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Abstract

Background: Analysis of gene expression data provides valuable insights into disease mechanism. Investigating
relationship among co-expression modules of different stages is a meaningful tool to understand the way in which a
disease progresses. ldentifying topological preservation of modular structure also contributes to that understanding.

Methods: HIV-1 disease provides a well-documented progression pattern through three stages of infection: acute,
chronic and non-progressor. In this article, we have developed a novel framework to describe the relationship among
the consensus (or shared) co-expression modules for each pair of HIV-1 infection stages. The consensus modules are

identified to assess the preservation of network properties. We have investigated the preservation patterns of
co-expression networks during HIV-1 disease progression through an eigengene-based approach.

Results: We discovered that the expression patterns of consensus modules have a strong preservation during the
transitions of three infection stages. In particular, it is noticed that between acute and non-progressor stages the
preservation is slightly more than the other pair of stages. Moreover, we have constructed eigengene networks for the
identified consensus modules and observed the preservation structure among them. Some consensus modules are
marked as preserved in two pairs of stages and are analyzed further to form a higher order meta-network consisting of
a group of preserved modules. Additionally, we observed that module membership (MM) values of genes within a
module are consistent with the preservation characteristics. The MM values of genes within a pair of preserved
modules show strong correlation patterns across two infection stages.

Conclusions: We have performed an extensive analysis to discover preservation pattern of co-expression network
constructed from microarray gene expression data of three different HIV-1 progression stages. The preservation
pattern is investigated through identification of consensus modules in each pair of infection stages. It is observed that
the preservation of the expression pattern of consensus modules remains more prominent during the transition of
infection from acute stage to non-progressor stage. Additionally, we observed that the module membership values of
genes are coherent with preserved modules across the HIV-1 progression stages.

Keywords: Gene co-expression network, Module eigengene, Hierarchical clustering, Consensus modules, Immune

regulatory genes

Background

Acquired Immunodeficiency Syndrome (AIDS) is one of
the cataclysmic diseases that have impaired the human
species for decades. In spite of the enormous amount of
efforts and resources employed to its study and even after
thirty-three years of unveiling of the fact that Human
Immunodeficiency Virus (HIV) as the cause of AIDS,
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there is still no effective vaccine and no cure for this
disease [1-3].

After initial infection, a person may not experience any
symptom or may undergo a brief period of influenza-like
illness, including fever, headache, rash or a sore throat.
Typically, this is collocated with a prolonged period of
time with no symptoms. As the infection develops, it
interacts more with the immune system, intensifying
the danger of common infections like tuberculosis, as
well as other expedient infections, and tumors that sel-
dom endanger people who have functioning immune sys-
tems (http://www.who.int/mediacentre/factsheets/fs360/
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en/). These late, defenseless to grievous infections are
categorized as AIDS. People often observed substantial
weight loss at this stage (http://www.cdc.gov/hiv/basics/
whatishiv.html).

There are three main stages of HIV infection: the acute
stage (also known as primary HIV infection or acute retro-
viral syndrome), chronic stage (this stage is sometimes
called “asymptomatic HIV infection’, “chronic infection”
or “clinical latency stage”), and AIDS [4]. In the acute
stage, the initial period following the contraction of HIV,
it takes 2-3 weeks after infection until the copy num-
ber of HIV-1 virus increases, and the number of CD4+ T
(T helper) cells remarkably reduces [5]. However, usually,
patients infected with HIV-1 overcome from the acute
stage without any treatments within 3-6 weeks and have a
clinical latency period of 8 to 10 years (chronic stage) [6].

Although mostly there are few or no symptoms at first
and CD4+ T cell count is almost recovered during the
clinical latency stage, it has been discovered that immune
damage occurs persistently [7]. A small proportion (about
5 to 8%) of HIV-infected patients maintain high levels of
CD4+ T cells (T helper cells) without antiretroviral ther-
apy and stay clinically stable for decades. They are called
HIV controllers or long-term non-progressors (LTNP) [8].
Nevertheless, the most of the HIV-1 infected patients have
a perceptible viral load and in lack of treatment will even-
tually advance to AIDS, a stage where the CD4+ T cell
count falls below 200 cells / 1L, and hence T cell-mediated
immunity fails to defend the body from pathogens [9].

In recent years, researchers are practicing an exten-
sive use of DNA microarray technology to analyze the
expression levels of thousands of genes simultaneously to
understand the rationales of cellular systems, molecular
networks, disease mechanisms, etc. To reveal system-level
properties of genes, construction and analysis of biological
networks have been extensively used in [10-13]. Exam-
ples of such biological networks are gene regulatory net-
works, protein-protein interaction networks, metabolic
networks, signaling networks, gene co-expression net-
works, etc. Amidst these biological networks, gene co-
expression networks have numerous advantages [14], and
empower us to endure a global overview of different
diseases. In a co-expression network, genes are intercon-
nected to each other on the basis of the resemblance of
their expression profiles and such co-expressed genes tend
to participate in the same pathway or form complexes
[15, 16] that perform specific functions.

For analyzing the similarities and heterogeneity in net-
work structures through co-expression modules, quite a
significant number of computational methodologies have
been put forward in [17-19]. To discover the preserva-
tion patterns in modules between the human brain and
blood tissue, Cai et al., introduced a novel framework in
[20]. Conservation and evolution of gene co-expression
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networks across the human and chimpanzee brains have
been studied by Oldham et al., in [17]. To reveal the
association within the co-expression modules through
eigengene networks, a revolutionary framework has been
introduced by Langfelder et al. [21]. Ray et al. [22] pro-
posed a novel framework to discover topological pattern
changes in gene co-expression modules through eigen-
gene networks among different stages of HIV-1 progres-
sion using a rank aggregation scheme. A novel framework
has been proposed in [23] for discovering the preservation
and expression pattern changes in co-expressed modules
across three stages of HIV-1 disease progression through
an eigengene-based analysis.

In this article, we have developed a novel framework
to study the preservation and changes of modular struc-
ture in the gene co-expression networks across three
stages of HIV-1 disease progression through eigengene-
based approach. Initially, we have compiled three sep-
arate co-expression networks through Weighted Gene
Co-Expression Network Analysis (WGCNA) framework
[24] for three stages of HIV-1 disease progression. Next,
consensus modules are identified by considering each
pair of stages at a time. We have also searched for the
immune regulatory genes which are preserved and not
preserved among the HIV-1 infection stages across the
consensus modules. Additionally, to investigate the topo-
logical characteristics of all the shared genes belonging
to those consensus modules, we have computed their
degree and betweenness centrality and identified the most
significant Gene Ontology (GO) Terms and KEGG Path-
ways associated with them. The overlaps between each
pair of consensus modules are investigated through an
overlap score. The preservation patterns of the identi-
fied consensus modules are then discovered by using
an eigengene-based measures. For consensus modules
between a pair of stages, we have constructed eigen-
gene network corresponding to each infection stage. We
have also investigated preservation of the eigengene net-
works across two infection stages. The preserved eigen-
gene networks form a higher order meta-network among
the module eigengenes. Moreover, some of the meta-
modules show a strong preservation during the transition
of infection from one stage to another. We have also
investigated the correlation between module membership
(MM) values of genes with the preservation pattern of
consensus modules.

Methods

In this section, we present our proposed model to detect
and analyze the modules that are shared by two or more
networks (also referred to as consensus modules) across
acute, chronic and non-progressor stages of HIV-1 pro-
gression. To identify consensus modules, we have utilized
the popular WGCNA [24] framework. Figure 1 outlines
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Fig. 1 Overview of the whole framework for the present analysis

our approach for identifying preservation affinity in con-
sensus modules among stages of HIV-1 progression.

Dataset used

In our present work, we have downloaded the HIV-1
microarray dataset from the Gene Expression Omnibus
(GEO) database, submitted by Hyrcza MD, et al. with
GEO Series accession no GSE6740 (http://www.ncbi.nlm.
nih.gov/geo). It comprises of a stage-specific gene expres-
sions of CD4+ T and CD8+ T cells from a cohort of
untreated HIV-1 infected individuals and the dataset has
been extracted from 10 gene chips (five gene chips from
CD4+ T cells and five gene chips from CD8+ T cells,
respectively) for each of the three HIV-1 stages viz. early
HIV-1 infection (acute) samples, chronic infection HIV-
1 samples, non-progressor HIV-1 infections samples with
low or undetectable viral loads, and uninfected samples.
All of the categories of datasets (acute, chronic, non-
progressor, and uninfected) consist of 10 samples and
22283 genes.

Dataset preprocessing

In addition to the expression dataset acquired from the
series matrix files, we have worked out on the CEL files
available in the GEO database as mentioned above. At
the outset, to winnow out the outliers and for reducing
the data dimensionality for computational convenience,
the Affy package in the Bioconductor toolbox of R sta-
tistical software has been employed here. We extracted
the expressed genes from three expression datasets cor-
responding to acute, chronic, and non-progressor stages
that are available in the CEL files through execution of the
masb5calls() function [25] of Affy package. The mas5calls()
function executes Wilcoxon signed rank-based algorithm
for detection and comparison calls on microarray gene
expression data. Detection calls are used to find whether
the transcript of a gene is present or absent. For per-
forming detection call the intensity differences of per-
fectly and mismatched probes are used. Comparison call
uses the differences between target genes and perfectly
matched probes intensities to define the studied genes
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as increasing, marginally increasing, marginally decreas-
ing, decreasing, or exhibit no expression change at all.
One-sided Wilcoxon signed rank test is utilized to obtain
“p-value” which is compared with two significance level
o1 and «y. In this article, we have observed the detection
call for o7 =0.05. Thus, here a gene is said to be present in
a sample if the associated “p-value” is less than 0.05. Now,
a gene is called expressed in all samples, if it is present
in all of the samples. This exposes 6521, 5939, and 6939
expressed genes for the acute, chronic and non-progressor
stages, respectively. The list of Genes expressed in differ-
ent stages of HIV-1 infection are available in Additional
file 1 and the genes exclusively expressed in different
stages of HIV-1 infection are listed in Additional file 2.

In the next step, we transformed the expression dataset
corresponding to all the stages of HIV-1 progression in
a multi-set format, by uniting dataset of two stages at a
time. To prepare the multi-set datasets, and to restrict
our analysis to the most connected genes (i.e. genes which
have high correlations in their expression profiles) and to
speed up calculations when it comes to module detec-
tion, at first, we have employed the Scale-free Topology
Criterion proposed by Zhang and Horvath [24]. It is
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observed that at soft threshold power (8) value of 24, the
acute stage expression dataset with 6521 expressed genes
satisfies scale-free topology criterion, as the scale-free
topology model fitting index R?, reaches a high thresh-
old value (0.9), approximately (Fig. 2a(i) and (ii)). A linear
relationship between log(p(k)) and log(k), where p(k) is
the probability of the nodes having connectivity k, fur-
ther confirms that the network is transformed into a scale
free network at $ value of 24, approximately (Fig. 2a(iii)).
Applying same methodology, we have observed that
the chronic stage and non-progressor stage expression
datasets, approximately attained their scale-free topology
criterion at 8 = 40 and B = 30, respectively. Next, we
have calculated the connectivity of each expressed gene
to all other genes for all the three expressed gene expres-
sion datasets by execution of softConnectivity() function
of WGCNA package taking the (8) value as an argument.
Thereafter, the 5600 most connected genes were extracted
by computing the connectivity rank of all of the expressed
genes from all the three expression datasets separately.
We have also discarded the housekeeping genes which are
expressed in all the samples and not associated with HIV-1
infection, from the most connected genes for our analysis.
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For this, first, we have selected genes that are expressed
in all the samples. Next, we excluded those, which does
not belong to HIV Dependency Factors (HDFs) sets (Brass
et al. [26], Konig et al. [27], Zhou et al. [28]) and also
do not interact with HIV-1 (from “HIV-1 Human Protein
Interaction Database” (HHPID) dataset [29]) and also not
included in any predicted interaction sets. For preparing
predicted interaction set, we have taken union of all com-
putationally predicted interactions from Tastan et al. [30],
Dyer et al. [31], Doolittle et al. [32], Mukhopadhyay et al.
[33, 34].

Adjacency matrix and connectivity of a network

A network can be interpreted with an adjacency matrix
Adj =[M;] which indicates how nodes are connected
among themselves. A gene co-expression network can be
represented through a symmetric adjacency matrix con-
sisting of # x n elements where each node in the network
is a gene [35].

In an unweighted network, an element M;; of the adja-
cency matrix gets a value 1, if nodes i and j are connected
(adjacent), or O, if the nodes are not connected. In a
weighted network, 0 < M; < 1 corresponds to the
connection strength between the nodes i and ;.

0<M;<1, 1)
M;; = M;;,
M;; =1.

Here, we have constructed gene co-expression network
for all the stages of HIV-1 dataset represented in a multi-
set format by computing the Spearman correlation for
every pair of genes of the gene expression profile matrices.

Transformation of the adjacency matrix

To emphasize the large adjacencies at the expense of low
ones and to satisfy scale free topology criteria, we raised
all the correlation values of the adjacency matrix to a fixed
power 8 through power transformation law [24]

Power;j(Adj, B) = Mg 2)

The value of g for power transformation law is the same
as soft threshold power (8) that we have already obtained
in the “Dataset preprocessing” Section.

Topological Overlap Matrix (TOM) based similarity measure
A major objective of network analysis is to identify groups,
or modules of densely interconnected genes which can
be revealed by exploring similarity patterns in connection
strengths, or high “topological overlap” of among genes.
The Topological Overlap Matrix (TOM) based similarity
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measure [36-38], which indicates how two genes are

similar in terms of the commonness of genes they are

connected to, has been employed in our present analysis.
TOM is expressed as

D ki MikMij + My
min (Zk;éiMik’ Zk;éjMik) +1—Mj
®3)

TOM;(Adj) =

TOM based dissimilarity measure

TOM based similarity matrix can be easily transformed
into a dissimilarity matrix by applying the following
equation:

Dj; = Dissim;(TOM(Adj))

Quantile transformation

Topological Overlap Matrices (TOMs) of distinct datasets
may possess different statistical features. For example, the
TOM in the acute dataset may be systematically higher
than the TOM in the chronic dataset. As consensus is
expressed as the component-wise minimum of the two
TOMs, a bias may result. Here, we illustrate a simple scal-
ing that extenuates the effect of different statistical prop-
erties to some extent. We scale the chronic TOM such that
the 95 percentile equals the 95 percentile of the acute
TOM through Quantile transformation [21], which takes
multiple TOMs of the same dimension as input and yields
a single TOM whose component Quant,,; is the 4" Quan-

tile of the corresponding components TOM Ejl) , TOM}/.Z) of
the input matrices, computed as follows:

Quantq; (TOMY, TOM®))
(5)
= quantile, (TOM{, TOM)

Here, TOM), denotes the TOM of the dataset s.

To see what the scaling achieves, we form a quantile-
quantile plot (Fig. 3) of all the pair of stages (e.g., acute-
chronic) topological overlaps before and after scaling.
From Fig. 3a, it is clearly visible that scaling changes
the chronic TOM moderately, and brings it closer to the
reference line shown in blue.

Consensus networks

A consensus network can be constructed from the co-
expression networks expressed through adjacency matri-
ces in such a way that, two nodes are connected with each
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other if and only if, all of the input networks ‘agree’ on that ~ Consensus modules

connection. Thus, consensus network is defined as [21]: Modules in the consensus network are termed as consen-
sus modules. In our present work, we have constructed
Consensus;; (TO MY, TOM®, . . ) consensus modules using pairwise gene dissimilarity mea-
sure defined analogously to Eq. (4):
— Min:: ) 2
= Min;j <TOM , TOM™, ... ) ’ Dissim (Consensus(TOM <Adj(1)) , TOM <Adj(2)) yeo ) ) ,
where, Min;; (TOM<1>, TOM®, .. ) (7)

as input to the average linkage hierarchical clustering.

— i (1) (2)
= min (TOMij » TOM;;™, .. ) : ) The branches originating from the resulting cluster tree
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(Dendrogram) are referred to as consensus modules. We
have utilized a dynamic tree cut algorithm [39] for this
purpose. Please note that here we have used the hierarchi-
cal clustering algorithm to group genes whose expression
profiles are highly correlated across samples for a pair of
stages. The alternative clustering procedures can also be
employed to group the genes. In this article, we have fol-
lowed the procedure described in [21] to perform such
grouping.

Module summarization by Eigengene network

After constructing the consensus modules using hierar-
chical clustering technique as described above, we have
summarized each consensus module expression profile by
one representative gene: the module eigengene. Module
eigengene is defined as the first right singular vector of a
module expression matrix. Let, C 0 — (cg()) refers to the
gene expression data corresponding to module k, where
indexi=1,2,...,p corresponds to the module genes and
the index j = 1,2,...,q corresponds to the microarray
samples, and each row of C%, has been standardized to
mean 0 and variance 1. The singular value decomposition
of C®[p x q] is defined as:

c® = upvT, 8)

where, the columns of the orthogonal matrices U =
(u1, Uy ..., u(m,‘n(p,q))) and V = (V1, V2y.nnsy V(min(p,q))) are
the left- and right-singular vectors, respectively, and D =
(dy,da, . . ., Agmin(p,g))) is a diagonal matrix containing sin-
gular values. Incorporating terminology from [17, 40-42],
the first column of V® is referred to as the Module
Eigengene:

ME® = 9)

Let, ME; and ME; denote the module eigengenes of
the I and J* modules, respectively, then the connection
strength between eigengenes ME; and ME; is expressed
as:

1+ cor(ME;, MEy)

5 (10)

MEigeny =

Eigengenes of different modules of a gene co-expression
network often exhibit correlations which we have used
to constitute eigengene network [21]: AdjEigen, which is
defined as follows:

AdjEigen = (MEigen,I] ) (11)
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Eigengenes of different consensus modules often exhibit
correlations which we have used to constitute consensus
eigengene networks:

Consgigen = (Adjf, (12)

(2)
]Eigen,Ad] .. ) .

Eigen’

Detecting meta-modules from Eigengene networks
After constructing the eigengene network, a module
detection algorithm can be employed to detect modules

Chronic

A Acute

Non Progressor

B Acute

Chronic

833
(11.7%)

(5.6%)

Non Progressor

Fig. 4 a Venn Diagram showing the count of the expressed genes
among HIV-1 stages. We have observed 6521, 5939, and 6939
expressed genes for the acute, chronic and non Progressor stages,
respectively. b Venn Diagram showing the count of 5600 Most
Connected Expressed Genes (MCEGs) observed in all of the HIV-1 Stages
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in the eigengene networks that are referred to as meta-
modules. The dissimilarity measure utilized here to detect
such meta-modules is defined as [21]:

1 — cor(ME;, MEy)

5 ) (13)

Dissimyj (Adjgigen) =

where cor(ME], MEJ) refers to the correlation between the
module eigengenes of I and /¥ modules. We have used
this the dissimilarity matrix as input to the average link-
age hierarchical clustering, resulting in a cluster tree of
modules (represented by eigengenes) and the branches of
the cluster tree are referred to as meta-modules in our
application.

Detecting consensus meta-modules

From the consensus eigengene network constructed
through the method described above, a module detec-
tion algorithm can be employed again. The modules in
the consensus eigengene networks hence detected are
referred to as consensus meta-modules. The dissimilarity
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measure utilized here to detect such meta-modules is
analogous to Eq. (13) and expressed as:

Dissim(Cons <Ad'(1) AdjY ) .

]Eigen’ ]Eigen’ v
The branches emanating from the cluster tree of mod-
ules resulting from average linkage hierarchical clustering
using the above dissimilarity matrix as input correspond
to consensus meta-modules in our application.

(14)

Identifying overlaps among the consensus modules
In the present article, we have also computed the over-
laps among the identified consensus modules by taking
two categories of modules at a time. To measure the over-
lap we have used Jaccard-based similarity metric defined
as follows:

M; 0 M|

= 15
9= BE U] (15)

where M; € category-i module, while M; € category-
j module. For each pair of modules we have com-
puted the overlap and constructed an overlap matrix as
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Fig. 5 a Hierarchical clustering tree for category-1 consensus modules. Each consensus module is described here as a module eigengene of it (e.g.
module ‘blue’ is represented as ‘MEblue’). b The dendrogram for category-1 consensus modules. Here, ‘unmerged’ color codes signify the consensus
modules whereas merged denote the consensus meta-modules. In this case, three consensus modules ‘yellow’, ‘black’ and ‘magenta’ are grouped in
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Overlapyar =[0ijlmxn- The overlap scores for category-i
module M; and category-j module M,/ are defined as

OvScoreyy, max}’zl Overlapyy, prj, and

(16)

m
OVScoreM/{ = maijIOverlale_,M/',

where n and m are the numbers of category-i and
category-j modules, respectively. The OvScore metric of
a module indicates the proportion of involvement of it in
two other categories of modules.

Identifying preservation pattern in consensus modules
among HIV-1 stages
To discover the changes in preservation patterns across
each category of consensus modules, we have compared
the two eigengene networks, each corresponds to an HIV-
1 stage in a specific category. For example, we have com-
piled the eigengene networks corresponding to acute and
chronic stages in category-1 module.

To compare eigengene networks (Eq. (11)), we have used

the measures introduced in [21]. Let Adjg;en and Adjg;en

denote the adjacency matrices of consensus eigengene
networks of stages p and gq. We construct a preservation
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network between these two consensus eigengene net-
works as follows:

Pres®® = pres (Adj{h,,, Adjh,, ), (17)

where the entries of the preservation network Pres?? are
defined as:

cor (ME, MEP") — cor (ME(?, ME} )|
. .

Presl(fj'q) =1-

(18)

Here, ME}k) signify the eigengene of the I consen-

sus module in dataset k. Larger values of Pres%’q) signify

more preservation of correlation pattern among module
eigengenes MEr and MEj across two networks.
Furthermore, to investigate the preservation between
module eigengenes across two networks we have com-
puted the Scaled Connectivity Cy (Pres?®) [21] of a mod-

ule eigengene ME}k) which is given as:

5t |cor (MEY, ME) - cor (ME®, ME?))|

Cr(Pres??y =1 —
1(Pres’??) AN - 1)

(19)
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Fig. 6 a Hierarchical clustering tree for category-2 consensus modules. Each consensus module is described here as a module eigengene of it (e.g.
module ‘blue’ is represented as ‘MEblue’). b The dendrogram for category-2 consensus modules. Here, ‘unmerged’ color codes signify the consensus
modules whereas merged denote the consensus meta-modules. Here, consensus modules ‘blue’ and ‘turquoise’ are grouped into meta-module
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Ci(Pres??) is close to 1 if the I module eigengene
has a strong preservation pattern with the most of the
other eigengenes. The density (D) [21] of the preservation
network Pres®? is given by:

) ) (q) (q)
D2y ‘cor (MEI(p ,ME}‘” ) — cor (MEIq ,ME]q )‘
INN — 1) :

D(Pres??)=1—
(20)

Larger values of D(Pres”?)) indicate a strong preser-
vation of correlation patterns among the most of the
eigengenes across the two networks.

Computing module membership of genes within
consensus modules

Module membership (MM) of a gene is defined as the
Pearson correlation value between the expression level
of a gene on the microarray and the module eigengene.

Page 10 of 23

The measure describes the extent of similarity between
the expression level of the gene and the overall expres-
sion pattern of the module. Here, we compared the MM
values of all the genes within a shared module between a
pair of infection stages. In particular, we have computed
the module membership values of all the genes within a

shared module MY 72, for stage p; as follows:

MM_M =

where,v; =

[vi,va,...v4l,

corr(ME;, gj). (21)

Here, ME; is the module eigengene of module M;, g
is the expression profile of j#* gene in the module, and
corr(.) denotes the Pearson correlation operator. Similarly,
we have computed the MM values of module Mf’ 112 for
stage p2. Therefore, for a shared module between a pair of
stages, we obtained two sets of MM values, each of which
corresponds to one stage. Next, we merged these two sets
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Fig. 7 a Hierarchical clustering tree for category-3 consensus modules. Each consensus module is described here as a module eigengene of it. (e.g.
module ‘blue’ is represented as ‘MEblue’). b The dendrogram for category-3 consensus modules. Here, ‘'unmerged’ color codes signify the consensus
modules whereas merged denote the consensus meta-modules. Here, consensus modules ‘black’ and ‘brown’ are grouped into meta-module
‘brown’, consensus modules ‘green’, ‘pink’, 'magenta’ and 'yellow’" are grouped to meta-module ‘green’
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Fig. 8 Figure shows percentage of involvement of category—1 modules in category-2 and category-3

into one set of MM values and compared this set between
the preserved shared modules.

Results and discussion

Here we report the results of our eigengene based anal-
ysis of consensus modules identified at different stages
of HIV-1 progression. For the rest of the paper, we will
use the term category-1 modules for consensus modules
of acute and chronic stages, category-2 modules for con-
sensus modules of chronic and non-progressor stages and
category-3 modules for consensus modules of acute and
non-progressor stages.

Overlaps among the expressed genes

We have observed the overlaps among the selected
expressed genes in acute, chronic and non-progressor
stage. Figure 4 shows the overlaps among 6521 selected
genes of acute stage, 5939 selected genes of chronic stage
and 6393 selected genes of non-progressor stage. It can
be noticed from Fig. 4a that all the stages share a good
amount of common genes (72.7%) among themselves. A
relatively small number of expressed genes (109/1.5%) of
chronic stage have no overlaps with the expressed genes
of other stages. For consensus module detection, we have
transformed the expression profiles of these expressed
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Fig. 9 Figure shows percentage of involvement of category-2 modules in category-1 and category-2
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genes of all the stages into a multi-set format. We have
chosen the 5600 most connected genes for all the stages of
HIV-1 progression which we have discussed earlier in the
“Methods” section. A closer look at the Fig. 4b reveals that
the number of common genes (54.8%) among the stages
has been decreased from our earlier observation. The pos-
sible reasons behind this, is that the connectivities among
a significant number of expressed common genes with
other genes are low compared to the connectivities among
expressed non-common genes with other genes. As a sup-
plementary information to the interested readers, we have
included Additional files 3 and 4 which show the Venn
diagrams of the expressed genes and the 5600 most con-
nected expressed genes (MCEG), respectively, among the
uninfected and three stages of HIV-1 infection.

Identification of consensus modules

We have utilized the consensus dissimilarity measure
Eq. (7) in average linkage hierarchical clustering method
to detect consensus modules. We take a pair of stages at a
time and identify consensus modules from the expressed
genes. The identified modules are given the same type of
color code. The genes which are not assigned to any of
the modules are labeled as gray color. We have obtained
14 consensus modules of category-1, as shown in Fig. 5.
Similarly, we have obtained 3 category-2 and 16 category-
3 modules (shown in Figs. 6 and 7). We have summarized
each category modules by their corresponding module
eigengenes through Eq. (10) and constructed an eigengene
network among them using Eq. (11). For each category of
consensus modules there are two sets of genes each cor-
responding to a specific HIV-1 infection stage. We have
included the list of genes which are involved in the forma-
tion of all categories of consensus modules in Additional
files 5, 6,7, 8,9 and 10.

It is worth noting that the number of category-2 mod-
ules for the chronic and non-progressor stages pair is
relatively small and major genes didn’t participate in mod-
ules formation (as they fall in gray module). This indicates
that the commonness between the expression patterns of
chronic and non-progressor is much lower than the other
pair of stages.

MCECG Categoryl MCECG Category2

833
(14.3%)

MCECG Category3

Fig. 11 Venn diagram showing the count of the Most Connected
Expressed Common Genes (MCECG) among acute-chronic (i.e.
category-1), chronic—non progressor (i.e. category-2) stages and
acute-non progressor (i.e. category-3) stages
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Overlaps among the consensus modules

To detect the overlaps among the identified consensus
modules, we have applied Egs. 15 to 16 and obtained the
overlap scores (OvScore) for all categories of consensus
modules.
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Figures 8, 9 and 10 show the distribution of three cat-
egories of modules with their respective OvScore values.
It is noticed from these figures that there is very lit-
tle involvement among the three categories of modules.
Most of the modules in each category have low OvScore.
To investigate, whether these results have any correla-
tion with the number of common genes that are involved
in the consensus modules construction in each pair of
the stages, we have performed the following analysis. We
have drawn a Venn diagram in Fig. 11 to show the over-
lap among the common genes which are involved in the
consensus modules construction for each pair of stages.
It is observed from the figure that 66.8% genes are com-
mon among them. The complete list of all overlapped
genes for Fig. 11 is provided in Additional file 11. The
genes which are preserved between the stages across all
the consensus modules are also listed in Additional file 12.
After removing the housekeeping genes from the most
connected expressed genes for each stage, we have found
57.05% genes are common among the genes involved in
consensus module construction. Among those common
genes we have also searched for the Immune Regula-
tory genes [43] and found some of them between the
stages across all the consensus modules. We have col-
lected and compiled a list of immune regulatory genes
from Immunology Database and Analysis Portal (Imm-
Port), Immunogenetic Related Information Source (IRIS)
and Immunome Database available in InnateDB [44]. The
list of such Immune Regulatory genes preserved among
the HIV-1 stages across all the consensus modules is avail-
able in Additional file 13 and the exclusive set of Immune
Regulatory genes expressed in different stages of HIV-1
infection are listed in Additional file 14.

Furthermore, to explore the characteristics of the
shared genes belonging to the consensus modules of
each pair of stages, we have performed the following
analysis. We have investigated the degree and between-
ness centrality of the genes considering the whole
human genome as an interaction network. Figure 12
(a), (b) and (c) show the scatter plots of degree vs.
betweenness centrality of these shared genes. It can be
observed from the figure that, there exists a strong cor-
relation between degree and betweenness centrality of
the genes in each category. For shared genes between
category-1 and category-3, R? value (0.883) is slightly
more than the shared genes of other pair of categories

Table 1 Gene Ontology (GO) term and KEGG pathway of the shared genes of each category modules

Category pair GO-Term (GO ID) (p-Value)

KEGG Pathway (p-Value)

Category-1-category-2
Category-1-category-3
Category-2—category-3

Translational initiation (GO:0006413) (p-value: 7.5E-19)
Viral process (GO:0016032) (p-value: 8.0E-33)
Viral transcription(G0O:0019083)(p-value: 2.4E-14)

Ribosome (3.1E-7)
HTLV-I infection (8.8E-12)
Phagosome (4.7E-5)
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(for category-2 and category-3: 0.874, for category-1
and category-2: 0.852). Some shared genes emerge as
both hub (high degree) and bottleneck (high between-
ness centrality). For example, genes: ‘ACTB’ , ‘EEF1EL,
‘CALM1, ‘HSP90AA1, ‘RACI; ‘STAT1, ‘CSNK2A1" and
‘STAT3’ have degrees 102, 89, 114, 90, 92, 77 , 152
and 102 and betweenness centrality 1.066E+06, 9.49E+05,
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9.9E+05, 1.118E+07, 4.85E+06, 4.65E+06, 1.12E+06, and
7.022E+06, respectively. To further explore the biolog-
ical relevance of the shared genes, we have searched
Gene Ontology (GO) terms and KEGG pathways that
are associated with those genes. Table 1 summarizes
the results for the shared genes of each category
modules.

059 075 0.73 054 061

0.70 0.57 0.61
0.65 0.57 0.

Fig. 13 Figure shows the heatmaps of eigengene networks for 14 category—1 modules. Panel a shows the eigengene network for acute stage and
Panel b shows the same for chronic stage. Panel € shows the preservation network for the category-1 modules
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Preservation of consensus modules between each pair of
stages

For each pair of stages, consensus modules are iden-
tified by using a consensus dissimilarity measure
(Eq. (14)) which is utilized in the hierarchical clus-
tering algorithm. The eigengene networks among the
consensus modules represent how the characteristic
expression patterns of modules are correlated with
each other in a particular stage. We have constructed
eigengene network corresponding to each infection
stage for each category of consensus modules. For
example, in category-1 module we have compiled the
eigengene networks corresponding to acute and chronic
stages. We have employed Eqgs. 17 to 18 for comparing
these two eigengene networks to know the changes in
preservation patterns across each category of consensus
modules.

Figure 13(a) and (b) show the heatmap of eigengene net-
works of category-1 modules corresponding to acute and
chronic stages. Figure 13(c) shows the preservation net-
work for the same. It can be noticed from this Figure
that five consensus modules ‘greenyellow, ‘magenta; ‘pur-
ple; ‘pink; and ‘red’ retain their pairwise correlation pat-
tern across acute and chronic stages. In other words,
these modules preserve their expression patterns across
acute and chronic stages. For category-2 and category-3
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modules the heatmaps of eigengene networks and preser-
vation networks are shown in Figs. 14 and 15, respec-
tively. From Fig. 15(c) we noticed that there are several
clusters of modules exist that preserve their expression
pattern across acute and non-progressor stages. For exam-
ple, purple, red, yellow and tan modules retain their
pairwise correlation pattern same across acute and non-
progressor stages. Another example includes black, blue
and brown modules, or magenta, midnightblue and pink
modules. For category-2 modules blue and brown mod-
ules have a same correlation pattern across chronic and
non-progressor stages.

Additionally, for investigating the preservation between
module eigengenes across two networks we have com-
puted the Scaled Connectivity (Eq. (19)) of the module
eigengenes for each category of modules and the density
(Eq. (20)) of their preservation network.

Here, we report the results of preservation measures
which are applied to the three categories of modules.
Figure 16 shows the distribution of each category of mod-
ules with scale connectivity (C) values. As can be seen
from the figure, category-1 and category-3 modules show
similar types of distribution over the values of C. The den-
sity (D) value for category-1 module is 0.7956 whereas
for category-3 module the value is 0.8060. The value D
for category-2 modules is much higher (0.9195) than that

A Eigengene Network for Chronic Stage

B Eigengene Network for Non Progressor Stage
——1.00

r1.00

Fig. 14 Figure shows the heatmaps of eigengene networks for three category-2 modules. Panel a shows the eigengene network for chronic stage
and Panel b shows the same for non progressor stage. Panel € shows the preservation network for the category-2 modules
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A Eigengene Network for Acute Stage
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Fig. 15 Figure shows the heatmaps of eigengene networks for 16 category-3 modules. Panel a shows the eigengene network for acute stage and
Panel b shows the same for non progressor stage. Panel € shows the preservation network for the category-3 modules

for category-1 and category-3. The possible reason may
be that the number of shared modules for chronic and
non-progressor stages is only three.

To assess the significance of preservation among the
shared modules, we have performed the following statis-
tical test. For this, we have constructed three categories of
shared modules randomly from the identified expressed

genes of three infection stages. Thus, we obtained 14 ran-
dom modules for category-1, 3 for category-2 and 16 for
category-3. Random modules of each category are con-
structed by selecting genes randomly from the common
expressed genes of a pair of stages. To investigate the
preservation pattern of the constructed random modules,
we computed the eigengene network and preservation
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Fig. 16 Figure shows the distribution of scale connectivity values of consensus modules for three categories
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matrix for each stage. From this, scale connectivity (C)
values are computed for each category of random mod-
ules. We compared the C values of random modules with
the original modules using Wilcoxon Ranksum test. The
resulting p-values (7.4678e-06 for category-1 modules,
1.1296e-05 for categoty-3 and 3.2487e-05 for categoty-2)
are very low, which signify the preservation of expression
pattern between each pair of infection stages is statistically
significant.

This suggests that there exists a strong preservation
in the overall expression pattern of each category of
modules.

Higher order organization of consensus modules

From Figs. 13, 14 and 15, it can be noticed that the
shared modules not only preserve their correlation pat-
terns across a pair of infection stages but also form groups
or clusters corresponding to each infection stage. For
example, in category-1 modules, magenta, green, purple
and red modules have high correlation score among them
in chronic stage. Similarly, salmon, tan and turquoise
modules show high correlation among them in acute
stage. This suggests to form a higher order structure of
modules that reflects the relationship among them. To
investigate the relationship among the modules in each
stage, we have performed hierarchical clustering on each
category of modules, by using the dissimilarity measure
shown in Eq. (13). The identified meta-modules in each
category, signify the association among the consensus
modules. Figures 17 and 18 show the hierarchical clus-
tering tree to detect meta-modules for category-1 and
category-3 modules, respectively. For consensus modules
of category-2, no meta-modules are found in both chronic
and non-progressor stages. For category-1, we observed
five meta-modules (yellow, turquoise, green, blue, and

brown) in acute stage and three meta-modules (turquoise,
blue, brown) in chronic stage. In category-3, four meta-
modules (turquoise, brown, blue, and yellow) are identi-
fied in acute stage, while three meta-modules (turquoise,
brown, and blue) are found in non-progressor stage. Such
groupings of consensus modules at each stage repre-
sent a strong correlation of expression patterns among
the modules. From Fig. 17(a) and (b), one can observe
the preservation of meta-modules across two stages. For
example, in category-1, the first (yellow) and fifth (brown)
meta-modules of acute stage are fully preserved in chronic
stage. The second meta-module (turquoise) of acute stage
is partially preserved in chronic stage. Similarly, from
Fig. 18, it can be seen that the first (turquoise) and fourth
(yellow) meta-modules of acute stage are highly preserved
in non-progressor stage.

From Fig. 13(c), we noticed that a good amount of
preservation exists among the consensus modules. It is
also observed from Figs. 17 and 18, that the preservation
exists in stage-specific meta-modules. So, it is tempting
to investigate the preservation pattern among the consen-
sus meta-modules. We detect consensus meta-modules
by following the same methodology for consensus module
detection. Identified eigengene networks for two stages
are clustered using hierarchical clustering by using the
dissimilarity measure mentioned in Eq. (14) to form con-
sensus meta-modules. We have found 11 consensus meta-
modules for category-1, 2 consensus meta-modules for
category-2 and 12 consensus meta-modules for category-
3. Figure 5 shows the hierarchical clustering tree for con-
sensus meta-module detection. We noticed in the figure
that modules black, yellow and magenta are merged to
form a one consensus meta-module whereas cyan and
purple form another consensus meta-module. Similarly,
Figs. 6 and 7, show the consensus meta-module formation
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Fig. 17 Figure shows higher order organization of category-1 modules in acute and chronic stages. Hierarchical clustering tree of consensus
modules according to acute stage is shown in panel a. Panel b shows the same for chronic stage. In each panel the grouping of consensus modules

for category-2 and category-3 modules, respectively. Such
type of meta-modules represents a grouping of consen-
sus modules between two stages. The difference between
the consensus meta-module and simple meta-module is
that the consensus meta-modules are constructed from
consensus modules by considering a pair of stages. It rep-
resents shared meta-modules across two infection stages.

Consistency of module membership with the preservation
pattern

In this article, we have also computed the module mem-
bership (MM) values of all the genes within a consensus

module for the pair of infection stages in each cate-
gory of modules using Eq. (21) and compared their MM
values. Figure 19 shows the comparison of MM val-
ues for each pair of preserved category-1 modules. Each
panel of Fig. 19 shows a density plot of MM values
for preserved category-1 models. Here, we show distri-
bution of MM values for six pairs of category-1 mod-
ules with high preservation score. It is evident from
the figure that the MM values are consistent with the
preservation score of the modules. For example, two
preserved shared modules (score=0.99) module 4 (cyan)
and module 9 (purple) show similar patterns in the
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Fig. 18 Figure shows higher order organization of category-3 modules in acute and non-progressor stages. Hierarchical clustering tree of consensus
modules according to acute stage is shown in Panel a. Panel b shows the same for non progressor stage. In each panel the grouping of consensus
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Fig. 19 Figure shows density plots of module membership (MM) values of genes in preserved modules of category-1. Each plot describes the
distribution of MM values of genes within a pair of preserved modules. Here, the density plots are shown for six pair of preserved modules
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(preservation score > 0.95)

distribution of their MM values. We can observe the Expression analysis of HIV infected individuals before and
same consistency in category-2 and category-3 modules.  after ART

Figures 20 and 21 show the comparison of MM values An effective suppression of viral replication (<50
between preserved category-2 and category-3 modules, copies/mL) following an increase in CD4+ T-cell counts
respectively. This suggests that module membership is can be observed through Antiretroviral therapy (ART) in
consistent with the preservation pattern of consensus HIV infected individuals. In this experiment, we have per-
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Fig. 20 Figure shows density plots of module membership (MM) values of genes in preserved modules of category-2. Each plot describes the
distribution of MM values of genes within a pair of preserved modules. Here, the density plots are shown for two pair of preserved modules
(preservation score > 0.91)




Hossain et al. BMC Bioinformatics (2017) 18:181

Page 20 of 23

pres_score=1

05 0.0
MM_value

pres_score=1

sensus_Module

D modulet1 (lightcyan)
D module7 (purple)

05 0.0 0.5
MM_value

Consensus_Module

pres_score=1

000 190~ 05 0.0 05

. 1.0
MM_value

(preservation score > 0.95)

Consensus_Module

module10 (pink)
module16(yellow)

D module16(yellow)
D module8 (magenta)

075 Ppres_score=0.96
Consensus_Module
0.50 module12 (red)
.%‘ module14 (tan)
025
0'00-1.0 05 0.0 05 1.0
MM_value
075 pres_score=0.98
Consensus_Module
%0'50 module13 (salmon)
f=
] module4 (cyan)
0.25
0.00
-1.0 05 0.0 0.5 1.0
MM_value
1.00
075  Pres_score=0.99
' Consensus_Module
050 module3 (brown)
= ’ module6 (greenyellow)
7]
8025
0.00 |
-1.0 05 0.0 05 1.0
MM_value

Fig. 21 Figure shows density plots of module membership (MM) values of genes in preserved modules of category-3. Each plot describes the
distribution of MM values of genes within a pair of preserved modules. Here, the density plots are shown for six pair of preserved modules

expression dataset (GSE44228 [45]) which provides gene
expression values of 36 HIV infected individuals before
and after antiretroviral therapy (ART). In this analysis, we
have utilized 4,157 differentially expressed genes (DEGs)
identified through multivariate permutation tests, pro-
vided in [45]. We have investigated expression values

the DEGs in treated and untreated samples, individu-
ally. Figure 22 shows box-plots of all the treated and
untreated 36 samples. Moreover, to know which genes
preserved their expression patterns in both treated and
untreated samples, we have computed the Pearson corre-
lations between the expression profiles of all the DEGs in
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Fig. 22 Figure shows box plots of HIV infected 36 samples before and after Antiretroviral Therapy (ART)
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both the samples. In Fig. 23, we have shown a bar plot
which describes proportions of DEGs with correlation
values. It can be observed from this figure that approxi-
mately 50% of the DEGs has correlations between 0.4 to
0.6. A small percentage (~ 5%) of the DEGs has correla-
tions greater than 0.8 and a very few of the DEGs exhibit
negative correlations.

We have also compared expression values of the
DEGs in three HIV infections stages: acute, chronic and
non-progressor. For this, we have collected expression
profiles of the DEGs in acute, chronic and non-progressor
samples. Figure 24 shows the box-plots of these samples
in acute, chronic and non-progressor stages.

Conclusions

In the present article, we have carried out a compre-
hensive analysis to investigate the preservation pattern
of coexpression network compiled from microarray gene
expression data of HIV-1 progression stages. Here, three
different categories of consensus modules are identified
by considering each pair of infection stages at a time. For
each category, we have compiled two eigengene networks
of a consensus module, corresponding to each infection
stage. We have found that eigengene networks are pre-
served in each pair of infection stages. The preservation
pattern is more prominent in category-3 (consensus mod-
ules of acute and non-progressor pair) modules. However,
there exists little involvement among the consensus mod-
ules between three categories. Moreover, the number of
consensus modules of category-2 is only three, which
indicates the preservation of network properties between
chronic and non-progressor stage is not good. However,
the preservation scores of blue, brown and turquoise mod-
ules in category-2 are high, which signifies the correlation
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Fig. 23 Bar plot describing proportion of DEGs with correlation values
in all treated and untreated samples
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between eigengenes of each pair of modules remain the
same in chronic and non-progressor stages. So, the preser-
vation of eigengene in category-2 is high despite having
low preservation of network properties between chronic
and non-progressor stages.

Observing the preservation pattern of each category of
modules in an individual infection stage, we have clus-
tered the modules into groups of meta-modules. Each
meta-module is identified in individual infection stage by
performing hierarchical clustering which utilizes the dis-
similarity measure defined in Eq. (13). The meta-modules
are fully or partially preserved across a pair of infec-
tion stages. Some meta-modules in category-1 such as
‘green’ and ‘blue’ are not preserved between acute and
chronic stages. List of the genes involved in those two
meta modules are listed in Additional file 15. Similarly,
for category-3, meta-module ‘brown’ is not preserved
between acute and non-progressor stages. For category-2,
no meta-modules are found and the possible reason
behind this is the small number of identified consen-
sus modules. Moreover, the preservation among the
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consensus meta-modules are also discovered by identify-
ing them using the Eq. (14) from consensus modules.

Apart from the eigengene networks, the preservation
among the consensus modules is also observed while
comparing the module membership (MM) values of genes
within the modules. In other words, the MM values are
found to be consistent with the preservation pattern of
eigengene networks. In most of the cases, the distribution
of MM values between two preserved modules in each
category shows a strong correlation. This suggests that the
way in which the genes within a pair of preserved module
conforms to its characteristic expression pattern is similar.

Some issues still require to be explored further. It is
worth mentioning that a clear investigation of the pre-
served modules through biological experiments can facil-
itate the understanding of key players or biomarkers that
are essential for HIV infection. Apart from that, dif-
ferent machine learning approaches like support vector
machines, rule-based systems, random forests, artificial
neural networks, etc. may be useful tools for capturing the
preservation structure among consensus modules of dif-
ferent stages of HIV-1 infection. Multilabel classifications
would be an important tool to predict drug resistance
in HIV-1 antiretroviral therapy [46, 47]. Beside, detecting
preservation patterns module-wise, it is also interesting to
identify the differentially co-expressed modules across a
pair of stages in HIV-1 progression. We are now working
in this direction.
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