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Abstract

Background: Preterm birth is defined by the onset of labor at a gestational age shorter than 37 weeks, and it can lead to premature birth
and impose a threat to newborns’ health. The Puerto Rico PROTECT cohort is a well-characterized prospective birth cohort that was
designed to investigate environmental and social contributors to preterm birth in Puerto Rico, where preterm birth rates have been
elevated in recent decades. To elucidate possible relationships between metabolites and preterm birth in this cohort, we conducted
a nested case-control study to conduct untargeted metabolomic characterization of maternal plasma of 31 women who experienced
preterm birth and 69 controls who underwent full-term labor at 24–28 gestational weeks.

Results: A total of 333 metabolites were identified and annotated with liquid chromatography/mass spectrometry. Subsequent
weighted gene correlation network analysis shows that the fatty acid and carene-enriched module has a significant positive as-
sociation (P = 8e−04, FDR = 0.006) with preterm birth. After controlling for potential clinical confounders, a total of 38 metabolites
demonstrated significant changes uniquely associated with preterm birth, where 17 of them were preterm biomarkers. Among 7
machine-learning classifiers, the application of random forest achieved a highly accurate and specific prediction (AUC = 0.92) for
preterm birth in testing data, demonstrating their strong potential as biomarkers for preterm births. The 17 preterm biomarkers are
involved in cell signaling, lipid metabolism, and lipid peroxidation functions. Additional modeling using only the 19 spontaneous
preterm births (sPTB) and controls identifies 16 sPTB markers, with an AUC of 0.89 in testing data. Half of the sPTB overlap with those
markers for preterm births. Further causality analysis infers that suberic acid upregulates several fatty acids to promote preterm
birth.

Conclusions: Altogether, this study demonstrates the involvement of lipids, particularly fatty acids, in the pathogenesis of preterm
birth.
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Introduction
Preterm birth is defined as deliveries that occur prior to 37 weeks
of gestation, and it is one of the leading causes of newborn mor-
tality and morbidity [1]. We previously reported that the rates
of preterm birth in Puerto Rico are among the highest observed
worldwide, reaching 18% [2]. The Puerto Rico PROTECT cohort,
herein referred to as the PROTECT cohort, was established to
study the etiology of preterm birth and the risk factors associ-
ated with it. Factors such as higher maternal age [3], smoking his-
tory [4], and lower socioeconomic status, particularly as indicated
by education level and income level [5], have been reported to be
associated with adverse labor outcome [2]. In addition, we con-
ducted an environmental exposure study in PROTECT and found
that higher phthalate exposure was associated with preterm birth
[6]. Endogenous metabolites derived from important biological
processes (e.g., lipolysis, glycolysis) may provide critical insight

into the etiology of antecedent mechanisms of preterm birth [7];
therefore, we conducted a metabolomics study within the PRO-
TECT cohort to establish a potential link between metabolites and
preterm birth.

Metabolomics provides compositional and quantitative infor-
mation about the state of an organism or cell at the macro-
molecular level [8]. Blood metabolomics has been used to iden-
tify biomarkers and potential molecular mechanisms for vari-
ous diseases and conditions, such as aging [9], acute-on-chronic
liver failure [10], hypertension, and blood pressure progression
[11]. Biomarkers of preterm birth have been discovered in the
amniotic fluid, maternal urine/maternal blood, and cervicovagi-
nal fluid [7]. Decreased phosphocholine (PC) [12] and increased
levels of acylglycerophosphoserines (PS), diacylglycerophospho-
ethanolamines (PE), phosphatidyinositol (PI), and phosphatidyl-
glycerol (PG) were observed in maternal blood samples from
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women with preterm birth [13]. In a previous lipidomic analysis
in the PROTECT cohort, we have also observed signals between
maternal free fatty acids (FFAs) and phospholipids (plasmenyl-
phosphatidylethanolamines) and spontaneous preterm birth
(sPTB) [14]. We sought to expand on this body of evidence and
explore greater coverage of metabolic pathways and conducted
this study to explore the potential roles that lipids play in preterm
birth.

The samples used in this study were maternal plasma col-
lected in gestational weeks 24–28 from the women, who went
on to experience preterm birth (N = 31) or full-term healthy de-
liveries (N = 69). Untargeted metabolomics liquid chromatogra-
phy with tandem mass spectrometry (LC-MS/MS) assays were
performed on these samples, followed by bioinformatics analy-
sis. Our goals were the following: to (i) identify metabolites and
metabolomic pathways that are associated with preterm birth;
(ii) elucidate metabolomic processes that may have a causal re-
lationship with preterm birth; and (iii) seek early gestational
metabolomic biomarkers (weeks 24–28) that are predictive of
preterm birth.

Materials and Methods
Study population
This study was conducted in an exploratory sample of the PRO-
TECT cohort, which obtained its own institutional review board
approval. This is a single-center study conducted in Puerto Rico. At
the time of this study, the parent cohort consisted of 812 pregnant
women, from which we randomly sampled 31 women who expe-
rienced preterm birth and 69 full-term controls for metabolomic
analysis. Recruitment of the PROTECT cohort is ongoing and be-
gan in 2010. It is funded by the National Institute of Environmen-
tal Health Sciences Superfund Research Program. Participants
were recruited in the first or second trimester of pregnancy (me-
dian 14 weeks gestation). Inclusion during early gestational age
ranges allows for greater capacity to evaluate windows of vulner-
ability across pregnancy. Inclusion criteria for recruitment were
as follows: age of 18–40 years, having residence in the Northern
Karst aquifer region, disuse of oral contraceptives 3 months be-
fore pregnancy, disuse of in vitro fertilization, and lack of major
health conditions or obstetrical complications in medical records.
For preterm births, gestational ages <37 weeks were included. For
controls, gestational ages between 39 weeks 0 days and 40 weeks
6 days were included.

Pregnancy phenotypes
Medical records were used to determine birth outcomes. Gesta-
tional age in complete pregnancies was estimated using the Amer-
ican College of Obstetricians and Gynecologists (ACOG) recom-
mendations and previously described in greater detail [6, 15, 16].
Delivery at <37 weeks gestation was defined to be preterm birth.
Among preterm birth cases, we further disaggregated cases as
sPTB cases if they had the presentation of premature rupture of
membranes, sPTB, or both.

Sample preparation
Stored plasma samples, which were collected from the women
between 24 and 28 weeks gestation and subsequently stored at
−80◦C, were thawed on ice in preparation for analysis. Depro-
teinization was then performed by taking 100 μL of plasma com-
bined with 400 μL 1:1:1 ratio of methanol, acetone, and water.
Internal standards were also incorporated for metabolite recov-

ery assessment and included 5 μM of L-(D4) thymine, L-(15N) an-
thranilic acid; and 20 μM of L-(15N)2 tryptophan, gibberellic acid,
L-epibrassinolide. Plasma samples were subsequently vortexed
and centrifuged for 10 minutes at 15,000g. The supernatant of the
centrifuged samples was transferred to a clean vial and dried us-
ing nitrogen gas. The dried samples were reconstituted to 50 μL.

Liquid chromatography–mass spectrometry
untargeted metabolomics
The untargeted metabolomics analysis of all samples was ran-
domly processed and assigned to LC-MS/MS queue using a com-
puterized algorithm. The reversed-phase chromatographic sep-
aration was performed on an Agilent 1290 Infinity II ultra-high
performance liquid chromatography instrument (UHPLC) (Agilent
Technologies, Inc., Santa Clara, CA, USA) with the Waters Acquity
BEH C18 column (Waters Corporation, Milford, MA). The temper-
ature of the column heater was maintained at 55◦C. The injec-
tion volume was 5 μL for all analyses. The lipid extract was in-
jected onto a 1.7-μm particle diameter, 100 × 2 mm id Waters Ac-
quity BEH C18 column (Waters, Milford, MA) to separate the lipids.
We used a linear gradient beginning with 98% Solvent A (water
+ 0.1% formic acid) and 2% Solvent B (methanol + 0.1% formic
acid) to perform chromatographic elution. Solvent B was linearly
increased to 98% over the first 22 minutes and was held at this
level for 8 minutes. Thereafter, the composition was returned to
the beginning and held for 3 minutes. The flow rate used for these
experiments was 0.46 mL/min.

Mass spectrometry data acquisition for each sample was per-
formed in both positive and negative ionization modes using an
Agilent 6445 Q-TOF (AB Sciex, Concord, ON, Canada). In positive
ion mode runs, mobile phase A is 100% water that has 0.1% formic
acid while mobile phase B is 100% methanol that has 0.1% formic
acid. The formic acid is replaced with 0.1% (m/v) ammonium bi-
carbonate in negative ion mode runs. The column effluent was di-
rected to the ESI source. For positive ionization mode, the voltage
was set to 5,500 V. For negative ionization mode, the voltage was
set to 4,500 V. For both modes, the declustering potential (DP) was
set to 60 V and the source temperature was set to 450◦C. The cur-
tain gas flow was 30 (l/min). The nebulizer was 40 (l/min). The
heater gas was 45 (l/min). The Q-TOF resolution according to spec-
ifications is >45,000 FWHM at 2,722 m/z, mass accuracy was <1
ppm with in-line mass calibration, and scan rate was ∼118 scans
per minute. Acquisition of MS/MS spectra was performed using
the data-dependent acquisition (DDA) function of the Analyst TF
software (AB Sciex, Concord, Canada). The software was set to the
following parameters: dynamic background subtraction, charge
monitoring to exclude multiply charged ions and isotopes, and dy-
namic exclusion of former target ions for 9 s.

Metabolite identification
The collected DDA MS/MS spectra data were analyzed using the
Masshunter Qualitative Analysis Kit (AB Sciex, Concord, Canada).
Using this kit, the “Find by Feature” algorithm is used to de-
tect chromatographic peaks representative of metabolites. Be-
tween samples, feature alignment was performed using an in-
house–written software package that matches features with iden-
tical mass and retention time between samples. Tgaps in chro-
matographic data, recursive feature identification was also per-
formed by searching the data a second time with the list of
aligned features using the “Find by Formula” algorithm in Agilent
Masshunter Qualitative Analysis Software. Metabolites were pu-
tatively annotated using the mass spectral data annotation tool,
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Binner [17], to reduce contaminants, artifacts, and degeneracies.
An annotated metabolite list was searched against an in-house
library of 800 known metabolite standards that had been previ-
ously analyzed under identical LC-MS conditions. MS/MS spectra
for metabolites not identified by standards were searched in the
Metlin (Agilent Metlin B.08.00) or NIST 17. Metabolites not identi-
fied by library standards or MS/MS spectra were searched in the
Metlin database [47] and Human Metabolome Database (HMDB)
[48].

Metabolomics data pre-processing and quality
check
Samples were assayed in a single batch. Pooled quality control
(QC) samples were prepared by pooling equal volumes of each
sample. The pooled QC samples were injected at the beginning
and the end of each analysis and after every 10 sample injec-
tions to provide a measurement of the system’s stability and per-
formance. The principal component analysis plots of cases, con-
trols, and pool QC samples are shown in Supplementary Fig. S4.
A total of 333 metabolite species were detected using the DDA
MS/MS spectra data collected either in positive ion mode or nega-
tive ion mode. Missing value imputation was performed using the
k-nearest neighbors method [18]. Log-transformation and quan-
tile normalization [19] was applied to the data, prior to the other
downstream analysis. For quality check, partial least squares–
discriminant analysis (PLS-DA) was applied on the 100 samples
using all identified metabolites.

Source of variation analysis and data screen
The metabolomics dataset of maternal plasma consists of 333
metabolites, including 167 metabolites in the negative mode
and 166 metabolites in the positive mode. To eliminate con-
founders that are not truly related to preterm birth, we con-
ducted a preliminary screen according to the source of varia-
tion (SOV) analysis, which helps to discover the contributions of
each clinical/physiological factor to the metabolomics variation.
The metabolites with an F statistic of preterm/control >1 were
screened before other analyses, meaning that they had a regres-
sion sum of squares larger than the error sum of squares. All 333
metabolites passed this screening process.

Differential metabolomics species identification
To remove potential confounding effects, we fit a linear model for
each metabolite over preterm status while adjusting for a priori
phenotypic variables via the R limma package [20]. Adjusted phe-
notypic variables include gestational age in weeks, smoking sta-
tus, alcohol consumption, baby length, baby (fetal) sex, LGA/SGA
(large/small for gestational age), maternal age, income, and pre-
pregnancy body mass index (BMI). Large for gestational age (LGA)
describes infants that are born with an abnormally high weight,
specifically ≥90th percentile, compared to other babies of the
same developmental age. Small for gestational age (SGA) de-
scribes infants whose weight is <10th percentile for gestational
age. Metabolites with P < 0.05 were selected as statistically signif-
icant in association with preterm birth.

Weighted gene co-expression network analysis
For the weighted gene co-expression network analysis (WGCNA),
all metabolites were analyzed together [21]. The smallest soft
threshold with an adjusted R2 > 0.8 was 4, and hence it was cho-
sen to calculate the adjacency score between any 4 metabolites
within a sample set. Following that, the topological overlap value

between these 4 metabolites was computed from this adjacency
score and the corresponding connectivity value [22]. The topolog-
ical overlap value is converted to a distance value by subtracting
it from 1 and producing a pairwise metabolites distance matrix.
This distance matrix was then used to cluster the metabolites us-
ing hierarchical clustering with dendrogram, where modules were
identified. As a result, we kept the metabolites that had a topolog-
ical overlap score >0.5 in each module. For the integrated WGCNA
analysis using both preterm and healthy samples, we used a soft
threshold (power) of 8 as suggested by the WGCNA estimation.
We set minModuleSize 10, mergeCutHeight 0.25, deepSplit 2, and
verbose 3 for the WGCNA analysis.

The model of classification
We first further screened the differentiated metabolites with mu-
tual information (MI) >0.5 and then used the Lilikoi package [23]
to determine the best machine learning model for classifying
preterm and control samples using selected metabolites. Seven
algorithms were compared in this step: recursive partitioning and
regression trees (RPART), partition around medoids (PAM), gradi-
ent boosting (GBM), logistic regression with elastic net regulariza-
tion (LOG), random forest (RF), support vector machine (SVM), and
linear discriminant analysis (LDA). The samples were randomly
split into 80/20 ratio for training data vs testing data. The best
method was determined on the training set using 10-fold cross-
validation, by metrics F statistics and balanced accuracy. We ap-
plied the same process above on the subset of 19 sPTB cases and
controls.

The mapping of metabolite-related pathway and
phenotype
We used the query lipid as the input to map metabolites to path-
ways from HMDB, PubChem, and KEGG in Lilikoi [23,24]. These
metabolite-pathway interactions were then used for further path-
way analysis. Pathway dysregulation scores, a metric representing
the degree of dysregulation at the pathway level, were calculated
through the Pathifier R package to determine the dysregulation
level of the pathway [25].

Causality analysis
We sorted metabolomics data and clinical features into time se-
ries by the gestational ages of patients. Then we performed the
Granger causality test to identify potential causality relationships
between metabolites and preterm birth using the lmtest R pack-
age (version 0.9–37). The threshold of the P-value is set to 0.01 for
significant causality interaction.

Results
Study overview
The demographic and major clinical characteristics of the partic-
ipants in the PROTECT cohort study are reported in Table 1. Ex-
cept for the fact that individuals with preterm deliveries had sig-
nificantly shorter gestational ages than healthy pregnant women
(mean gestational age 39.20 vs 34.69 weeks, P = 1.28e−13), other
characteristics of cases and controls are comparable across all
categories. We also investigated the correlations among pheno-
typic factors (Fig. 1A). Lower income was positively correlated with
preterm birth in weeks (PCCIncome = 0.205, P < 0.05), confirming
the socioeconomic association with preterm birth [26]. Maternal
age shows the tendency of negative correlation with preterm birth
(PCCAge = −0.181, P < 0.1).
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Figure 1: (A) Correlation matrix of the 10 phenotypic variables on the 100 samples (69 controls vs 31 preterm cases). (B) Partial least
squares–discriminant analysis (PLS-DA) plot of the 100 samples using 333 metabolites. (C) Source of variation (SOV) analysis using 100 samples; 333
metabolites are used in the ANOVA model. (D) Heat map of correlations between 333 metabolites and 11 confounding factors. The rows represent the
clinical factors, and the columns represent metabolites (point-biserial correlation for continuous and binary covariates; Pearson correlation for
continuous covariates; Spearman correlation for continuous and ordinal covariates).

A total of 333 lipid metabolites were identified by LC/MS in ma-
ternal plasma. A PLS-DA plot of the 100 samples using all identi-
fied lipid metabolites shows that preterm samples are well sepa-
rated from healthy controls using the first 2 components (Fig. 1B).
To examine the degree of confounding from other variables, an
SOV analysis was carried out (Fig. 1C). Preterm birth is ranked
first for the F statistics, followed by variables BMI, income, ma-
ternal age, alcohol consumption, smoking, and SGA, which all
have F statistics >1. To further identify the relationships between
phenotypic factors and metabolites, correlations between clinical
factors and metabolites were calculated (Fig. 1D) and then sub-
jected to hierarchical clustering (using Euclidean distance as the
distance metric). Three clusters of metabolites are identified with
sizes of 230, 36, and 67. Cluster 3 is significantly enriched in fatty
acids (FAs) (Fisher P-value = 5.24e−4, false discovery rate [FDR] =
0.02, odds ratio = 2.12), and FAs are generally lower in preterm
samples. They have a striking pattern of negative associations
with preterm birth. Moreover, FAs also have overall negative as-
sociations with age, income, and alcohol use, suggesting the bio-
logical, socioeconomic, and behavioral effects are intertwined at
the metabolomic level. The other 2 clusters do not have enrich-
ment in specific metabolite functional groups.

Correlation network analysis of metabolomics
related to preterm birth
To further elucidate the relationships between metabolomics and
preterm birth, we next performed the WGCNA method on the
333 metabolites [21]. WGCNA analysis yields 7 modules (Fig. 2A).
Among these modules, only the turquoise-colored module shows
a significant positive association (Fisher exact test, P = 8e−04, FDR
= 0.006) with preterm birth (Fig. 2). This module is enriched with
FAs (Fisher exact test, P = 3.85e−05, FDR = 4.24e−04) and carene
(CAR) (Fisher exact test, P = 2.53e−03, FDR = 0.028). This FA/CAR-
enriched module also shows a significant negative association (P =
0.002, FDR = 0.022) with gestational age (GestAge) (Fig. 2B). These
results, together with the previous metabolite-phenotype analy-
sis (Fig. 1C), demonstrate that FAs in the mothers who gave birth
prematurely not only have higher levels but also tighter corre-
lations (through regulations). To examine the module difference
between cases and controls more closely, we further conducted
the WGCNA on the 2 groups separately. Three modules have sig-
nificantly overlapping metabolites in the case and control groups
(Supplementary Figs S1, 2A, and 2B), respectively. Interestingly, the
FA-enriched modules in cases (A2) and controls (B2) have the most
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Figure 2: WGCNA network in all samples. (A) WGCNA network modules of metabolomics data from both preterm and control samples. Each node
represents a lipid. Node color represents a module. (B) Module-trait associations.

significant overlap (P = 6.76e−18, FDR = 6.084e−17) (Supplemen-
tary Figs S1 and 2C). However, we did not find that the density of
FA-enriched modules was higher in preterm cases compared to
that in controls (Supplementary Figs S1 and 2D).

Differentiated metabolites and their mapped
pathways
We next conducted differential metabolite analysis between cases
and controls, using the limma package [20] allowing for pheno-
typic variable adjustment. As a result, 38 metabolites are signif-
icantly different (P < 0.05) between preterm and control sam-
ples exclusively, and are not associated with other confounders
(Fig. 3A). The log fold changes (logFC) of the differentiated metabo-
lites ranged from −0.87 to 0.68 (Supplementary Table S1). Among
them, 21 metabolites are upregulated and 17 metabolites are

downregulated in preterm samples (Fig. 3B). The majority of these
metabolites are unsaturated FAs.

To further explore the functions of these metabolites, we
mapped the 333 metabolites to pathways and conducted pathway
enrichment analysis, using the Lilikoi R package [18, 23]. These
pathways are from KEGG, HMDB, Metlin, and PubChem databases.
A total of 240 of 333 metabolites are successfully mapped by ≥1
database, with assigned memberships to 38 pathways. Among the
38 differential metabolites, 33 of them are involved in 5 path-
ways that show significant alterations in pathway dysregulation
scores, a metric representing the degree of dysregulation at the
pathway level [25]. These pathways share a lot of lipids and are
interrelated: lipid metabolism, cell signaling, lipid transport, FA
metabolism, and lipid peroxidation. The bipartite plot illustrated
the relationships between the differentiated metabolites and their
corresponding differential pathways (Fig. 3C).
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Figure 3: Metabolites show significantly different levels in preterm and control samples. (A) Heat map of the 38 metabolites with a significant
difference exclusively between preterm and control samples (P < 0.05). (B) Bar plots on the averaged normalized intensities in cases vs controls. (C)
Bipartite graph of the significantly differentiated metabolites and the significantly altered metabolic pathways with which they are associated. Five
pathways with a significant difference between preterm and control samples (P < 0.05) and 33 significantly differentiated metabolites engaged in
these pathways are shown. Elliptical nodes: metabolites. Rectangular nodes: pathways from HMDB, PubChem, and KEGG databases. Node color: red,
upregulated; blue, down-regulated. Node size: the absolute value of log fold change (logFC).

Metabolomics-based preterm biomarker model
Another important application of metabolomics analysis is to
screen for diagnostic biomarkers for diseases. For this purpose,
we split samples with 80/20 ratio into training and testing data.
We further selected 17 metabolites out of the 38 differentiated
ones using MI score of 0.5 as the threshold. We compared the
performance of 7 machine learning algorithms in the Lilikoi R
package, including RPART, PAM, GBM, LOG, RF, SVM, and LDA. We
used the area under the ROC curve (AUC), F1 statistic, and bal-
anced accuracy to evaluate the models. Among all classification
methods, RF yields the highest balanced accuracy statistic (1.0)
in the training dataset (Fig. 4A), so we selected it as the winning
model to show the predictive performance on the remaining test-
ing dataset. The overall accuracy for RF on the testing data is 0.92

for the AUC, 0.5 for the F1 statistic, and 0.67 for the balanced accu-
racy (Fig. 4C). Next, we tested whether the biomarkers are specific
to preterm birth rather than other clinical confounders. We used
the 17-feature RF classification model built for preterm birth to
predict its classification performance over other terms including
LGA, BMI, and maternal age, using the same testing dataset. The
AUC on LGA, BMI, and maternal age are 0.2, 0.09, and 0.17 respec-
tively, in the precision-recall curves (Fig. 4D). This confirms the
specificity of the 17-biomarker model for preterm birth. Several
FAs show top importance scores in the model: FA(17:1) (first, im-
portance score = 7.32 of 100); FA(24:6) (second, 7.02); FA14:2 (third,
6.98). Hexanoylcarnitine is also a top important metabolite (fifth,
6.6), involved in FA oxidation. It has been reported to be signifi-
cantly higher in preterm birth [27].
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Figure 4: Classification model for preterm birth. (A) Comparison of 7 classification models using 17 metabolites on the hold-out testing. The dataset
was randomly split into training data (80%) and testing data (20%) 10 times. The mean value (bars) and standard error (error bars) of the 10 repeats are
shown for 3 performance metrics of the area under the receiver operating curve (AUC), F1 statistic, and balanced accuracy. The winning method RF in
training data (left) was then applied to the testing data (right). (B) The heat map of correlation coefficients between the 17 metabolites and clinical
variables. (C) The precision-recall curves of the RF model from (A) on classifying preterm, LGA (large for gestational age), income, and maternal age
(≥35 y or not), respectively, using the same set of testing data as in (A). (D) Normalized variable importance scores for the 17 lipid markers in the RF
model. The normalization is done on R by making the sum of importance scores be 100.

Predicted causality interactions among
metabolites and preterm birth
We used the Granger causality test [28] to infer significant causal-
ity interactions (P < 0.01) between the 17 metabolites and the bi-
nary preterm outcome. As shown in Fig. 5, upregulated hexanoyl-
carnitine (logFC = 0.472), CAR(18:2) (logFC = 0.375), CAR(20:2)
(logFC = 0.280), FA(14:1(Ke)) (logFC = 0.407), FA(14:2) (logFC =
0.492), and FA(17:1) (logFC = 0.402), and downregulated behenic
acid (logFC = −0.191), pimelic acid (logFC = −0.357), suberic acid
(logFC = −0.224), glycocholic acid (logFC = −0.867), and PC(33:4)
(logFC = −0.332) are predicted as direct causal metabolites of
preterm birth. The causality test also predicts the causality in-
teraction from FA(17:1) to pimelic acid, which is synthesized
from FA [29]. Interestingly, downregulated suberic acid (logFC =
−0.224) is predicted to be the direct cause of upregulated FA(22:4)
(logFC = 0.332), FA(20:2) (logFC = 0.282), FA(22:2) (logFC = 0.221),

FA(14:0(Ke)) (logFC = 0.434), FA(14:1(Ke)) (logFC = 0.407), and
FA(14:2) (logFC = 0.492). A previous study shows that suberic acid
is present in the urine of patients with FA oxidation disorders, in-
dicating the correlation between suberic acid and the metabolism
of FAs [30].

Prediction model for spontaneous preterm birth
The 31 preterm samples include 19 sPTB cases and 12 samples
from other conditions (e.g., preeclampsia). To further investigate
the association between metabolites and sPTB, we analyzed the
cases with sPTB separately (cases = 19; controls = 75). We con-
ducted differential analysis between sPTB and controls and iden-
tified 53 metabolites with P < 0.05, 33 of which also appeared in
the previous 38 metabolites significantly different in preterms vs
controls (Supplementary Fig. S2A). For the 33 metabolites, the dif-
ferential patterns are consistent in both preterm birth and sPTB,
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GLYCOCHOLIC ACID
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Figure 5: Predicted significant (P < 0.01) causality interactions between the 17 metabolites and preterm birth. Arrow indicates the causality
interaction. Blue and red nodes are down- and upregulated metabolites, while the center one is preterm.

with the fold changes being more extreme in sPTB (Supplemen-
tary Fig. S2B).

Using the same procedures as in the previous metabolomics-
based preterm biomarker model, we identified 16 of the 55
metabolites as markers for sPTB. Half of these 16 markers, in-
cluding FA(24:6), FA(16:3), FA(17:1), FA(14:2), FA(19:1), FA(14:0(Ke)),
FA(14:1), and heptadecanoic acid, are also among the previously
identified 17 metabolite markers for preterm birth. We further
investigated whether the identified markers can serve as good
predictors of sPTB (Supplementary Fig. S3). The RF method again
presents the best performance in the training data and achieves
an AUC of 0.89 in the testing data. In the metabolite marker impor-
tance ranking, previously fifth-ranked hexanoylcarnitine appears
again among the top metabolites (fifth, 7.56). In summary, many
preterm markers are also robust sPTB signatures.

Discussion
Preterm birth is one of the leading causes of newborn mortality
and morbidity [1]. To improve our understanding of preterm birth,

we conducted a metabolomics analysis of maternal blood in the
PROTECT cohort of preterm birth patients and healthy controls.

The importance of FAs in preterm birth is highlighted by
bioinformatics analysis in various aspects. First, correlation net-
work analysis of metabolomics reveals deregulated lipid mod-
ules that may contribute to preterm birth (Fig. 2). The FA/CAR-
enriched module is enriched with several FAs including 2 es-
sential FAs, i.e., alpha-linolenic acid and linoleic acid (omega-6
FA), and a class of saturated FAs (heptadecanoic acid, palmitic
acid). Second, FAs show high importance scores in machine learn-
ing models for either preterm birth or sPTB. Other studies have
also found excessive FFAs detected in the preterm cases of ma-
ternal circulation, linking them to inflammation [31], the main
cause of preterm birth [27]. In fact, a higher omega-6 to omega-
3 FA ratio would increase pro-inflammatory eicosanoid produc-
tion [32, 33], and it was associated with shorter gestation du-
ration for overweight/obese women [34]. Another study on un-
derweight and obese women with sPTB identified a higher con-
centration of omega-6 and omega-3 FAs in their mid-gestation
serum samples [35]. Confirming our discovery, a recent com-
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Table 1: Demographic and clinical characteristics in case and con-
trol groups

Characteristic

Controls
(n = 69)

Cases
(n = 31)

P-value1Mean (SD)

Maternal age, y 27.07 (5.91) 24.84 (5.10) 0.058
BMI, kg/m2 25.55 (5.25) 27.51 (6.92) 0.165
Gestational age, weeks 39.20 (0.98) 34.69 (2.08) 1.28e−13
Annual household income2 3.87 (2.12) 2.87 (2.22) 0.039

No.
Baby sex

Female 35 14
0.669

Male 34 17
Smoker

Yes 12 2
0.215

No 57 29
Alcohol use

None during pregnancy 32 19

0.294
Drank before pregnancy 32 9
Drank during pregnancy 4 2
Unknown 1 1

SGA
No 58 25

0.567Yes 10 6
Unknown 1 0

1t-test for continuous variables and Fisher exact test for count data.
2Income categories: 1 = <$4,999; 2 = $5,000–$9,999; 3 = $10,000–$19,999; 4
= $20,000–$29,999; 5 = $30,000–$39,999; 6 = $40,000–$49,999; 7 = $50,000–
$74,999; 8 = $75,000–$99,999; 9 = $100,000–$199,999. SGA: small for gestational
age.

plementary lipidomics study within the PROTECT cohort also
observed that mono- and polyunsaturated FFAs (FFA 20:1, FFA
20:1, FFA 18:1) were associated with a higher risk of sPTB [14].
We have also found complementary evidence in the LIFECODES
cohort of positive associations between sPTB and eicosanoids,
which are secondary metabolites of polyunsaturated FA parent
compounds such as arachidonic acid [36]. Besides FAs, 2 phos-
phatidylcholine (PC(18:0/16:0), PC(33:4)) were also selected by the
biomarker model for preterm birth. These 2 metabolites have
lower levels in preterm births. PCs are the main structure of cell
membranes and play an important role in maintaining membrane
stability and reducing inflammation [37]. Consistent with this, 1
recent study also found a class of PC significantly lower in preterm
births [38].

Interestingly, the causality analysis shows the causal effect of
decreased suberic acid for the excessive FAs. This is consistent
with a previous finding that suberic acid is related to FA disor-
ders [30]. Suberic acid, also called octanedioic acid, is a dicar-
boxylic acid, which can be produced from FAs [39]. The produc-
tion from FAs to dicarboxylic acids is catalyzed by cytochrome
P450 (CYP) 4 F/A (CYP4F/A) enzymes [39, 40]. The accumulation of
FAs and reduction of suberic acid in preterm maternal blood sam-
ples (Fig. 5) suggest that CYP4F/A enzymes, the enzyme catalyzing
this conversion, have reduced activities in preterm delivery. Poly-
morphisms in CYP4F/A genes, which impair enzyme functions,
previously showed associations with preterm birth [41]. Thus, we
speculate that polymorphisms or other forms of deactivation of
CYP4F/A genes may play a role in preterm births.

Changes in these lipids collectively suggest that lipid
metabolism may contribute to the pathogenesis of preterm
birth (Fig. 6). Indeed, several related pathways including lipid
metabolism, FA metabolism, and lipid peroxidation pathways are
all enriched in the preterm cases (Fig. 3C). These pathways were

Figure 6: A proposed model of metabolite changes affecting preterm
birth.

discussed frequently in many previous preterm birth analyses
[38, 42, 43]. Unsaturated FAs, shown to be excessive in preterm
samples of this dataset, are more likely to undergo lipid peroxi-
dation [44]. Unsaturated FAs and the evident lipid peroxidation
process could lead to oxidative stress, which was reportedly
related to preterm birth through regulating cervical ripening,
uterine contraction, and membrane rupture [42]. In addition,
accelerated lipid peroxidation is found in prematurity [45].

A few caveats of this study should also be mentioned. First,
participants in this study do not have specific dietary records;
thus potential confounding from diet cannot be investigated. The
metabolites are measured from maternal blood; therefore any bi-
ological mechanisms discussed here are inferred systematically
rather than being directly measurable from relevant tissues (e.g.,
placenta). In addition, despite developing a potential biomarker
panel from a classification model, these candidates are suggestive
and not quantitatively validated yet. We plan to validate them in
other independent cohorts in the future. Nonetheless, this study
provides strong evidence of the involvement of a class of saturated
and unsaturated FAs and PCs in preterm births, mediated by per-
turbation in biological functions including cell signaling and lipid
peroxidation.

Availability of Source Code and
Requirements
Project name: Maternal lipids in the pathogenesis of preterm birth
Project home page: https://github.com/lanagarmire/pretermBirt
h_metabolomics
Operating systems: Windows and Linux
Programming language: R
License: MIT

Data Availability
These data are available at the NIH Common Fund’s Na-
tional Metabolomics Data Repository (NMDR) website, the
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Metabolomics Workbench, https://www.metabolomicsworkbenc
h.org, where they have been assigned Project ID PR001155.
The data can be accessed directly via their Project DOI: ht
tp://dx.doi.org/10.21228/M8DH5P. Other data further support-
ing this work are openly available in the GigaScience repository,
GigaDB [46].

Additional Files
Supplementary Figure S1. (A, B) WGCNA network in preterm
births (A) and healthy controls (B), respectively. Each node repre-
sents a metabolite, whose size is proportional to the node con-
nectivity value in a WGCNA network. (C) The overlap between
modules of networks in control and preterm samples. (D) De-
tailed information on overlapping module density was discovered
in (C). (E) Bar plot of the connectivity scores of the 17 upregulated
metabolites.
Supplementary Figure S2. Metabolites show significantly differ-
ent levels in sPTB and control samples. (A) Heat map of the
55 metabolites with a significant difference exclusively between
sPTB and control samples (P < 0.05). (B) Bar plots on the averaged
normalized intensities in cases vs controls.
Supplementary Figure S3. Classification model for sPTB. (A) Com-
parison of 7 classification models using 16 metabolites on the
hold-out testing. The dataset was randomly split into training
data (80%) and testing data (20%) 10 times. The average value
and standard error of the 10 repeats are shown for 3 performance
metrics of the area under the ROC curve (AUC), F1 statistic, and
balanced accuracy. The winning method RF in training data (left)
was then applied to the testing data (right). (B) The heat map
of correlation coefficients between the 16 metabolites and clin-
ical variables. (C) The precision-recall curves of the RF model
from (A) on classifying preterm, LGA (large for gestational age),
income, and maternal age (≥35 y or not), respectively, using the
same set of testing data as in (A). (D) Normalized variable im-
portance scores for the 16 lipid markers in the RF model. The
normalization is done by making the sum of importance scores
equal 100.
Supplementary Figure S4. Principal component analysis plots for
the QC of the metabolomics data in positive and negative modes.
Supplementary Table S1. Fold change values of the 38 metabo-
lites that are significantly different between preterm and control
samples.
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