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ABSTRACT

Objective: Recent developments in high-resolution imaging tech-

niques have enabled digital reconstruction of three-dimensional

sections of microvascular networks down to the capillary scale. To

better interpret these large data sets, our goal is to distinguish

branching trees of arterioles and venules from capillaries.

Methods: Two novel algorithms are presented for classifying

vessels in microvascular anatomical data sets without requiring

flow information. The algorithms are compared with a classification

based on observed flow directions (considered the gold standard),

and with an existing resistance-based method that relies only on

structural data.

Results: The first algorithm, developed for networks with one

arteriolar and one venular tree, performs well in identifying

arterioles and venules and is robust to parameter changes, but

incorrectly labels a significant number of capillaries as arterioles or

venules. The second algorithm, developed for networks with

multiple inlets and outlets, correctly identifies more arterioles and

venules, but is more sensitive to parameter changes.

Conclusions: The algorithms presented here can be used to classify

microvessels in large microvascular data sets lacking flow informa-

tion. This provides a basis for analyzing the distinct geometrical

properties and modelling the functional behavior of arterioles,

capillaries, and venules.

KEY WORDS: vessel classification, discrete algorithms, microvascular

networks
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INTRODUCTION

A wealth of detailed, high-resolution information about the

3D spatial arrangement of the microvasculature is now

available due to recent advances in ex vivo vascular casting

and image-processing technologies [1,5,8]. However, com-

plete flow and pressure measurements cannot be obtained in

individual vessels within 3D microvascular networks, using

current in vivo imaging techniques. Mathematical modeling

techniques offer methods to address the challenge of

interpreting and exploiting anatomical data in order to gain

insight into microvascular function.

The vessels forming the microcirculation are generally

classified as arterioles, capillaries, and venules. Arteriolar and

venular vessel segments connected at vascular branch points

(nodes) typically form dichotomous branching trees with a

hierarchy of vessel diameters. The capillaries form an

interconnected network, with diameters of approximately

5–7 lm in mammalian heart and other tissues [6]. The

primary role of the arterioles and venules is the convective

transport of blood through the tissue, while capillaries carry

blood close to every tissue cell, allowing for diffusive

exchange of materials [18].

The identification of vessel types within digitally recon-

structed microvascular data sets is needed for the develop-

ment of theoretical models based on such data sets that

incorporate functional differences between vessel types.

Examples include models for flow regulation [15], where

active responses to vasodilator signals occur only in the

arterioles, and models in which the capillary mesh is

represented as a porous medium [16], which may be coupled

to an explicit description of arteriolar network hemodynam-

ics. Although arterioles, venules, and capillaries may be

distinguished by their vessel wall structure [4], current
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imaging techniques are not capable of extracting this level of

detail whilst simultaneously determining the structure of

large microvascular networks. Alternative methods must

therefore be employed to classify microvessels. Such methods

should make use of available information about the topo-

logical and geometrical properties of the network, and use

observed flow information where that is available.

Current microvessel classification methods include those

of Pries, Ley, and Gaehtgens [10], in which connected

diverging and converging trees are identified based on

observed flow directions, and Roy, Pries, and Secomb [15],

which uses the same approach but with all vessels below a

certain diameter classified as capillaries. In the following,

the latter method is referred to as the “Pries–Roy” method.

However, data on flow directions in all segments are rarely

available for extensive geometrical data sets. Furthermore,

capillary flow directions are not necessarily predetermined.

Opposing flow directions have been observed in neigh-

boring capillaries [7], and flow patterns in capillary

networks may also be subject to temporal fluctuations

due to changes in upstream pressure (e.g., following

dilation of arterioles), contraction of the surrounding

tissue or the particulate nature of blood which is

specifically relevant to capillary-sized vessels [2,9]. In a

structure-based algorithm developed by Cassot et al. [1],

the arteriolar and venular trees are identified as connected

vessel segments with resistance lower than a threshold

value. This algorithm does not require flow direction data,

but is likely to be strongly sensitive to the threshold

resistance value chosen.

Once the segments forming a vessel network have been

classified as arterioles, venules or capillaries, previously

established methods are available to further analyze the

structures of the venular and arteriolar trees, including the

Horton–Strahler (centripetal) scheme and the generation

(centrifugal) scheme. The advantages and disadvantages of

these schemes have been discussed previously [12].

In this paper, our objective is to develop algorithms that

exploit microvascular network geometry and topology to

identify arterioles and venules within large anatomical data

sets, applicable to networks for which flow measurements are

not available. Two novel algorithms are presented and

applied to data sets from five rat mesentery networks for

which flow data are available [10,13], allowing comparison

with the flow-based Pries–Roy method. Our goal is to

correctly identify more arterioles and venules whilst improv-

ing the robustness to parameter changes relative to the

approach of Cassot et al. [1]. Networks 1–4 contain one or

two main arteriolar trees and one or two main venular trees,

whereas network 5 has several inlets and outlets. Algorithm 1

was motivated by the study of networks with few inlets and

outlets. Algorithm 2, an adaptation of the first algorithm, was

developed for networks with multiple inlets in order to

address the problem of extracting separate arteriolar and

venular trees when these trees are located in close proximity

within the network.

MATERIALS AND METHODS

Network Data
The network data were obtained from previous experimental

observations of the microcirculation of the rat mesentery

using intravital microscopy [10,13]. In those experiments,

fat-free portions of the mesenteric membrane were scanned

photographically and video-recorded, and the topological

connectivity of the networks and segment diameters and

lengths were measured. The number of nodes, segments,

inlets and outlets, and diameter properties of each network

are given in Table 1. The two-dimensional coordinates of

nodes were recorded in three out of the five networks

(networks 1, 2 and 5), enabling computerized visualization of

the network structure. Flow directions were recorded from

the video recordings and red blood cell velocities were

measured at the center-line of vessels using frame-to-frame

Table 1. Geometrical properties of mesentery networks 1–5. The numbers of arterioles, capillaries, and venules correspond to the flow-based

classification

Network 1 2 3 4 5

Number of segments 546 389 383 392 913

Number of nodes 388 274 270 288 652

Number of inlets 1 2 1 1 9

Number of outlets 1 1 2 2 6

Diameter mean � SD (lm) 13.9 � 1.5 18.1 � 10.5 13.0 � 7.5 12.3 � 7.6 15.4 � 9.9

Diameter range (lm) 3.2–59.2 7.0–83.0 3.9–44.1 3.3–40.4 6.0–68.0

Number of arterioles 77 125 33 88 279

Number of capillaries 298 135 253 233 353

Number of venules 171 129 97 71 281

A.F. Smith et al.
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correlation, with values averaged over about four seconds to

remove the effect of pulsatile fluctuations from the velocity

data. When measured velocities were converted to flows,

conservation of mass was not precisely satisfied at all vessel

junctions. To obtain a network flow solution satisfying flow

conservation at nodes, recorded segment flows and discharge

hematocrits were assigned as boundary conditions within an

iterative solver that uses the in vivo viscosity and bifurcation

laws of Pries et al. [9] and Pries, Neuhaus, and Gaehtgens

[11], to obtain a unique solution [14].

The Pries–Roy Method
This flow-based vessel classification method introduced by

Pries, Ley, and Gaehtgens [10], as modified by Roy, Pries,

and Secomb [15], is here considered as the “gold standard”

procedure for distinguishing arterioles, capillaries, and

venules. In this method, all vessels with diameter less than

8.4 lm are labeled as capillaries; this criterion is discussed

below. Segment flow directions (obtained in the network

flow solution as described above) are used to classify nodes as

diverging (one inflow, two outflows) or converging (two

inflows, one outflow). Vessels not already labeled as capil-

laries and forming trees connecting diverging nodes with an

arteriolar input of the network are labeled as arterioles. Those

connecting converging nodes with a venular output are

labeled as venules, and all remaining vessels are labeled as

capillaries.

The minimum arteriolar diameter criterion is relevant in

the context of regulation, because vessels of smaller diameter

typically do not possess vascular smooth muscle and so

cannot actively vasoconstrict. Here, the mean diameter of

terminal arterioles (8.4 lm) in the rat intestinal muscle [17]

was used; this could be replaced by an alternative value if

known for the tissue under study. This diameter criterion

leads to 25.5% fewer arterioles and 7.9% fewer venules

averaged over the five mesentery networks, compared to the

classifications obtained without this criterion.

The number of arterioles, capillaries, and venules in each

network according to the Pries–Roy method are listed in

Table 1. Although this topological approach does not

necessarily provide a classification which is identical to a

histological identification of vessels as arterioles, capillaries

or venules (which would require information on vessel wall

structure, as discussed above), it represents an accurate

topological description if vessel flow directions are known,

and was used to test the structure-based algorithms that are

introduced next. All these algorithms require prior specifi-

cation of the main arteriolar inlets and venular outlets.

Structure-Based Cassot Method
Cassot et al. [1] extracted vascular trees (arterioles and

venules) from a reconstructed cerebral microvascular net-

work using a structure-based vessel classification method.

Starting at the main inlets/outlets, the technique identifies an

arteriolar/venular tree by following paths along vessel

segments with resistance lower than a specified critical value,

Rc. Vascular resistance was defined as R = 128 lL/pD4,

where L and D are vessel length and diameter, respectively,

and l is the effective viscosity calculated via the in vitro

viscosity law of Pries [11] with a uniform discharge

hematocrit of 0.45. All other vessels with R > Rc (or with

R < Rc but separated from the main arteriolar/venular trees

by high resistance vessels) are labeled as capillaries. This

approach was motivated by the observation that arterioles

and venules have higher diameter, and thus lower resistance,

than capillaries.

Structure-Based Algorithm for Networks with
Single Inlets (Algorithm 1)
This algorithm (Algorithm 1) was developed to exploit

intrinsic structural features of the microvasculature by

identifying the transition from branching structures (arteri-

oles and venules) to loops, which are characteristic of the

interconnected capillary network. This is achieved by

iteratively stepping through the vessels in a sequence that

depends on both branching order and vessel diameter. The

algorithm may be applied to an arbitrary network with

vertices (nodes) connected by edges (segments). The

required inputs are a connectivity matrix describing

the network topology (i.e., the start nodes and end nodes

of each segment, where the direction is arbitrary), a list of

segment diameters, and the indices of the main inlet and

outlet nodes, specifying the starting points of the algorithm.

The first parent segment p1 is the segment connected to

the main inlet node. At the ith step, the daughter segments

connected to all established parents (found using the

connectivity matrix) constitute a list of candidate parent

segments. This definition does not depend on flow

directions. The next parent pi is selected as the candidate

parent segment with the largest diameter. By this proce-

dure, vessels with larger diameters are successively con-

nected to the arteriolar or venular tree, reflecting the

characteristic that arterioles and venules generally have

larger diameters than capillaries. Each node is given a label

0 or 1; all nodes are initially labeled 0, which is changed to

1 when a segment connected to the node is found as a

daughter segment. Parent vessel pi and its daughter vessels

are then classified as follows:

� The end nodes of all daughter segments are labeled 1.

� If the end node of a daughter segment has already been

labeled 1 on a previous iteration, this indicates that a loop

has been formed in the identified network and the

daughter is labeled as a capillary. In that case, if the

diameter ratio of the parent to the daughter is less than a

specified value Dr, then the parent is also labeled as a

capillary.

Microvessel Classification Algorithms
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� If the parent is labeled as a capillary, then its other

daughter is also labeled as capillary.

� If the parent is not labeled as a capillary, then it is labeled

as an arteriole/venule.

The algorithm ends when there are no more candidate

parents. The use of the criterion based on Dr enables

retrospective labeling of the current parent segment when a

capillary loop is reached, if the diameter of the parent is not

much larger than (i.e., within a factor Dr of) the diameter of

the daughter vessel. Note that Dr is scale-invariant, and so its

value is expected to be more consistent across different

networks than an absolute metric such as the critical

resistance Rc used in the Cassot method.

The algorithm is repeated starting from the main outlet

(which becomes the new p1) to identify the venular network.

Finally, any vessels not labeled as arterioles or venules are

marked as capillaries. Since the algorithm is run separately to

select arteriolar and venular trees, it is possible that some

vessels are labeled as both arterioles and venules. This issue

will be addressed in the development of Algorithm 2 in the

section Structure-Based Algorithm for Networks with Multi-

ple Inlets.

During the process of developing this algorithm, the

selection of vessels with higher diameter as parent segments

was found to increase the number of identified arterioles and

(more notably) venules that coincided with the flow-based

classification, compared to an earlier version of the algorithm

in which parent segments were selected only by generation

number (defined as the number of branching points i.e.,

nodes from p1 to the current segment). The inclusion of the

criterion based on the parent–daughter diameter ratio

further improved results.

A two-dimensional visualization of the classification

process was developed to qualitatively evaluate the meth-

ods, and is used to illustrate specific stages of Algorithm 1

when applied to identify arterioles in mesentery network 1.

The outline of the identified arteriolar tree at step 26 is

shown in Figure 1A. The 1st and 3rd steps are shown in

Figure 1B and C, illustrating that larger diameter vessels

are preferentially added to the arteriolar tree. The region

of interest for p26 is shown Figure 1D. At the 27th step,

the daughter vessels of p27 are labeled d1 and d2. The end

node of daughter vessel d2 was already reached on the

previous step, and d2 was therefore labeled a capillary. The

use of the parameter Dr is depicted in Figure 1F and G for

steps 42 and 43 with an example value of Dr = 2. Here,

daughter vessel d1 formed a loop and was labeled as a

capillary; the diameter of the parent vessel (12.6 lm) was

less than twice the diameter of d1 (14.7 lm), and so the

parent vessel p43 was also labeled as a capillary. Since the

parent was a capillary, d2 was also labeled as a capillary, as

illustrated in Figure 1G.

Structure-Based Algorithm for Networks with
Multiple Inlets (Algorithm 2)
Algorithm 1 was developed for networks with one or two

main arteriolar and venular trees. When Algorithm 1 was

applied to network 5, which contains multiple, closely

positioned inlets and outlets, it did not perform well, as

discussed below. Therefore, Algorithm 1 was adapted to

classify all trees simultaneously, in the following procedure

(Algorithm 2):

� Starting segments (inlets and outlets) were sorted in order

of descending diameter.

Arterioles
Capillaries
Candidate parent
Node label 1

p1 p2 p3
A

B C

ED

F

p26 p26
p27

d2 d1

p42

B,C

D,E

F,G G
p43
d2d1

p42

Figure 1. Illustration of steps in vessel classification using Algorithm 1. (A) Overview of mesentery network 1 at step 26, with the location of magnified

regions indicated. (B) The first step, with first parent segment p1. (C) The third step, with parent vessels p1, p2, and p3. (D) Step 26. (E) One step later, p27
has two daughter vessels, one of which (d2) forms a loop and so is labeled as a capillary. (F) Step 42. (G) One step later, daughter vessel d1 forms a loop

and so is labeled as a capillary. The ratio of the diameters of p43 and d1 is less than Dr, so parent p43 is also labeled as a capillary, and consequently also d2.

A.F. Smith et al.
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� Beginning at the largest-diameter starting segment, Algo-

rithm 1 was implemented while parent segment pi had

diameter D ≥ Dmin, where Dmin is a minimum diameter

threshold which must be specified.

� Daughter segments with D < Dmin were added to the list

of candidate parent segments, but their end-nodes were

not labeled 1 (so that they could not be used to form a

capillary loop).

� Steps 2 and 3 were repeated for all remaining starting

segments.

� Following this stage, Algorithm 1 was continued on the

first tree for one step only before moving to the next tree.

This was repeated until there were no more candidate

parent segments.

Comparison of Algorithms
To evaluate the results of the three structure-based methods,

vessels labeled as arterioles by both the structure-based

method under consideration and the Pries–Roy method were

marked as true positives (TPA), whereas vessels marked as

arterioles by the structure-based method but not by the

Pries–Roy method were marked as false positives (FPA). This

was repeated for the venules (TPV and FPV). As a metric of

the success of each classification, a total score was defined as

the number of TPA and TPV, minus the sum of FPA and

FPV. The parameter values in each algorithm (Rc in the

Cassot method, Dr in Algorithm 1 and Dr and Dmin in

Algorithm 2) were chosen to maximize this metric. The

sensitivity of the number of true and false positive arterioles/

venules and the number of overlapping segments (classified

as both arterioles and venules) to a �10% change in

parameter values was determined. All algorithms and the

quantitative comparison of their results were implemented in

MATLAB R2013b on a personal computer (The Math-

Works, Inc., Natick, MA, USA).

RESULTS

The Cassot Method
The number of vessels classified as each type defined above

(TPA, FPA, TPV, and FPV) and the total score are shown in

Figure 2A as functions of the assumed critical resistance Rc.

IncreasingRc led to an increase in both the number of TPA and

TPV and the number of FPA and FPV. The maximum total

score summed over all five networks was 588, at Rc = 280

kg/mm4/sec. Figure 2B shows the dependence of the number

of overlapping vessels on Rc. The decline in the total score

coincides with the onset of overlapping with increasing Rc

above this value. The classifications of segments in networks 1,

2 and 5 with Rc = 280 kg/mm4/sec are illustrated in Fig-

ure 3A, Figure 4A, and Figure 5A, respectively.

Results of the classifications by all three structure-based

methods are summarized in Table 2. According to the

Cassot method with Rc = 280 kg/mm4/sec, 22.7% of arte-

rioles and 64.8% of venules were true positive as a

proportion of the arterioles/venules classified according to

the Roy method over all five networks, while there were

0.2 FPA and 6.6 FPV on average. Results for the sensitivity

of the various algorithms to parameter values are shown in

Table 3. Notably, a 10% increase in Rc resulted in a tree

overlap of 42.0 vessels, 29.6 more FPAs, and 12.8 more

FPV on average.

Algorithm 1
The free parameter in Algorithm 1 is the parent–daughter
diameter ratio, Dr. With increasing Dr, the number of

TPA/TPV and FPA/FPV decreased (see Figure 6A). The

maximum total score summed over all five networks was

570, for Dr = 3.175. At this value, there was no overlap

between arteriolar and venular trees in networks 1–4, but
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Figure 2. Results of the Cassot method. (A) The numbers of TPA, TPV,

FPA, and FPV, and the total score summed over all five networks and (B)

the numbers of overlapping segments (classified as both arterioles and

venules) in each network are plotted as functions of Rc (kg/mm4/sec).
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139 overlapping segments were present in network 5 (see

Figure 6B). In this network, the overlap typically occurred

when arteriolar trees connected with and followed venular

trees. Algorithm 2, as described below, was developed to

overcome this limitation. The final classifications for

networks 1, 2, and 5 with Dr = 3.175 are illustrated in

Figures 3B, 4B, and 5B. With this value, 47.9% of

arterioles and 68.0% of venules were true positives on

average over all five networks, while 32.4 arterioles and 8.2

venules were false positives. Algorithm 1 was more

successful than the Cassot method in identifying TPV

and (more significantly) TPA, but also found many more

FPA. The large number of FPA was mainly due to 129

venules according to the Roy method being falsely labeled

as arterioles (of which 120 were also labeled as venules). A

10% decrease in Dr led to 11.4 more overlapping vessels,

with most importantly 9.6 more FPA averaged over all 5

networks; hence Algorithm 1 was less sensitive to param-

eter changes than the Cassot method.

Algorithm 2
Network 5 differs from the other four networks, in that it

contains multiple inlets and outlets, and also a number of

large-diameter vessels (“shunts”) linking arterioles and

venules. The application to Algorithm 1 to this network

resulted in a large number of “overlapping” vessels

classified as both arterioles and venules, as noted above.

Such overlap was avoided in Algorithm 2 by analyzing all

the arteriolar and venular trees in parallel, choosing the

largest remaining candidate parent segment of each tree in

turn. Algorithm 2 contained two free parameters: Dr (also

used in Algorithm 1) and a diameter threshold, Dmin. A

maximum score of 771 was achieved with Dr = 1.25 and

Dmin = 16.5 lm. Results were not sensitive to �10%

change to Dr with less than 7% change found in the

number of TPA/TPV or FPA/FPV. Figure 7 shows the

performance of Algorithm 2 with Dr = 1.25 for a range of

Dmin. Reducing Dmin by 10% from 16.5 lm led to a

decrease in the number of TPA by 28.8 vessels on average,

and an increase (by 14.4 vessels) in the number of FPV.

However, increasing Dmin by 10% resulted in a decrease in

only 3.0 in the number of TPA, showing that this

algorithm is not very sensitive to increases to Dmin, but

is sensitive to a reduction in Dmin for Dmin < 16.5 lm.

The final classifications for networks 1, 2 and 5 are

illustrated in Figures 3C, 4C and 5C. At these parameter

values, 58.3% of arterioles and 84.0% of venules were true

positives as a percentage of the arterioles/venules according

to the Roy method, while 9.2 arterioles and 24.6 venules

were false positives on average over all five networks. Thus,

Algorithm 2 identified many more TPA and TPV than

either the Cassot method or Algorithm 1. Algorithm 2

identified more FPA than the Cassot method but fewer

than Algorithm 1, and more FPV than either method.

CBA

Figure 3. Visualization of final network clas-

sifications in network 1 using (A) the Cassot

method, (B) Algorithm 1, and (C) Algorithm 2.

Arrows indicate the location of inlets and

outlets. Red segments are arterioles, green

are capillaries, and blue are venules.

CBA

Figure 4. Visualization of final network clas-

sifications in network 2 using (A) the Cassot

method, (B) Algorithm 1, and (C) Algorithm 2.

Arrows indicate the location of inlets and

outlets. Red segments are arterioles, green

are capillaries, and blue are venules.

A.F. Smith et al.
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DISCUSSION

In this paper, two novel structure-based algorithms were

developed to distinguish arteriolar or venular trees from

interconnected microvascular networks. Both algorithms

were motivated by the need to determine the transition

from arterioles and venules to capillaries based on purely

geometrical and topological features of the network, when

studying large structural data sets without corresponding

simultaneously measured flow data.

Algorithm 1 depends on one parameter, the critical ratio

Dr between parent and daughter vessel diameters. Starting at

specified inlet or outlet vessels, arteriolar and venular trees

were identified separately and the number of vessels over-

lapping between trees was recorded. An adapted version of

this method (Algorithm 2) ran Algorithm 1 while vessel

diameters were greater than Dmin, and then alternated

between inlets/outlets identifying vascular trees in parallel,

and thus avoiding any overlap between trees. This method

was more appropriate for networks containing many closely

connected arteriolar and venular trees.

BA

C

Figure 5. Visualization of final network clas-

sifications in network 5 using (A) the Cassot

method, (B) Algorithm 1 and (C) Algorithm 2.

Arrows indicate the location of inlets and

outlets. Red segments are arterioles, green

are capillaries, and blue are venules.

Table 2. Number of TPA, TPV, FPA, FPV, and total score for the

Cassot method (with Rc = 280 kg/mm4/sec), Algorithm 1 (with

Dr = 3.175) and Algorithm 2 (with Dr = 1.25 and Dmin = 16.5)

applied to networks 1–5

Metric Method

Network

Sum1 2 3 4 5

No. TPA Cassot 11 32 11 14 68 136

Alg 1 36 41 16 61 118 272

Alg 2 40 54 24 60 155 333

No. TPV Cassot 109 97 58 44 178 486

Alg 1 121 80 68 52 180 501

Alg 2 150 106 81 67 203 607

No. FPA Cassot 0 0 0 0 1 1

Alg 1 0 1 0 7 154 162

Alg 2 8 5 3 19 11 46

No. FPV Cassot 0 17 3 0 13 33

Alg 1 10 3 2 2 24 41

Alg 2 29 20 17 21 36 123

Total score Cassot 120 112 66 58 232 588

Alg 1 147 117 82 104 120 570

Alg 2 153 135 85 87 311 771

Microvessel Classification Algorithms
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These two algorithms and the existing structure-based

Cassot method were implemented for five mesentery net-

works for which segment flows were also recorded. A novel

approach was taken to test these three structure-based

methods by comparison against the flow-based method,

which uses measured flow directions to identify connected

diverging or converging trees. Parameter values were chosen

by maximizing the difference between the total number of

TPA and TPV, and the number of FPA and FPV. Although

the flow-based method is a topological and not a histological

microvessel classification (the histological vessel type is

unknown), this approach enables testing of the structure-

based algorithms by exploiting the flow data available for

these networks.

The Cassot method performed poorly in identifying

arterioles as defined by the Pries–Roy method. The likely

reason is that arterioles generally have smaller diameter than

corresponding venules, and this can result in flow resistance

above the threshold Rc. Nonetheless, the Cassot method

identified fewer false positives than either Algorithm 1 or 2.

The Cassot method was sensitive to an increase in Rc, with a

significant rise in the number of FPA and FPV, and the

number of overlapping vessels. Note also that the Pries–Roy
method and the Cassot method both use diameter or

Table 3. Absolute change in the number of overlapping arterioles/venules, TPA, TPV, FPA, and FPV, and the total score, as a result of varying

parameter values by �10% in the three structure-based methods. Values are averaged over all five networks, and relative to Rc = 280 kg/mm4/sec in

the Cassot method, Dr = 3.175 in Algorithm 1, and Dr = 1.25 and Dmin = 16.5 lm in Algorithm 2

Method
Cassot: Rc Alg. 1: Dr Alg. 2: Dr Alg. 2: Dmin

Parameter change �10% +10% �10% +10% �10% +10% �10% +10%

No. overlap �0.0 +42.0 +11.4 �0.0 – – – –

No. TPA �5.2 +1.4 +0.0 �0.0 +4.4 �1.4 �28.8 �3.0

No. TPV �3.2 +3.4 +2.6 �6.2 +3.2 �2.8 +6.6 �7.2

No. FPA �0.2 +29.6 +9.6 �0.0 +2.4 �1.2 �1.0 �1.6

No. FPV �2.2 +12.8 +0.4 �0.4 +6.4 �2.4 +14.4 �1.6

Total score �6.0 �37.6 �7.4 �5.8 �1.2 �0.6 �35.6 �7.0
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Figure 6. Results of Algorithm 1. (A) The numbers of TPA, TPV, FPA and

FPV, and the total score summed over all five networks and (B) the

numbers of overlapping vessels (classified as both arterioles and venules)

in each network are plotted as functions of Dr.
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Figure 7. Results of Algorithm 2. The numbers of TPA, TPV, FPA, and

FPV, and the total score summed over all five networks are plotted as

functions of Dmin, for Dr = 1.25.
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resistance-based criteria, which would most likely require

adjustment for other tissues with different typical capillary

diameters. On the other hand, the parent–daughter diameter

ratio in the algorithms introduced here could in theory be

applied to other networks without modification.

Comparing Algorithms 1 and 2, Algorithm 1 was shown to

be the less sensitive classification method overall. Algorithm

2 was not as sensitive to changes in Dr as Algorithm 1, but a

decrease in Dmin in Algorithm 2 led to a large decrease in the

number of TPA and an increase in the number of FPV.

Nonetheless, Algorithm 2 was much more successful than

Algorithm 1 in correctly identifying arterioles and venules,

found fewer FPA (though more FPV), and has the additional

advantage of intrinsically avoiding classifying vessels as both

arterioles and venules (overlap). For these reasons Algorithm

2 is recommended for future application to other data sets

containing closely-located branching structures; however,

this choice is network-specific and Algorithm 1 may be a

more reliable option for networks with only one or two inlets

and outlets.

The difference in optimal values for parameter Dr (3.175

for Algorithm 1 and 1.25 for Algorithm 2) was due to the

distinction between the two methods. The value of Dr

determines which parent vessels are retroactively labeled as

capillaries. A larger Dr (i.e., a more inclusive diameter ratio

criterion) means that more parent vessels are labeled as

capillaries, which limits the extent of the arteriolar/venular

trees. In Algorithm 1, trees beginning from each inlet and

outlet are selected independently with results superimposed

at the end. Thus, a high value of Dr is needed to restrict the

arteriolar trees and avoid overlap with the venules. In

Algorithm 2, vessels are classified by switching between trees,

inherently avoiding overlap of arterioles and venules. Thus,

the Dr criterion may be enforced more restrictively, allowing

the selection of more extensive arteriolar trees.

All structure-based algorithms correctly identified a fairly

low proportion of arterioles relative to the Pries–Roy method

e.g., only 43% TPA in network 2 via Algorithm 2. This may

be at least partly explained by considering that the first

capillaries branching directly from arterioles would most

likely continue to diverge the flow, and so would constitute

part of the arteriolar tree under the Pries–Roy method.

These same methods could in future be applied to larger

network structures in two or three dimensions. A general

limitation of structure-based methods is that they require

user input to specify the main inlets and outlets of the

network under study, if these are not known a priori as in the

mesentery networks considered here. Observation of vessel

diameters and distinctive anatomical features of arterioles

and venules may provide a basis for identifying the main

inflowing and outflowing vessels. The performance of these

algorithms for networks in tissues other than the mesentery

has yet to be tested. The algorithm uses the occurrence of

loops to identify the capillary network. Therefore, it cannot

be applied to networks with arterial arcades [3], although it

could be applied to the arteriolar networks distal to these

arcades. These algorithms may require modification for

application to other tissues. For instance, information on

flow directions could be used to adjust the parameter values,

or the method could be modified to make use of additional

information identifying vessel types. These methods repre-

sent novel approaches to classifying micro-vessels using

discrete algorithms that do not rely on flow information, and

provide a basis for future development of more refined

methods.

PERSPECTIVE

Significant advances in imaging and digital reconstruction

capabilities have provided large data sets on the 3D structure

of microvascular networks down to the capillary level.

Interpretation of these data is aided by the classification of

all microvessels as arterioles, capillaries or venules. The

algorithms presented in this paper allow automated identi-

fication of vessel type, in the absence of data on the

distribution of blood flow in the network.
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