9a of other species including ANK (ankyrin
repeats) and Pre-SET domain, while Post-SET is replaced
by an ALARD domain. Since BmG9a-like shows very low
sequence similarity to G9a of other species, it is alone on
the phylogenetic tree. Based on all of that, we speculate
that BmG9a-like is a unique member existing in silkworm.
However, more evidence should be provided. SETDBI has
very special SET domain which is bifurcated by a 100-
300 amino acids’ insert. We also aligned the SET-domain
sequence of BmSetdbl with other species. SET sequence
of SETDBI is highly between silkworm and other species
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FIGURE 2: Phylogenetic analysis of SUV4-20 subfamily. Pt: Pan troglodytes; Mm: Mus musculus; Bt: Bos taurus; Rn: Rattus norvegicus; Xl:
Xenopus laevis; Dr: Danio rerio; Ag: Anopheles gambiae str. PEST; Har: Harpegnathos saltator; Ae: Acromyrmex echinatior; Cf: Camponotus
floridanus (the abbreviations of species mentioned above are omitted here).

while the insert sequences differ from one species to another
(Figure 4).

3.3.3. SET2 Subfamily. SET2 subfamily of mammals mainly
includes 5 members, NSD1, NSD2, NSD3, SET2 (HIF1/
HYPB), and ASHI1. NSDI1, NSD2, and NSD3 share the
conserved domains such as SET, AWS (Associated With SET),
Post-SET, PWWP (a domain containing highly conserved
Pro-Trp-Trp-Pro motif), PHD, and Ring finger. In silk-
worm, we just identified one homolog of the NSD proteins,
BmNSD]1, which has five of the above mentioned conserved
domains except the Ring finger. However, so far, there is
no homolog protein of NSD identified in Drosophila. HIF1
contains four conserved domains, SET, Post-SET, AWS, and
WW. BmHIFI identified from silkworm database have all
domains but the WW domain, which may be because the
sequence of BmHIFI in silkworm is not complete, which is
also confirmed by the relatively shorter sequence of BmHIF1
compared to Drosophila and other insects. ASHI has four
conserved domains except SET domain, AT hook, BROMO,
BAH, and PHD. BmASHI has all the domains except AT
hook. Phylogenetic analysis of SET2 subfamily shows that
members of silkworm SET2 subfamily cluster together with
their homolog proteins in other species separately (Figure 5).

3.3.4. Expression Profile of Silkworm SET-Domain Genes. The
expression profiles of silkworm SET-domain family members

show that they have widely high expression level in gonad
(testis and ovary) except BGIBMGA002076, which may be
related to the gonads function to propagate the genetic
information (Figure 6).

3.3.5. Study of Silkworm SET-Domain Gene BmSu(var)3-
9. Through amplification of homolog gene of Su(var)3-9
in silkworm, we found that silkworm has two transcript
isoforms. Using RACE technology to obtain the full-length
cDNA sequence showed that the situation is different from
other species; the two transcript isoforms have a different
sequence of 846 bp at the 5 end which belongs to the 5UTR of
the longer spliceosome, and they encode a protein of 317 and
593 amino acids separately. Embryonic expression analysis
of different period and different organs of three-day, fifth-
instar larvae of silkworm displays that Su(var)3-9 is highly
expressed during the 1-9 days of development of embryo,
whereas it is relatively low expressed in the larvae organs
(Figures 7 and 8).

4. Conclusion

SET-domain superfamily is a group of histone lysine methyl-
transferases which form different methylation marks (mono-,
di-, and trimethylation, also known as mel, me2, and me3)
on histone by transferring the methyl from S-adenosyl-L-
methionine (AdoMet) to lysine residues of histone proteins,
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FIGURE 3: Phylogenetic analysis of SUV39 subfamily. Nc: Neurospora crassa; Sp: Schizosaccharomyces pombe; Am: Apis mellifera; Ld:
Leptinotarsa decemlineata. Ldheterochromatin represents the heterochromatin protein of Leptinotarsa decemlineata SUV39 subfamily. DIM5
and CLR4 are representative SUV39 subfamily members of Neurospora crassa and Schizosaccharomyces pombe. The bright green on the
phylogenetic tree represents silkworm members (the abbreviations of species mentioned above are omitted here). Domains: CHROMO
(CHRromatin Organization MOdifier), Pre-SET (Cys-rich putative Zn”—binding domain that occurs at N-terminal to some SET domains),
and Post-SET (Cysteine-rich motif following a subset of SET domains).

with production of S-adenosyl-L-homocysteine (AdoHcy).
The core enzymatic sites of the methyltransferases are located
in the SET domain. Since the first SET-domain protein
Drosophila DmSu(var)3-9 had been identified at the end of
the last century, researchers confirmed the methyltransferase
activity of Su(var)3-9 protein in mammals for the first time
at the beginning of the 20th century. SET-domain proteins
are widely identified from the lower eukaryote yeast to higher
human. Human has more than 100 SET-domain-containing
proteins. The great SET-domain family is linked to its great
function in epigenetic regulation. SET-domain-containing
proteins play important roles in the development process
of human, Drosophila, and Arabidopsis. There are very few

reports on the study of histone methylation in silkworm.
Currently, the only one SET-domain protein reported is
BmE(z) which is the main member of PcG (Polycomb group
genes) proteins. The methylation of H3K27 by BmE(z) has
been confirmed in silkworm by knocking down BmE(z)
which leads to the reduction of H3K27me3 level [18].
Besides, demethyltransferase has been reported in silkworm,
BmLid. The function of demethylating H3K4me2, H3K4me3,
H3K9me2, H3K9me3, and H3K27me3 of BmLid has been
validated and it is supposed to have wider catalytic substrate
than its homolog protein in mammals and Drosophila [19].
In our study, from the silkworm database, 24 genes
of SET-domain family were identified and 17 out of them
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FIGURE 4: Alignment of SETDBI SET domains. Hs: Homo sapiens; Bt: Bos taurus; Mm: Mus musculus; X1: Xenopus laevis; Dr: Danio rerio;

Bm: Bombyx mori; Dm: Drosophila melanogaster.

were included in SET1, SET2, SUV39, SUV4-20, EZ, and
SMYD and six subfamilies. Except for three from SUV39
subfamily members, four from SET1 subfamily members,
three from SET2 subfamily members, one from SUV4-20
subfamily members, one from EZ subfamily members, and
five from SMYD subfamily members, the remaining five
were independent members and two out of them were the
homologous genes. Although the RIZ subfamily had not
been identified in the silkworm, the certain members had
already covered the common members of other species.
Comparative analysis for identifying the SET-domain family
members showed that they were highly conserved in each
species, including the substrate binding site and catalytic site.
Evolutionary analysis of the representative subfamily showed
that the structure of the SUV4-20 family was highly consis-
tent in the large number of species including the silkworm.

Identified in the silkworm, Bombyx mori SUV39 subfamily
members SETDBI and su(VaR)3-9 domain composition are
highly conserved among various species, especially SETDBI
unique for sequence insertion and splitting the set domain in
the silkworm, Bombyx mori and other species are extremely
conservative. In addition, G9a-like gene BGIBMGA007949
in the silkworm possessed the conservative composition and
structure of G9a and group specificity. BGIBMGA001497,
BGIBMGA003106, and BGIBMGA002246 in the silkworm
were three respective homologous genes of SET2 subfamily.
Interestingly, Su(VaR)3-9 in embryos from day 1 to day 9
and third day of the fifth larval stage were highly expressed,
suggesting an important role possibly in the embryonic
differentiation process.

In summary, based on the silkworm genome database, we
identified, cloned, and analyzed the SET-domains proteins in
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FIGURE 5: Phylogenetic analysis of SET2 subfamily. Cf: Camelus ferus; Ip: Ictalurus punctatus; Cm: Chelonia mydas; Tc: Tribolium castaneum;
Cs: Clonorchis sinensis; Cb: Cerapachys biroi; Ae: Acromyrmex echinatior; Aa: Aedes aegypti; Cq: Culex quinquefasciatus; Cc: Ceratitis capitata.
The bright green on the phylogenetic tree represents silkworm members (the abbreviations of species mentioned above are omitted here).
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FIGURE 6: Developmental expression profile of silkworm SET-domain genes. I: whole silkworm; 2: ovary; 3: testis; 4: blood; 5: midgut; 6: fat
body; 7: body wall; 8: Malpighian tube; 9: silk gland; 10: head.
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FIGURE 7: Expression patterns of BmSu(var)3-9 during embryogenesis day 1 to day 9 in silkworm. RT-PCR was performed to detect the
expression patterns of BmSu(var)3-9 using specific primers and Actin3 gene was used as the internal control at each time point.
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FIGURE 8: Larval stage 5 day 3 expression profile of BmSu(var)3-9. 1: whole silkworm; 2: ovary; 3: testis; 4: blood; 5: midgut; 6: fat body; 7:

body wall; 8: Malpighian tube; 9: silk gland; 10: head.

silkworm, Bombyx mori. We intend to study the common and
unique features of silkworm SET-domain family members,
which will provide more information and important refer-
ence to the whole SET-domain proteins.
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