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Abstract: The Stop Signal Reaction Time (SSRT) is a latency measurement for the unobservable
human brain stopping process, and was formulated by Logan (1994) without consideration of the
nature (go/stop) of trials that precede the stop trials. Two asymptotically equivalent and larger
indices of mixture SSRT and weighted SSRT were proposed in 2017 to address this issue from time
in task longitudinal perspective, but estimation based on the time series perspective has still been
missing in the literature. A time series-based state space estimation of SSRT was presented and
it was compared with Logan 1994 SSRT over two samples of real Stop Signal Task (SST) data and
the simulated SST data. The results showed that time series-based SSRT is significantly larger than
Logan’s 1994 SSRT consistent with former Longitudinal-based findings. As a conclusion, SSRT indices
considering the after effects of inhibition in their estimation process are larger yielding to hypothesize
a larger estimates of SSRT using information on the reactive inhibition, proactive inhibition and their
interplay in the SST data.

Keywords: stop signal reaction times; estimation; after effects of inhibition; reactive inhibition;
proactive inhibition

1. Introduction

Inhibitory control has theoretical and empirical importance. While its theoretical importance is
rooted in its nature as an internally governed act of control, its empirical importance is due to the
emergence of key results that support theories of development and inhibitory psychopathology [1].
The Stop Signal Task (SST) paradigm is a useful tool by which inhibitory control can be studied [2].
The SST has four versions: the Standard Stop Signal Task (SSST) [3,4], the Stop Signal Anticipation Task
(SSAT) [5–10], the Conditional Stop Signal Task( CSST) [11,12], and the AX Continuous Performance
Task(AXCPT) [13,14]. The Standard SST includes a go task and a stop task. In the go task, or “go trials”,
one of two symbols, such as X or O, is presented on a computer screen. Participants are instructed to
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choose between the X and O as fast as possible. In the stop task, or “stop trials”, a short time after an X
or O is presented, the participant hears an auditory “stop signal” through headphones; this is a Stop
Signal Delay (SSD). The auditory signal indicates they must withhold their responses on that particular
trial. In the most experiments, the stop trials constitute 25% of all SST trials (This is called stop-signal
probability denoted by pss. It varies depending on the SST experimenter’s objectives.) (Figure 1). There
are two types of SST data: fixed SSD-based SST data and the tracking SST data. In the tracking SST
data, the stop signal delay is dynamically increased by 50 ms after successful inhibition in the previous
stop trial, or decreased by 50 ms after failed inhibition in the previous stop trial. Given more reliability
of Stop Signal Reaction Times (SSRT) estimates in this method, it is generally recommended for Stop
Signal Task experiments [2].

Figure 1. Standard Stop-signal Task (SSST) design with pss = 0.25 including two versions of the task:
25% stop trials and 75% go trials, (Manza, P. et al., 2016 [15]-modified, permission is obtained).

The independent horse race model provides a theoretical framework in which the researchers
can estimate the stop process’ latency, or Stop Signal Reaction Times (SSRT), and factors associated
with the probability of Successful Inhibition (SI) in the SST paradigm [16]. The independent horse
race model assumes the finish times for the go reaction times (GORT) in the stop trials and the finish
times for the stop process are stochastically independent. The SSRT is the time difference between the
participant’s internal response and the stop signal timing (Figure 2).

Figure 2. The independent horse race model: SSD = Td; SSRT = Ts (Logan, 1994 [1]-modified,
permission is obtained).
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Two general frequentist and Bayesian approaches have been proposed in the literature to estimate
SSRT [2,17]. The frequentist approach includes three methods: Colonius’ method to calculate the
entire distribution of the SSRT, the mean method to calculate the constant valued SSRT, and Logan’s
1994 integration method to calculate constant valued SSRT [17]. It has been shown that Colonius’
method is impossible to use in the human experimental context, because it requires 250,000 trials for
reliable estimates [17]. Furthermore, there is higher reliability and less bias in Logan’s 1994 integration
estimates versus the mean method estimates, particularly when the probability of SI is other than
50%. Given these observations, Logan’s 1994 integration method has been recommended for the
estimation of SSRT [2]. For a participant with go reaction times GORT in go trials, stop signal delay
SSD of Td and probability of successful inhibition SI in stop trials, Logan (1994) [1] proposed the
following frequentist point estimation of SSRT(SSRT is indeed a function of the stop-signal probability
pss : SSRT = SSRT(pss). Throughout this work, pss = 0.25.):

SSRTLogan1994 = QGORT(1− P(SI|Td))− Td, (1)

where Q is the quantile function, and the average of Td is taken over all stop trials. There are two
assumptions for this method: The first implicit assumption is the equal impact of go trials and stop trials
in SST data; that is, the impact of the preceding trial, either go or stop, on the current stop trial SSRT
estimates is assumed to be the same. The second assumption is that there is no trigger failures or the
trigger failures are randomized in the SST data [18]. The authors have shown that the first assumption
may be violated in the context of the tracking SST data [19]. In order to address SSRT estimation given
a violated assumption of equal impact of preceding trial type on SSRT, the authors partitioned SST
data to type A cluster SST data, trials following a go trial, and type B cluster SST data, trials following
a stop trial. Then, by considering cluster type GORTA, SSRTA, GORTB, SSRTB and defining trial type
weight WA = (#Type A stop trials)/(#Total stop trials), WB = 1−WA, they proposed the following
modified frequentist indices of SSRT [19]:

SSRTWeighted = WA × SSRTA + WB × SSRTB, (2)

SSRTMixture = SSRT(WA×GORTA+WB×GORTB)
. (3)

It has been shown than under specific, experimenter-pre-arranged conditions, the two indices are
asymptotically equivalent, given increasing number of stop trial [19]:

|SSRTWeighted − SSRTMixture| → 0, as mstop → ∞. (4)

Moreover, the authors have shown that for both cases of the real SST data and the simulated SST
data [19]:

SSRTWeighted > SSRTLogan1994 + 5.0 ms. (5)

The proposed three indices of SSRT in Equations (1)–(3) are calculated via longitudinal perspective
on SST data. However, there is little information available to calculate SSRT when the SST data is
considered as a time series data. The lack of literature becomes particularly important when the GORT
time series has already been studied [20–22]. Moreover, to the authors’ best knowledge there is no study
that assesses the impact of the preceding trial type (go/stop) on the current stop trial SSRT estimates in
the time series context. State-Space time series models were introduced as a generalization of ordinary
linear regression time series models [23,24]. They have been applied to model missing multivariate
time series data of biomedical markers for cancer patients [25]. Here, the linear relationship of the
current time point outcome, in terms of the previous time point outcome in the time series, and the
state-space feature representated by the observation status are simultaneously useful to address the
impact of the preceding trial type on the current stop trial SSRT estimates [26,27].
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The primary aim of the present paper is to estimate SSRT in the context of tracking Standard
SST (SSST) data, given a potential violation of the assumption of equal impact of the preceding trial
type (go/stop) on the current stop trial SSRT, using the missing state-space modeling on the entire
SST data set. In lights of the results of the primary goal of the work, the secondary aim is to define
and formulate the external, the internal and the reactive-proactive inhibition indices, and, present
a second comparison of the reactive-proactive inhibition indices and their non reactive-proactive
counterparts. We hypothesize that while time series-based estimation of SSRT is significantly larger
than Logan 1994 SSRT, they have equal differential impact across clinical groups such as participants
with Attention Deficit Hyperactive Disorder(ADHD) and Controls. The outline of the paper is as
follows. First, we consider the real SST data with given go reaction times (GORT), go reaction times on
failed stop trials (SRRT), and stop signal delay time on stop trials (Td) and study disparities of internal
inhibition indices. Second, in the context of time series, and using a four-stage missing data state-space
modelling, we compute time series-based state space SSRT with a lognormal distributional assumption.
Third, we compare the time series-based state space SSRT index with the three established indices
in (1)–(3). Fourth, we repeat the previous explorations for the case of simulated data. Finally, we close
with a discussion of the sensitivity of the distributional assumptions of the missing data state-space
modeling, and the asymptotic behavior of the disparities between these indices.

2. Methods and Materials

2.1. Data

The study data included two sets of the real data and simulated data described below.

2.1.1. The Real Data

Data was collected at the Ontario Science Center in Toronto, Canada from 2009 to 2010. The sample
includes 16,099 participants, aged 6 to 17 years old [28]. Self or parent-reported demographic data
were obtained. The required consent for the SST experiment was given by the participants’ parents.
Each participant completed a stop signal task (SST) comprised of 5 blocks of 24 trials (one practice
block and four main blocks). Within the blocks, 25% of the trials contained a stop signal. The tracking
stop signal task algorithm was designed so that the probability of successful inhibition converged on
50%. The study’s variables included stop-signal delay (centi-seconds), previous trial type (stop/go),
and ADHD status (yes/no). The ADHD variable was defined based on SWAN z-score [29], whether the
score falls in the top 10% of the distribution (defined as ADHD case) or not (defined as control case).

2.1.2. The Simulated Data

The simulations are based on the assumption of the independent race model with features in
Table 1. Independent GORT and SSRT via the tracking method with initial SSD = 200 ms were
simulated (see Appendix A). On the stop trials, a successful inhibition was considered one for which
GORT > SSRT + SSD; and, otherwise, it was considered a failed inhibition. An ex-Gaussian
distribution was assumed for GORT, SSRT, and it was simulated by R package GAMLSS [30].
This distribution has been extensively used in psychology, neuroscience, and as a time model for
cognitive process in the study of reaction times [31–33]. We simulated SST data for each participant with
type A GORT and SSRT ex-Gaussian distributions, type B GORT and SSRT ex-Gaussian distributions,
and weights WA = 0.75 and WB = 0.25 (see Appendix B). We randomly merged the two cluster A
and cluster B SST data for each participant. The baseline ex-Gaussian distributional forms for type A
cluster, type B cluster SST data, and participant SST sample are given in Table 1.
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Table 1. Structure of simulated stop task data by participant sample size (SST data sample size per
participant: N = 96,192,288,384,480,960).

SSRT (∆ Mean, ∆ STD) n (Participants) Cluster Type n (Participants): Cluster GORT Distribution SSRT Distribution

(increasing, increasing) 11 A 11 (a = 2k : 1 ≤ k ≤ 11) ExG (300,35,30) ExG (130 + a, 70 + a, 60 + a)
B 11 (a = 2k : 1 ≤ k ≤ 11) ExG (450,50,30) ExG (150 + a, 90 + a, 60 + a)

(increasing, decreasing) 11 A 11 (a = 2k : 1 ≤ k ≤ 11) ExG (300,35,30) ExG (130 + a, 70− a, 60)
B 11 (a = 2k : 1 ≤ k ≤ 11) ExG (450,50,30) ExG (150 + a, 90− a, 60)

(decreasing, increasing) 11 A 11 (a = 2k : 1 ≤ k ≤ 11) ExG (300,35,30) ExG (130− a, 70 + a, 60)
B 11 (a = 2k : 1 ≤ k ≤ 11) ExG (450,50,30) ExG (150− a, 90 + a, 60)

(decreasing, decreasing) 11 A 11 (a = 2k : 1 ≤ k ≤ 11) ExG (300,35,30) ExG (130− a, 70− a, 60− a)
B 11 (a = 2k : 1 ≤ k ≤ 11) ExG (450,50,30) ExG (150− a, 90− a, 60− a)

2.2. Participants

Participants were partitioned to the real data and the simulated data as follows:
For the real data, a random subsample of 44 participants (11 ADHD; 33 Control) with mean

age of 10.3 years (ADHD), 12.7 years (Control), with 96 SST trials, and with 10, 11, 12, 13, 14 stop
trials preceded by a stop trial (thus, 14, 13, 12, 11, 10 stop trials preceded by a go trial) was selected
from the real SST data in Section 2.1.1. This choice of subsample was justified in order to have
close number of stop trials of each type (e.g., 10 vs. 14; 11 vs. 13; 12 vs. 12; 13 vs. 11; 14 vs. 10),
and consequently, to reduce the bias in the estimations. Finally, the violation of the assumption of
equal impact of the preceding trial type (go/stop) on the SSRT was assessed in analysis as it follows in
the results Section 3.1.

For the simulated data, 44 participants with a variety of increasing or decreasing mean and
variance of their underlying SSRT distributions were simulated. Each simulated participant had 96,
192, 288, 384, 480, and 960 SST trials. Finally, the simulated type A SSRT and type B SSRT all violated
the assumption of equal impact of the preceding trial type (go/stop) on the SSRT. Indeed, in each
category of simulations, the mean of type A SSRT is 20 ms smaller than that of type B SSRT.

2.3. Statistical Inference

2.3.1. Time Series Based State- Space SSRT (SSRTSS.Logan1994)

There are two perspectives to develop new statistical estimations (Figure 3): First, we develop
the new statistical methodology and apply it to the available raw data for measuring the quantities or
statistics of interest (Figure 3: dashed path). An example of such method was presented in [19] for
the SSRTWeighted and SSRTMixture indices. Second, we enrich and transform the available raw data,
and apply the current statistical methodology on the transformed data to measure the quantities or
statistics of interest (Figure 3: solid path). The example of this method is presented here in this paper
for the case of time series-based SSRT denoted by SSRTSS.Logan1994.

Our proposed time series-based SSRT estimation method (Figure 3: solid path) is compromised of
the following four steps:

Step (i): We assumed a lognormal parametric distribution for the raw SST time series data
x∗t1 = GORTt, x∗t2 = SRRTt, and x∗t3 = SSDt (Figure 4a) and, then we considered the normal input
raw SST data xt1 = log(x∗t1), xt2 = log(x∗t2) and xt3 = log(x∗t3). This transformation is due to the fact
that the state–space modelling of time series requires the input data to have normal distribution [34].
In addition, the original lognormal distributional assumption for Reaction Times (RT) data is among
the most accepted distributional forms in the RT literature, and it removes considerable skewness,
making the data’s distribution near normal [35].
Step (ii): We fit a Frequentist missing state-space model using Expectation Maximization (EM)
algorithm with relative tolerance of 1% by R package ASTSA [27,36] to the incoming raw SST data
in Step (i) as in Equation (6). Here, (xt)3×1 = (xt1, xt2, xt3)

t, and the observation matrix A(1)
t carries

the impact of the trial type information from the previous trial to the current trial. It is either identity
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matrix or partial identity matrix with some diagonal values of 0 whenever the preceding trial type
is “Go”.

State Equation: (xt)3×1 = (Φ)3×3.(xt−1)3×1 + (wt)3×1 : wt ∼iid N(03×1, Q3×3)

Observation Equation: (y(1)t )q1t×1 = (A(1)
t )q1t×3.(xt)3×1 + (v(1)t )q×1 : v(1)t ∼iid N(0q1t×1, Rq1t×q1t)

(6)

Step (iii). We used the estimated output x̂t1 = ̂logGORTt(1 ≤ t ≤ m(m = 72k (k = 1, 2, 3, 4, 5, 10))
in Equation (6) in Step (ii) and the frequentist MLE methods to fit normal distributions N(µ̂, σ̂2) to
the corresponding state- space SST data (72k GORTs, 8k− 14k SRRTs, 24k SSDs: k = 1, 2, 3, 4, 5, 10)
matched to the original SST data (Figure 4b).
Step (iv). The time series-based state-space estimation of SSRT for given probability of successful
inhibition P(SI) was computed as in (7) using parameters estimations (µ̂, σ̂) in Step (iii) where Φ−1 is
the quantile function of standard normal distribution, and the average of Td is taken over all matched
state-space stop trials:

SSRTSS.Logan1994 = exp(µ̂ + σ̂.Φ−1(1− P(SI)))− Td, (7)

Table 2 compares the overall methodology applied in calculations of SSRT indices (1)–(3) with that
of SSRT index in (7) with repeating steps (i)–(iv) with normal assumptions for the input raw SST data:

Figure 3. A general framework for data and statistical methodology to conclude the new estimation
results (dashed path: process for SSRTWeighted, SSRTMixture; solid path: process for time series-based
SSRTSS.Logan1994).

Figure 4. (a) 3-variables time series plot of the Standard Stop Signal Task (SSST) data; (b) Estimation of
time series-based state-space log (GORT) for the GORT data in the panel (a).
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Table 2. Comparison of the time series-based and other methods of estimations of SSRT.

Figure 3 (dashed path) SSRTWeighted, SSRTMixture Used Data Raw GORT and SSD
Methodology No impact of the preceding trial on the current trial
Distribution Ex-Gaussian

Figure 3 (solid path) SSRTSS.Logan1994 Used Data Estimated state-space GORT and SSD
Methodology Impact of the preceding trial on the current trial
Distribution Lognormal/Normal

2.3.2. Inhibition Indices and Hypothesis Tests

Inhibition Indices
We consider three types of inhibition indices for the proactive inhibition (anticipation of

stopping) and reactive inhibition (outright stopping) including external indices, internal indices
and reactive-proactive indices. We applied the later two definitions in this work:

Definition 1 (external inhibition index). The external inhibition index is the one calculated based on the
external manipulation of stop signal probability pSS levels in the Stop Signal Task paradigm. The external
proactive inhibition index is calculated based on the difference (or a variation of the differences) of GORTs in the
associated arms of the SST paradigm [3,5–9,37,38]. For example, ∆GORT = GORTpss=0.50 − GORTpss=0.25.
The external reactive inhibition index is quantified based on the stop signal reaction times for the stop trials arm
of the SST paradigm [3,5–9,37,38]. For example, ∆SSRT = SSRTpss=0.50 − SSRTpss=0.25.

Definition 2 (internal inhibition index). The internal inhibition index is the one computed based on
the previous trial type (go/stop) for a given fixed stop signal probability pSS (e.g., 0.25) in the Stop Signal
Task paradigm. The internal proactive inhibition index is calculated based on the difference (or a variation
of the differences) of GORTs in the associated arms of the SST paradigm [19]. For example, ∆GORT =

GORTB − GORTA (Type A GORT (GORTA) is for the trial following a go trial. Type B GORT (GORTB) is
for the trial following a stop trial.). The internal reactive inhibition index is quantified based on the stop signal
reaction times for the stop trials arm of the SST paradigm [19]. For example, ∆SSRT = SSRTB − SSRTA
(Type A SSRT (SSRTA) is for the trial following a go trial. Type B SSRT (SSRTB) is for the trial following a
stop trial.).

Definition 3 (reactive-proactive inhibition index). The reactive-proactive inhibition index is the inhibition
quantity considering the reactive-proactive interplay in its estimations [19]. There are two such indices:
GORTReactive−Proactive and SSRTReactive−Proactive. An example of the former index is WA.GORTA +

WB.GORTB. Examples of the later index include SSRTMixture, SSRTWeighted and SSRTSS.Logan1994. Two
examples of the non reactive-proactive inhibition index are GORT and SSRTLogan1994.

Hypothesis Tests
Three sets of hypothesis tests were conducted including those for internal inhibition indices,

those between reactive-proactive inhibition indices and their non reactive-proactive counterparts,
and, those for reactive-proactive inhibition indices across clinical groups (ADHD vs. Controls).

First, for the case of internal(trial by trial) based comparisons, the following hypothesis tests were
conducted for fixed stop signal probability (0.25):

H1 : GORTB 6= GORTA vs. H0 : GORTB = GORTA, (8)

H1 : SSRTB 6= SSRTA vs. H0 : SSRTB = SSRTA. (9)

Second, for the case of comparison of estimations, the following statistical hypothesis test
is conducted:

H1 : SSRTSS.Logan1994 6= SSRTLogan1994 vs. H0 : SSRTSS.Logan1994 = SSRTLogan1994. (10)



Brain Sci. 2020, 10, 598 8 of 18

Third, for the case of comparison of the differential impact between clinical groups , the following
statistical hypothesis test is conducted (A useful index of SSRT is naturally expected to report similar
or larger differential estimations between clinical groups (e.g., ADHD vs. Control) compared to the
available SSRT indices. This characterizes it as a new potential biomarker for the participants’ clinical
status in other studies [3,4,9,39]):

H1 : SSRTADHD
SS.Logan1994 6= SSRTControl

SS.Logan1994 vs. H0 : SSRTADHD
SS.Logan1994 = SSRTControl

SS.Logan1994. (11)

Similar hypothesis tests are conducted with replacing SSRTLogan1994 in hypothesis test (10) with
SSRTMixture and SSRTWeighted; and, with replacing SSRTSS.Logan1994 in the hypothesis test (11) with
SSRTMixture and SSRTWeighted.

All formerly established SSRT indices in Equations (1)–(3) were compared with the time
series-based index in Equation (7) using the paired t-tests (An ideal reporting statistics here is the
Linear Mixed Model (LMM) effects. However, given no additional covariate in the analysis and
equvalency of the varying intercept LMM and the paired t-test [40] we considered the later one.)
(PROC TTEST, [41]). Given the distributional assumption for the SST data in the state space modelling
(three variate lognormal or normal), independent sample t-tests were conducted between ADHD and
control groups within each SSRT index.

3. Results

The results are divided into three subsections. In Section 3.1, a moderate evidence is presented on
the potential disparity for the proactive internal inhibition index SSRT and the need to consider the
reactive inhibition-proactive inhibition interplay in the SSRt estimations. Next, in Section 3.2, the time
series-based state space SSRT index is compared with SSRTWeighted,SSRTMixture, and SSRTLogan1994 in
terms of size and differential impact between clinical groups. Finally, in Section 3.3, the comparisons
in terms of size of the estimates are repeated for the simulated data and the asymptotic behaviour of
the sizes. Also, their sensitivity to the distributional assumptions is studied.

3.1. Disparities of the Internal Inhibition Indices

This section deals with calculation and comparisons of internal inhibition indices inspired by trial
by trial approach proposed in ([10,19]). Table 3 presents the comparison results for proactive index
∆GORT and reactive index SSRT:

Table 3. Paired t-test results of the internal reactive and proactive inhibition indices for Standard Stop
Signal Task (SSST) with pss = 0.25 (n = 44).

Inhibition Type Index Disparities Mean (95%CI) t Sig. (2-Tailed)

Proactive ∆GORT = GORTB − GORTA 71.6 (51.4, 91.8) 7.2 <0.0001
Reactive ∆SSRT = SSRTLogan1994 − SSRTA −10.3 (−20.6, 0.0) −2.0 0.05
Reactive ∆SSRT = SSRTLogan1994 − SSRTB −19.1 (−39.6, −1.5) −1.9 0.06
Reactive ∆SSRT = SSRTB − SSRTA 8.8 (−20.1, 37.7) 0.6 0.5 *

* See the subsequent analysis with non-identity linear regression line estimations.

There are three key observations: First, there is significant effect of 71.6 ms in the internal
proactive inhibition (95%CI = (51.4, 91.8)). Second, the internal reactive inhibition indices SSRTA
and SSRTB are significantly different than SSRTLogan1994. Third, the finding on the positive non
significant difference between SSRTA and SSRTB is consistent with the results reported by internal
reactive inhibition index in [19] in terms of effect size, but, it is inconsistent in terms of significancy
of the effect. However, given (i) disparities of both trial type SSRTs with that of Logan 1994 SSRT,
and (ii) magnitude of the disparity between SSRTA and SSRTB (i.e., 8.8 ms), and (iii) the fitted
non-identity linear regression line SSRTBi = β0 + β1. SSRTAi + εi : εi ∼ N(0, σ2

e ), β0 = 96.2,
(95%CI = (4.0, 188.4)); β1 = 0.53 (95%CI = (0.06, 1.0)), there exists a moderate evidence of violation of
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the assumption of equal impact of the preceding trial type (go/stop) on the current stop trial SSRT
leading to SSRT disparities across clusters of SST data.

In the next section, we propose a time series-based index of SSRT based on reactive inhibition-proactive
inhibition interplay addressing the internal effect of the previous trial type in the SSRT estimations.

3.2. Time Series Based State-Space SSRT for the Real SST Data

This section deals with the overall time series-based state space estimation of SSRT from internal
(trial by trial) perspective considering the reactive inhibition-proactive inhibition interplay in the SSRT
estimation process. Table 4 presents results for the time series-based estimated state-space SSRT and
compares it to the established SSRTs.

Table 4. Paired t-test and two sample t-test results of SSRT indices by distributional assumption (n = 44).

(a) Measurement Comparisons

Measurement Population Distribution Mean (95%CI) t Sig. (2-Tailed)

SSRTSS.Logan1994 − SSRTLogan1994 Overall Lognormal 13.1 (8.4, 17.6) 5.7 <0.0001
Normal 21.9 (17.4, 26.3) 9.9 <0.0001

SSRTSS.Logan1994 − SSRTMixture Overall Lognormal −0.6 (−9.8, 8.7) −0.1 0.9
Normal 8.3 (0.2, 16.4) 2.1 0.04

SSRTSS.Logan1994 − SSRTWeighted Overall Lognormal −1.2 (−8.4, 6.0) −0.3 0.7
Normal 7.7 (1.3, 14.1) 2.4 0.02

(b) Differential Impact

Measurement Population SST Distribution Mean (95%CI) t Sig. (2-tailed)

SSRTSS.Logan ADHD vs. Control Lognormal 58.6 (3.0, 114.2) 2.3 0.04
Normal 58.8 (1.8, 115.6) 2.3 0.04

SSRTLogan1994 Ex-Gaussian 66.5 (10.5, 122.5) 2.6 0.02
SSRTMixture Ex-Gaussian 65.6 (5.4, 125.9) 2.4 0.04
SSRTWeightd Ex-Gaussian 62.3 (5.1, 119.5) 2.4 0.04

There are five key results from Table 4. First, the SSRTSS.Logan1994 was significantly larger than
SSRTLogan1994 under both distributional assumptions (Lognormal: 13.1: 95%CI = (8.1, 17.6); Normal:
21.4: 95%CI = (17.4, 26.3)); second, there were no significant differences between SSRTSS.Logan1994
and two former indices SSRTMixture and SSRTWeighted overall, under the lognormal distributional
assumption. However, under normal distributional assumption, the former index was significantly
larger than the latter two [8.3 : 95%CI = (0.2, 16.4); 7.7 : 95%CI = (1.3, 14.1), respectively]. Third,
the ADHD participants had 58.6 ms [95%CI = (3.0, 114.2)] higher SSRTSS.Logan1994 values than controls
under the lognormal distributional assumption. A similar result was observed under the normal
distributional assumption. Fourth, the differential impact of SSRTSS.Logan1994 was more or less similar
the two former modified indices SSRTMixture and SSRTWeighted under the lognormal distributional
assumption (58.6 ms vs. 65.6 ms, 62.3 ms with overlapping 95%CI). Finally, similar conclusions were
found under the normal distributional assumption. Figure 5 depicts the comparison of the regular
estimation of SSRT given by (1) and its state-space counterpart given by (7), given by the results
in Table 4. From Table 4a, it follows that under different underlying distributional assumptions for
GORT, SRRT, and SSD, we obtain different estimates when comparing SSRTSS.Logan1994 and the other
three indices. To confirm the assumption of sensitivity of the state-space SSRT estimation to the
underlying distributional assumption, and, adjust for potential confounders in the estimations [42],
we will conduct the comparisons for the simulated data in the next section.

3.3. Simulations and Asymptotic Behaviour

This section deals with calculation and comparison of the reactive-proactive SSRT indices and
their non reactive-proactive counterparts for the simulated SST data as shown in Section 2.1.2. The aim
is to check the impact of the underlying distributional assumptions in the state-space models on the
estimated SSRT indices and to assess the potential confounding effects of the number of SST trials,
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the clinical status and the age in the disparities of the mentioned SSRT indices. Table 5 presents the
results of pairwise t-tests:

Figure 5. Regular and time series-based State-Space estimations of SSRT.

Table 5. Paired t-test results of comparison between simulated time series-based state-space SSRT
index and non time series-based counterparts by m (n = 264).

Pair N(#SST) m (#stop) Mean (95%CI) t Sig. (2-Tailed)

SSRTSS.Logan1994 − SSRTLogan1994 8.1 (6.5, 9.8) 9.9 <0.0001
SSRTSS.Logan1994 − SSRTMixture 96 24 8.5 (6.8, 10.1) 10.3 <0.0001
SSRTSS.Logan1994 − SSRTWeighted 4.0 (2.2, 5.8) 4.5 <0.0001

SSRTSS.Logan1994 − SSRTLogan1994 10.2 (9.3, 11.1) 23.1 <0.0001
SSRTSS.Logan1994 − SSRTMixture 192 48 10.4 (9.5, 11.3) 23.1 <0.0001
SSRTSS.Logan1994 − SSRTWeighted 4.2 (3.3, 5.2) 8.8 <0.0001

SSRTSS.Logan1994 − SSRTLogan1994 10.4 (9.5, 11.2) 22.8 <0.0001
SSRTSS.Logan1994 − SSRTMixture 288 72 10.6 (9.6, 11.5) 22.8 <0.0001
SSRTSS.Logan1994 − SSRTWeighted 4.9 (3.7, 5.4) 11.7 <0.0001

SSRTSS.Logan1994 − SSRTLogan1994 11.4 (10.4, 12.3) 24.5 <0.0001
SSRTSS.Logan1994 − SSRTMixture 384 96 11.1 (10.0, 12.1) 12.3 <0.0001
SSRTSS.Logan1994 − SSRTWeighted 5.0 (4.2, 5.8) 12.3 <0.0001

SSRTSS.Logan1994 − SSRTLogan1994 11.4 (10.5, 12.3) 26.6 <0.0001
SSRTSS.Logan1994 − SSRTMixture 480 120 11.3 (10.4, 12.3) 24.1 <0.0001
SSRTSS.Logan1994 − SSRTWeighted 4.8 (4.0, 5.6) 12.4 <0.0001

SSRTSS.Logan1994 − SSRTLogan1994 11.8 (11.2, 12.6) 34.0 <0.0001
SSRTSS.Logan1994 − SSRTMixture 960 240 11.7 (11.0, 12.4) 33.3 <0.0001
SSRTSS.Logan1994 − SSRTWeighted 5.4 (4.8, 5.9) 20.0 <0.0001

The presented results are for each given participant sample size m under the lognormal
distributional assumption for the simulated ex-Gaussian GORT, SRRT, and SSRT. Such an assumption
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is justified, given that the shifted lognormal distribution provides a good fit for the ex-Gaussian
distribution of the RT data [43]. Comparing the results from Table 4, Panel(a), and Table 5, we conclude:

Under the lognormal assumption for the real data:

Result (i): The difference between the SSRTSS.Logan1994 and SSRTLogan1994 in the simulated data is
the same as in the original real data. However, the size of differences in the former
(8.1–11.8 ms) is smaller than the latter (13.1 ms), and with increasing simulated sample
sizes, their gap diminishes.

Result (ii): The difference between SSRTSS.Logan1994 and SSRTMixture in the simulated data is in the
range 8.5–11.7 ms and very different from the non-significant difference in the original
real data.

Result (iii): The difference between SSRTSS.Logan1994 and SSRTWeighted in the simulated data is in the
range of 4.0–5.4 ms, and somewhat different than that of their non-significant difference
in real data.

Under the normal assumption for the real data:

Result (i): The difference between SSRTSS.Logan1994 and SSRTLogan1994 in the simulated data
(8.1 ms–11.8 ms) is significantly smaller than in the original real data (21.9).

Result (ii): The difference between the SSRTSS.Logan1994 and SSRTMixture in the simulated data
(8.1 ms–11.8 ms) is similar to that of the real data (8.3 ms).

Result (iii): The difference between SSRTSS.Logan1994 and SSRTWeighted in the simulated data
(8.1 ms–11.8 ms) is similar to that of real data (7.7 ms).

These two sets of results show that one needs to check underlying distributional assumptions for
state-space models in calculating SSRTSS.Logan1994. Figure 6 presents the indices’ differences in terms
of simulated sample size. There are two main results: First, the main increment on the index difference
occurs from sample size m = 96 to m = 192; Second, after simulated sample size m = 480, the trend is
almost asymptotically constant.

Figure 6. Disparities of simulated SSRT indices by sample size (n = 264).
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4. Discussion

This study has presented a time series-based methodological approach for a more informed
estimation of SSRT by considering state-space nature of SST time series data, and lognormal format of
the involved distributions offering a time series-based index of SSRT. It introduced time series=based
state–space SSRT as the third index of SSRT, which considered trial order in the stop task data.
It hypothesized that considering previous trial type (stop/go) in calculation of the time series-based
index does impact estimations of SSRT, as it was shown in the case of the longitudinal approach [19].

The majority of findings of the study affirmed the hypothesis. State-space estimations of Logan’s
1994 SSRT were 13.1 ms and 21.9 ms significantly larger than their regular estimations under a normal
or lognormal distribution assumption for SST data, respectively. This result was confirmed by similar
significantly higher estimations (8.1 ms–11.8 ms) from simulated SST data under the ex-Gaussian
distributional assumption. However, there were no significant differences between two indices of SSRT
on their differential impact between clinical groups. There was consistency in comparing the results of
the state-space SSRT and the Logan 1994 SSRT indices using both real and simulated SST data. While in
the majority of cases, the time series-based index is different from established indices (as shown in
this study), there are special cases where these four indices will be precisely equal. Two special cases
include when each stop trial is preceded by a go trial, i.e., (A(1)

t )q1t×3 = 03 and when each stop trial is

preceded by another stop trial, i.e., (A(1)
t )q1t×3 = I3.

The study’s results based on the time series method were consistent with those of longitudinal
method [19], considering the impact of the preceding trial type on the current stop trial SSRT in the
calculation of SSRT. The first consistency is that when the researcher considers the trial order when
considering the SST data, they obtain significantly larger estimates versus when they ignore trial
order. This is the common conclusion in both approaches. One explanation for this commonality is
that a participant’s stopping skills improves immediately after stop trials compared to go trials in the
SST. This is in accord with examples in previous literature, such as a participant’s optimized control
skills in playing video games with dual task and task switching situation [44], and a participant’s
improved visuomotor control in playing action video games [45]. In our case, once the order of SST
trials is considered in the calculations, for the those preceded by a stop trial the participant’s stopping
improves by his or her on taking longer go reaction times (GORT), and hence, the latency of the
stopping process SSRT increases. This yields to increase in the estimated SSRT. The second consistency
is that there is no statistically significant difference between clinically differential impact(ADHD versus
Control) using longitudinal perspective estimations of SSRT versus time series-based estimation of
SSRT. On defining the ADHD based on SWAN z-score we followed a trait based approach rather than
emulating diagnosis.

The study’s methodology paves the way to hypothesize: (i) the estimations of SSRT based on the
interplay between reactive inhibition and proactive inhibition, and (ii) their relationship with those
estimations of SSRT ignoring such interplay information. Combined with findings in [19], it presented
additional evidence on the mitigating role of the reactive inhibition-proactive inhibition interplay on
the reactive inhibition manifested by the higher SSRT values, which is for two special cases:

SSRTReactive−Proactive > SSRTNon.Reactive−Proactive. (12)

These findings were in the context of Standard Stop Signal Task (SSST), internal perspective
on inhibition indices and through reactive-proactive SSRT index comparisons with their non
reactive-proactive counterparts. The advantages included (i) simpler SSST design (compared to
SSAT, CSST, or AXCPT designs), and (ii) more precise estimations of SSRT (compared to non reactive-
proactive). However, the key disadvantage is more complex calculations of SSRT.

The study’s proposed time series-based method is, however, less favourable than that of time
in task longitudinal-based method [19] given a few considerations as follows: First, the calculations
in the proposed method (in particular compared to the Weighted SSRT index in the old method) are
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more difficult than the old one. Second, the calculations in the method are susceptible to satisfaction of
underlying lognormal distributional assumption for the SST data. Third, the calculations in the method
are dependent to the size of the relative tolerance of the missing data EM algorithm. Finally, given that
(i) ADHD as a trait is likely to reflect participants who make alot of errors in go trials and many
signal responds in stop trials; (ii) the proposed estimation method considered preceding trial type
into account; there was no progress in finding better differential impact (ADHD versus Control) in the
proposed method.

This study’s findings are restricted in a few aspects. The first is the assumption of a lognormal
distribution for GORT, SRRT, and SSRT in the state–space estimations of Logan 1994 SSRT. The optimum
situation would be ex-Gaussian distributional assumption for GORT, SRRT, and SSRT in the new
method such that the only remaining difference between the conventional method and the new method
would be consideration of the nature (go/stop) preceding trials in the SST data. Thus, such assumption
limited comparison of the results in their more customary assumption of ex-Gaussian distribution [2].
The second is the sensitivity of the state-state approach in calculating SSRT to a multivariate normal
distributional assumption of the SST data, and upon violation of normality, inconsistent results may
yield. This is evident from both real and the simulated SST data results, in simulated data, given good
fit of the lognormal distribution to the simulated Ex-Gaussian SST data, the results for the calculated
state-space SSRT versus the regular SSRT are consistent. The third one is that state-space calculation
of SSRT depends on the relative tolerance of the missing data EM algorithm in the calculation of the
state-space SST data. While we chose 1% for this purpose, other values may yield different state-space
SST data and a different state-space SSRT estimate. Consequently, they may impact their comparison
of non-state space SSRT estimates. Finally, for simplicity of the calculations, it was assumed that there
were no trigger failures or randomized trigger failures in the SST data [18].

The approach outlined in this study should be replicated in the future research in three directions.
The first is that the study should be replicated for in adult participants who can perform longer tasks
and produce a higher number of stop trials (e.g., 200 SST trials with 50 stop trials, as recommended [2],
to confirm the current results at older ages and across a larger number of trials. The second is to
consider non randomized trigger failures and their probabilities in the SST data in the calculations
of the state-space Logan 1994 SSRT and to compare the results with the former established estimates.
Finally, it remains for further work to examine the general validity of Inequality (12) as the following
hypothesis test (13) when considering the information on reactive inhibition, proactive inhibition
and their interplay in the estimations of SSRT(The test (13) is conducted for a given fixed stop signal
probability pss (e.g., 0.25) in (0, 1).):

H1 : SSRTReactive−Proactive > SSRTNon.Reactive−Proactive vs.

H0 : SSRTReactive−Proactive = SSRTNon.Reactive−Proactive. (13)

5. Conclusions

The trial type (go/stop) in the entire stop signal task data was shown to be a key factor in the
estimation of the associated SSRT based on the time in task longitudinal method [19]. This study
provided further evidence on this finding from time series perspective, paving the way for more
refinement in the estimates. Given consistency of results in both methods and advantages of the first
method, the researchers are recommended to consider Weighted SSRT (SSRTWeighted) as the latest
optimum option for the point estimation of the latency stopping process in the brain and a starting
point to estimate it based on the the interplay between reactive inhibition and proactive inhibition.
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Abbreviations

The following abbreviations are used in this manuscript:

ADHD Attention Deficit Hyperactivity Disorder
AXCPT AX Continuous Performance Task
CSST Conditional Stop Signal Task
EM Expectation Maximization
GORT Reaction time in a go trial
GORTA Reaction time in a type A go trial
GORTB Reaction time in a type B go trial
LMM Linear Mixed Model
RT Reaction Times
SI Successful Inhibition
SR Signal Respond
SRRT Reaction time in a failed stop trial
SSAT Stop Signal Anticipation Task
SSD Stop Signal Delay
SSRT Stop Signal Reaction Times in a stop trial
SSRTA Stop Signal Reaction Times in type A stop trial
SSRTB Stop Signal Reaction Times in type B stop trial
SSRTLogan1994 Logan 1994 SSRT
SSRTMixture Mixture SSRT
SSRTSS.Logan1994 Time Series-based State-Space SSRT
SSRTWeighted Weighted SSRT
SSST Standard Stop Signal Task
SST Stop Signal Task
SWAN Strengths and Weakness of ADHD-symptoms and Normal behavior rating scale

Appendix A. R Software Simulation Code of Stop Signal Task Data with Tracking Method

We use R software(R version 4.0.0 (2020-04-24)) to simulate a data set of 200 observations with
160 go trials and 40 stop trials with initial SSD = 200 ms. The GORT has Ex-Gaussian distribution
with parameters µ = 350, σ = 50, τ = 30, and the SSRT has Ex-Gaussian distribution with parameters
µ = 100, σ = 70, τ = 60.

###Begin
###Call Required Libraries
library(gamlss.dist)
library(gamlss)
library(goftest)
library(retimes)
require(gamlss.dist)
require(gamlss)
require(retimes)
###Set up the Simulation Parameters
#Total number of Trials#
n=200
#Total number of stops#
m=40
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mu.go=350
sigma.go=50
nu.go=30
mu.SSRT=100
sigma.SSRT=70
nu.SSRT=60
SRRT0=-999
###Set up the Simulation Data set
id<-as.vector(matrix(1,nrow=1,ncol = n))
index<-as.vector(matrix(0,nrow=1,ncol = n))
#This is for the stop trial checking whether to add 50 to SSD for the next one#
GORT <- round( rexGAUS(n, mu = mu.go , sigma = sigma.go , nu = nu.go), digits = 1)
SSRT <- round( rexGAUS(n, mu = mu.SSRT , sigma = sigma.SSRT , nu = nu.SSRT),
digits = 1)
SSD<-as.vector(matrix(0,nrow=1,ncol = n))
SRRT<-as.vector(matrix(SRRT0,nrow=1,ncol=n))
SSD[1]<- 200
TrialType <-as.vector(matrix(’Go’,nrow=1,ncol = n))
Inhibition <-as.vector(matrix(’-999’,nrow=1,ncol = n))
###Run Simulations
#Go= Go , SStop= Successful Stop, FStop= Failed Stop#
#First: Check the fist stop trial#
if (GORT[1] > SSRT[1]+SSD[1]) { TrialType[1]<- ’SStop’ } else { TrialType[1]<-
’FStop’ }
if (GORT[1] > SSRT[1]+SSD[1]) { Inhibition[1]<- ’1’ } else { Inhibition[1]<- ’0’ }
if (GORT[1] > SSRT[1]+SSD[1]) { index[1]<- +50 } else { index[1]<- -50}
if (GORT[1] > SSRT[1]+SSD[1]) { SSD[2]<- SSD[1]+50 } else { SSD[2]<- SSD[1]-50}
#Second: Use information above to create a martingale of SSDs !#
for (i in 1:(m-1))
{
if (index[i]== 50) { SSD[i+1]<- SSD[i]+50 }
if (index[i]== 50) {if (GORT[i+1] > SSRT[i+1]+SSD[i+1]) { TrialType[i+1]<- ’SStop’ }
else {TrialType[i+1]<- ’FStop’} }
if (index[i]== 50) {if (GORT[i+1] > SSRT[i+1]+SSD[i+1]) { index[i+1]<- +50 }
else { index[i+1]<- -50 } }
if (index[i]== -50) { SSD[i+1]<- SSD[i]-50 }
if (index[i]== -50) { if (GORT[i+1] > SSRT[i+1]+SSD[i+1]) { TrialType[i+1]<- ’SStop’ }
else {TrialType[i+1]<- ’FStop’ } }
if (index[i]== -50) { if (GORT[i+1] > SSRT[i+1]+SSD[i+1]) { index[i+1]<- +50 }
else { index[i+1]<- -50 } }
if (index[i]== 50) {if (GORT[i+1] > SSRT[i+1]+SSD[i+1]) { Inhibition[i+1]<- ’1’}
else {Inhibition[i+1]<- ’0’} }
if (index[i]== -50) {if (GORT[i+1] > SSRT[i+1]+SSD[i+1]) { Inhibition[i+1]<- ’1’}
else {Inhibition[i+1]<- ’0’} }
}
#Third: Update Final Values of SSD given values of Index !#
SSRTSSD <- as.vector(matrix(0,nrow=1,ncol =n))
for (i in 1:n)
{
SSRTSSD[i] <- SSRT[i] + SSD[i]
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}
#Fourth: We clear unwanted data for Go trials !#
for (i in (m+1):n)
{
if (SSRT[i]!= ’NA’) {SSRT[i]= -999}
if (SSRTSSD[i]!= ’NA’) {SSRTSSD[i]= -999}
if (SSD[i] != ’NA’) {SSD[i]= -999}
if (index[i] != ’NA’) {index[i]= -999}
}
SRRT<-ifelse(TrialType %in% c(’FStop’), GORT, SRRT0)
GORT<-ifelse(TrialType %in% c(’SStop’,’FStop’), -999, GORT)
MAT=matrix(c(id,GORT,SSRT,SRRT,SSD,SSRTSSD,index,TrialType,Inhibition),nrow=length
(GORT))
#Fifth: Combine to get the simulated SST data:
MATT<-MAT[sample(nrow(MAT)),]
colnames(MATT)<-c(’id’,’GORT’,’SSRT’,’SRRT’,’SSD’,’SSRTSSD’,’index’,’Trial’,
’Inhibition’)
head(MATT)
write.csv(MATT,"Simulated_SST_Data_Tracking_Method.csv",row.names = F)
###End

Appendix B. Cluster Type Weight Calculations in the Simulation of SST Data

Here we show that the weight WA = 0.75 is the most natural weight given independence
of assignment of stop or go process to the given trial. To see this, let T1, · · · , T96, S1, · · · , S24 and
G1, · · · , G72 denote all trials, stop trials and go trials, respectively. Then, given that 75% of all trials are
go trials, it follows that (A similar argument shows that, in general and conditioned on independence
of assignment of stop or go process to the given trial, for given stop-signal probability pss we have
WB = pss.).

WA =
#{∃j(Ti = Sj), ∃k(Ti−1 = Gk)|1 ≤ i ≤ 96}

24

=
#{∃j(Ti = Sj), ∃k(Ti−1 = Gk)|1 ≤ i ≤ 96}/96

24/96

=
P(∃j(Ti = Sj), ∃k(Ti−1 = Gk)|1 ≤ i ≤ 96)

P(∃j(Ti = Sj)|1 ≤ i ≤ 96)

=
P(∃j(Ti = Sj)|1 ≤ i ≤ 96)× P(∃k(Ti−1 = Gk)|1 ≤ i ≤ 96)

P(∃j(Ti = Sj)|1 ≤ i ≤ 96)

= P(∃k(Ti−1 = Gk)|1 ≤ i ≤ 96) ' 0.75,

WB = 1−WA = 0.25.
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