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Recombination events have been described in the Coronaviridae family. Since

the beginning of the SARS-CoV-2 pandemic, a variable degree of selection

pressure has acted upon the virus, generating new strains with increased

fitness in terms of viral transmission and antibody scape. Most of the SC2

variants of concern (VOC) detected so far carry a combination of key amino

acid changes and indels. Recombination may also reshuffle existing genetic

profiles of distinct strains, potentially giving origin to recombinant strains with

altered phenotypes. However, co-infection and recombination events are

challenging to detect and require in-depth curation of assembled genomes

and sequencing reds. Here, we present the molecular characterization of a

new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages

identified in Brazil. We characterized four mutations that had not been

previously described in any of the recombinants already identified worldwide

and described the likely breaking points. Moreover, through phylogenetic

analysis, we showed that the newly named XAG lineage groups in a

highly supported monophyletic clade confirmed its common evolutionary

history from parental Omicron lineages and other recombinants already
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described. These observations were only possible thanks to the joint effort of

bioinformatics tools auxiliary in genomic surveillance and the manual curation

of experienced personnel, demonstrating the importance of genetic, and

bioinformatic knowledge in genomics.
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Introduction

Since the first detection of SARS-CoV-2 in Wuhan, China
(1), many new viral strains/lineages emerged, carrying some
differences from the initial virus. Over time, the evolution and
fixation of mutations, especially in variants of concern (VOC),
demonstrates that new strains have a high chance of continuing
to emerge due to the changing selective pressure on the virus
lineages associated with extensive transmission worldwide
(2). Epidemiological surveillance is essential for the control of
COVID-19. However, genomic surveillance is just as important
(3). Genome analyzes can provide additional information
for epidemiological surveillance, demonstrating outbreak
dynamics in space and time, characterizing transmission,
and allowing the identification of mutations that can lead
to the emergence of new variants with the potential to
impact public health and the epidemiology of COVID-19
(4). The effectiveness of molecular surveillance as a tool
for monitoring pandemics is dependent on continuous and
consistent sampling through time and space, rapid virus
genome sequencing, and rapid reporting (5). Enhancing
genomic surveillance and sequencing efforts across the globe is
a valuable tool to detect and understand emerging variants (6),
and genomics-based SARS-CoV-2 surveillance is a helpful tool
for monitoring the current and future phases of the COVID-19
pandemic (7).

Since the beginning of the COVID-19 pandemic, five
lineages have been considered VOCs by the WHO: Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2),
and Omicron (B.1.1.529). The Omicron variant, initially
identified in South Africa and Botswana on November
21, 2021, was considered by the WHO to be a VOC
on November 26, 2021 (8). Shortly after its identification,
Omicron showed great potential for dissemination, with a
significant increase over the Delta variant, which, since its
identification, was the variant with the highest frequency
worldwide. Omicron has been classified into five sublineages:
BA.1/BA.1.∗, BA.2/BA.2.∗, BA.3, BA.4, and BA.5. BA.2 is
replacing BA.1 as the dominant subvariant in more countries
over time (9). To date (June 2022), the circulation of the
BA.2/BA.2.∗ sublineage currently represents 61.5% of the
genomes sequenced in Brazil (10). Omicron has potential

for dissemination and should be closely monitored due to
the high number of mutations present in the genome (at
least 32) that can increase infectivity and immune escape
compared with the early wild-type lineage and the other VOCs
(11–13).

With the circulation of different variants in the same
place and at the same time, co-infections become possible,
potentially leading to the emergence, and rise of new
variants through viral recombination. Unfortunately, the
number of co-infections is challenging to determine, mainly
because genomic surveillance is suboptimal in most countries
(14). Some studies in different countries have found values
ranging from 0.06 to 4.0% of co-infection and seem to be
underestimated (15–20). Some tools based on metagenomics
and bioinformatics have been proposed to identify and evaluate
co-infections (21–25). It is unclear whether co-infections can
result in more severe disease. However, the dominance of
one strain over another in a co-infection has already been
observed in the same patient, which can be explained by
the higher virulence of the dominant strain (22). Genome
recombination is an important evolutionary mechanism for
the emergence and re-emergence of human pathogens and
a significant source of viral evolution (9). SARS-CoV-2
originated from recombination may have advantages for viral
dispersion, immune evasion potential, and decrease in vaccine
effectiveness, but little is known about it and, consequently,
it highlights the importance of studying the recombinants
(26). Coronaviruses (CoVs) are highly recombinogenic, unlike
other viruses that have emerged in the past two decades
(27). Recombination occurs when genetic material from two
circulating lineages is combined within the host, giving rise
to a viable descent lineage (28). While some SARS-CoV-
2 lineages disappear, others can become dominant through
the fixation of key mutations in the genome that allow
improved adaptation of these viruses regarding transmissibility
and faster dispersion (6). The first recombinant to be
identified, named XA, was detected in the UK in samples
collected between Oct 2020 and Jan 2021 and resulted
from recombination involving the Alpha variant (29). An
increase in the detection of recombination events occurred
between Delta and Omicron variants (20, 23, 30, 31) that co-
circulated between November 2021 and February 2022 (10)
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FIGURE 1

Schematic representation of recombination points. Schematic of the SARS-CoV-2 genome (upper panel) and positions where possible
recombination points occur in the XAG, XG, XL, XN, XQ, and XR recombinants (lower panel).

and between Omicron variant sublineages such as BA.1 and
BA.2 (32).

The gold standard technique for identifying and classifying
SARS-CoV-2 lineages is based primarily on partial or whole
genome sequencing through New Generation Sequencing
(NGS) (6). Reverse transcription Polymerase chain reaction
(RT-PCR) assays have been used to identify specific
characteristics that are unique in specific variants, such as
S-gene target failure (SGTF) in the Alpha and Omicron
variant, and genotyping assays have also been applied for
this purpose (33). Sanger sequencing is also a methodology
that allows monitoring SARS-CoV-2 variants with a rapid
response (34–36). Recombination can be challenging to detect
by classification methods, as the recombinant sequences have
high similarity to their shared ancestor (28, 32). Bioinformatics
tools are used to identify and classify variants from the results
obtained by NGS. However, these tools must be used with
caution for potential new recombinant lineage classification
once more in-depth human intervention is usually required for
correct recombinant identification. Otherwise, recombinant
lineages may be unreported until a high prevalence is reached
(37, 38).

The aim of this study was the molecular characterization
of a new recombinant lineage from samples collected in
Brazil between April and May 2022. We demonstrate that this

lineage was not initially classified by the available tools,
such as Pangolin (v4.0.6 at that time). We performed
several complementary analyzes and showed that this
new recombinant, now named XAG, is the result of the
recombination between two sublineages of the Omicron VOC,
BA.1.1 and BA.2.23.

Materials and methods

Sequencing, variant calling,
characterization, and phylogeny

The whole genome sequencing of the samples was
performed using the COVIDSeq Illumina test protocol
adapted by the Fiocruz Genomic Network.1 The assembly
and variant calling was done through the ViralFlow (39)
workflow that performs the assembly of the genome according
to the reference sequence and additional analysis. The
molecular characterization was performed by aligning the
sequences with a dataset of sequences (Supplementary Data
Sheet 1) from previously detected recombinant lineages
submitted to the EpiCoV database at GISAID (40) using
MAFFT (41) and visualization of the mutations profiles
found through the AliView program (42). The multiple
alignments were used in IQ-Tree (43) for estimating the
Maximum-Likelihood phylogeny. Three different phylogenetic
trees were reconstructed: I—Using the complete genome
of the XAG recombinant, other available recombinant
lineages, and parental BA.1 and BA.2 lineages; II–Using
two fragments of the XAG recombinant genome splitted
at the likely breaking point. The first fragment consists
of the beginning of the genome up to 6,515 nt position
(considered the probable recombination breakpoint),
with characteristics like Omicron BA.1.∗ and the second
fragment after this position, the genomic section likely

1 https://www.genomahcov.fiocruz.br/
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FIGURE 2

Detection of recombinant XAG in Brazil. (A) Until June 2022, 186 sequences were detected in 10 states of Brazil: 107 sequences in Rio Grande
do Sul (RS), 7 in Paraná (PR), 17 in Santa Catarina (SC), 34 in São Paulo (SP), 3 in Espírito Santo (ES), 2 in Minas Gerais (MG), 5 in Rio de Janeiro
(RJ), 2 in Distrito Federal (DF), 2 in Pernambuco (PE), and 3 in Ceará (CE). The XAG recombinant was detected in other countries such as
Argentina, Austria, Canada, Chile, Colombia, Denmark, France, Germany, India, Israel, Japan, Luxembourg, Mexico, New Zealand, Peru, Portugal,
Scotland, Switzerland, and USA. (B) The number of XAG sequences submitted to GISAID between March and June in Brazil and worldwide.

derived from Omicron BA.2.∗. A dataset with representative
sequences of the following lineages was used: Omicron BA.1,
BA.2, BA.2.23, XF (Delta/Omicron BA.1), XL (Omicron
BA.1/BA.2), XG (Omicron BA.1/BA.2), XN (Omicron

BA.1/BA.2), XQ (Omicron BA.1/BA.2), XR (Omicron
BA.1/BA.2), and XAG (Omicron BA.1/BA.2). This study
was reviewed and approved by Research Ethics Committee
involving human beings at Instituto René Rachou, Fundação
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FIGURE 3

Phylogenetic analysis. The multiple alignment was used in
IQ-Tree for estimating the Maximum-Likelihood phylogeny.
Bootstrap analyzes were made using SH-like approximate
likelihood ratio test with 1,000 replicates. (A) Phylogenetic tree
reconstructed with the first fragment of the beginning of the
genome up to 6,512 nt position (considered the probable
recombination breakpoint), with characteristics like Omicron
BA.1 (Model: TIM + F + I). (B) Phylogenetic tree reconstructed
with the second fragment after the 6,512 nt position, the
genomic section likely derived from Omicron BA.2/BA.2.23
(Model: TIM + F + R3). (C) Phylogenetic tree reconstructed with
the complete genome of XAG genome, other available
recombinant lineages and parental BA.1 and BA.2 lineages
(Model: TIM + F + R3). A dataset with representative sequences
of the following lineages was used: Omicron BA.1, BA.2, BA.2.23,
XF (Delta/Omicron BA.1), XL (Omicron BA.1/BA.2), XG (Omicron
BA.1/BA.2), XN (Omicron BA.1/BA.2), XQ (Omicron BA.1/BA.2),
XR (Omicron BA.1/BA.2), and XAG (Omicron BA.1/BA.2).

Oswaldo Cruz, under license protocol number: 4,084,902 and
CAAE (certificate of presentation for ethical appreciation):
31984720300005091.

Results

Identification and classification of
sequences collected in Brazil with
initial variant identification failure

In May 2022, the first sequence (EPI_ISL_13019803) that
failed to be identified by Pangolin was deposited and submitted
to GISAID, identified in the Rio Grande do Sul, Brazil. The
genetic profile present in this sample was detected in other
submitted sequences collected later in Brazil. Through analysis
of the mutations present in the sequences, a specific genetic
signature of both the BA.1 and BA.2 lineages of the Omicron
variant was identified, raising the hypothesis of recombination
between these two lineages. In the genome analysis, a possible
recombination point was detected between positions 6,512 and
8,395, at the same likely breaking point described for the XL
recombinant. Up to position 6,512, the samples present a genetic
signature characteristic of the BA.1.1 variant (including the
deletion at position 6,512 found only in BA.1), while after
position 8,392, the genetic signature resembles that of the
BA.2.23 lineage (Figure 1 and Supplementary Table 1).

A new recombinant cluster was detected through molecular
and phylogenetic analyses, later named XAG.2 The first
sequence of the XAG variant was collected on March 10, 2022,
in the city of Caxias do Sul, Rio Grande do Sul/Brazil, from a 17-
year-old male patient. Currently, 186 sequences were detected
in 10 Brazilian states (Figure 2) and have already been detected
in other countries such as Argentina, Austria, Canada, Chile,
Colombia, Denmark, France, Germany, India, Israel, Japan,
Luxembourg, Mexico, New Zealand, Peru, Portugal, Scotland,
Switzerland, and the USA. On July 7, 2022, 252 sequences
belonging to the recombinant XAG cluster were deposited in
GISAID (Supplementary Data Sheet 1).

Phylogenetic analyzes and molecular
characterization

In the phylogenetic analyses, it is possible to observe
differences in the distances between BA.1 and BA.2 clusters
when using the different genome portions. The proximity of the
BA.1 branches to the BA.1-corresponding portion of the XAG
genome is observed (Figure 3A), as well as the greater proximity
of the BA.2/BA.2.23 branches to the portion corresponding to

2 https://github.com/cov-lineages/pango-designation/issues/709
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BA.2 of the XAG genome (Figure 3B). In the complete genome
analysis of XAG, it is possible to verify that it is a new cluster,
both regarding the recombinants of Omicron BA.1/BA.2 and
XF (Delta/Omicron BA.1) (Figure 3C). Nevertheless, in less
detailed analyses, it is possible to confuse the XAG recombinants
with other Omicron BA.1/BA.2 recombinants such as XG and
XQ.

The XAG recombinant has four distinct markers: C2857T
(synonymous), C5585A (L1774I), A12334G, and C17502T
(synonymous), all present in the region of the ORF1ab gene.
Up to position 6512, XAG has features of the BA.1 sublineage
and, after that, shows a genetic signature like the BA.2 sublineage
(Figure 4).

Discussion

In nature, mutations, recombination, and reassortment
are critical evolutionary processes that generate genetic
diversity (44). The CoVs, like most other viruses, have
developed a variety of genetic mechanisms, among which
recombination and generation of defective-interfering (DI)
RNA that, as a side effect, generate diversity (45, 46).
SARS-CoV-2, despite being genetically distinct from the
viruses that cause SARS epidemic in 2003 and Middle East
respiratory syndrome coronavirus (MERS-CoV), shows high
levels of genetic similarity with a strain from bats and
strains obtained from pangolins (47–49), demonstrating that
recombination can help to develop transmission strategies
between species by establishing more susceptible hosts (50).
Frequent genomes recombination, large genetic diversity, and
high human-animal interface enable CoVs to emerge from
time to time in humans due to occasional spillover and
recurrent cross-species infectious events (44). Recombination
and reassortment are essential processes that allow new
antigenic combinations and altered phenotypes in emerging
viruses that might aid the course of cross-species diffusion
(44). RNA recombination is required during normal replication.
The mechanisms and determinants of CoVs recombination
are not known (51). Recombination of MERS-CoVs was
already described in camels, leading to human outbreaks in
2015 (52). The high number of accumulated mutations in
the Omicron variant may be due to recombination events.
However, there is still no scientific evidence to support this
hypothesis (53).

It was confirmed that co-infections by Omicron and Delta
variants have already occurred in specific populations (9).
Currently, the Omicron variant has the largest circulation
in Brazil (approximately 99% of the genomes sequenced in
June 2022), represented by 0.7% of the BA.1.∗ sublineage,
64% of the BA.2.∗, 14.7% of the BA.4 and 20.5% of
BA.5.∗ (10). This variant overlapped the Delta variant, but
they co-circulated between November 2021 and January

2022, which contributed to co-infections and, consequently,
allowed recombination between these two strains (9, 23).
The first recombination identified was named XA and is the
result of a recombination of the Alpha variant.3 After that,
recombinant strains B.1.634 and B.1.631 were detected (XB),
and so far, 32 recombinants have been identified in several
countries,4 most of them occurred between Omicron variant
sublineages recombination.

The XAG recombinant described in this work has four
unique mutations. Two mutations, C2857T and C17502, are
synonymous. Synonymous nucleotide changes may be related
to virus adaptation and more efficient use of host tRNA profile,
but it also may impact virus genome hairpins and 3D RNA
structure (54). In addition, the mutation at position 5,585
(L17714I) is unique to the XAG recombinant and had already
been observed in circulating strains previously, but at a low
frequency, disappearing over time (55). SARS-CoV-2 and other
CoVs have moderate genetic variability because they have
an RNA-dependent RNA-polymerase (RdRP) with correction
activity during viral genome replication and transcription (56).
Even with this mechanism, errors can occur and become fixed if
they present adaptive advantages. Host-related factors can also
induce mutations, such as the antiviral mechanism mediated
by APOBEC (Apolipoprotein B mRNA Editing Catalytic
Polypeptide-like) proteins. APOBEC-like directional C→U
transitions of genomic plus-strand RNA are overrepresented in
SARS-CoV-2 genome sequences of variants emerging during the
COVID-19 pandemic (57) and may affect the identification of
co-infection events (15). De Maio et al. demonstrated that two
mutation rates, C→U and G→U, are similar and much higher
than all other mutation rates, leading to extremely frequent
homoplasies (58). Sequence changes in SARS-CoV-2 and other
coronavirus genomes may be partially or restricted to several
mutational hot spots that promote convergent changes between
otherwise genetically unlinked strains (59).

Recombination can be challenging to detect, mainly because
they have similar characteristics to other circulating lineages
at a higher frequency (9, 32). In addition to monitoring
circulating lineages, the purpose of genomic surveillance is the
rapid identification of new emerging lineages (5). Genomic
surveillance also plays a significant role in studies on developing
prophylactic measures and vaccines. Monitoring SARS-CoV-
2 genetic changes, especially at the epitopes with implications
for immune escape, is crucial (60). Since the first identification
of a recombinant in Rio Grande do Sul, surveillance has been
intensified, providing identification of more XAG recombinant
sequences (see text footnote 1). This recombinant community
transmission was observed in several neighboring and distant
Brazilian states. This fact demonstrates the importance of

3 https://virological.org/t/recombinant-sars-cov-2-genomes-
involving-lineage-b-1-1-7-in-the-uk/658

4 https://github.com/cov-lineages/pango-designation
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FIGURE 4

Molecular characterization of recombinant XAG. Alignment of sequences from Omicron subvariants BA.1 and BA.2, which originated the
recombination that generated the XAG recombinant showed four distinct markers (in red) of this recombinant at positions (A) 2,857 (C/T), (B)
5,585 (C/A), (C) 12,334 (A/G), and (D) 17,502 (C/T). The mutation at positions 2,857 and 17,502 generate synonymous mutations and the
mutation at position 5,585 (L1774I) is exclusive to this recombinant.

genomic surveillance associated with an epidemiological link to
validate genetic findings further.

As SARS-CoV-2 circulates worldwide, new lineages emerge
and are tracked using the Pango dynamic hierarchical
nomenclature system (28). Bioinformatics tools are essential
and greatly help genomic surveillance, especially in pandemic
scenarios, where surveillance needs to be assertive and fast
(37). However, these tools have some limitations. In our work,
it was possible to identify a flaw in the classification of the
SARS-CoV-2 lineage by Pangolin since our sequences have
mutations shared with the ancestral lineages and, in addition,
they have synonymous mutations, which could only be detected
through manual analyzes of all genome positions. To minimize
this effect, Pangolin developers regularly train the tool with
the latest designated sequencing (38). Despite this, viruses,
especially RNA viruses, have high mutation rates that lead to
an eminent environmental adaptation with rapid evolution,
contrasting with the identification tools update time (44). We
strongly suggest that classification tools are used allied with
manual curation, especially in cases such as the one described
in this study, since minority mutations may go unnoticed and
help to tease apart co-infection and recombination events of
epidemiological importance. The main limitation of our study
is the focus only on the agent, based on the epidemiological
triad (Agent, Host, and Environment), which demonstrates the
need for further studies on recombinants (61, 62). We could
not perform viral isolation, and it was also not possible to
collect serial samples from each patient to assess the impact

of XAG infection. The impact must be evaluated considering
factors such as vaccination, social distancing measures, and
recombination events that can occur in animals and viruses
jumping back to humans (26, 61).

Conclusion

In conclusion, it was possible to identify the emergence of a
new SARS-CoV-2 recombinant, a result of the recombination
between two sublineages of the VOC Omicron, applying
bioinformatics tools for the identification of variants together
with manual analyzes for the characterization of unique
unlabeled mutations present in the new cluster, called XAG. In
addition, new markers were identified in the XAG recombinant
that had not been found in other previously described
recombinants, demonstrating the potential for these viruses to
evolve through recombination. This study demonstrates the
need for continuous genomic surveillance of SARS-CoV-2, in
which recombination appears essential in its evolution. The
real impact of the recombinants needs to be further studied,
considering the possibility of the occurrence of these events in
animal-human interfaces and the emergence of new lineages.
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