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Abstract: Multiple supramolecular functionalities of cyclic α-alkoxy tellurium-trihalides (including
Te—O, Te—X (X = Br, I) and Te—π(C=C) supramolecular synthons) afford rich crystal packing
possibilities, which consequently results in polymorphism or Z’ > 1 crystal structures. Example of
three crystal forms of cyclohexyl-ethoxy-tellurium-trihalides, one of which combines the packing of
two others, affords a unique model to observe the supramolecular synthon evolution at the early stages
of crystallization, when crystals on the way find themself at a carrefour between the evolutionally
close routes, but fail to choose between two energetically close packing patterns, so taking the
“middle path”, which incorporates both of them (and results in two crystallographically independent
molecules). In general, this allows a better understanding of the existing structures, and an instrument
to search for the new polymorphic forms.

Keywords: non-covalent interactions; chalcogen bonding; polymorphism; supramolecular synthons;
synthons evolution; synthon crossover; crystallization; structural landscape; organotellurium; crystal
design; energy framework

1. Introduction

“ . . . the one parcel of phase space” [1]. Due to the frequent occurrence of chalcogen
bonding interactions (ChB) [2] at electrophilic Te centres and other non-covalent interactions
(NCI) in organotellurium halides, their supramolecular chemistry is richer than their
molecular one. The tendency towards non-covalent and hypervalent binding increases as
we move down the VIA group and multiple variants for self-organization around the Te
centre naturally lead to synthon polymorphism in some of them [3,4].

This work arose in the course of our recent investigation of the unusually easy elec-
trophilic addition of organo-tellurium trihalides to the C-C triple bond of ferrocenylacety-
lene [5], formal substitution of one of the bromides by iodoacetylide and triiodoethylenic
fragments [6] and oxidative cleavage of the Fe-Fe bond in [CpFe(CO)2]2 [7] (see Scheme 1).

In the context of such chemical reactivity of cyclo-C8H12(OR)TeX3, some cases of its
inertness deserve special attention. For example, no further intra- or intermolecular reaction
between Te and a double bond is observed, although SeBr4 and SCl2 interact with both
double bonds of 1,5-cyclooctadiene (COD) to form bicyclic cyclooctane chalcogenides [8] or,
say, TeCl4 interacts with an excess of cyclohexene resulting in cyclohex-TeCl3, which further
attacks the double C=C bond of another cyclohexene molecule to form cyclohex2TeCl2 [9]
(see Scheme 2).
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Scheme 1. Interaction of cyclo-C8H12(OR)TeX3 with (a) diiodo-ethyne C2I2 ; (b) [CpFe(CO)2]2 ; (c) 
tetraiodo-ethene C2I4 ; (d) ferrocenyl-ethyne FcC2H. 
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Scheme 2. Interaction of (a) cyclo-hexene with TeCl4 ; cyclo-octa-1,5 diene with (b) SeBr2 ; (c) TeCl4. 
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rium center in 1–2 can be described as a typical octahedral [14] (see Figure 1), with the 
sixth position of the octahedron occupied by a weakly associated C=C double bond. 
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This unusual structural and chemical behaviour of cyclic alkoxy-organotellurium
trihalides suggested a closer look at their crystal structure, therefore, we undertook the
XRD structural investigation of cyclo-C8H12(OR)TeX3 (R = Me, Et, X = Br, I), its cyclohex-
ane α-alkoxy tellurium-trihalide congeners and a comparative analysis of the complex
interplay between Te—O, Te—X (X = Br, I) and Te—π(C=C) chalcogen bonding in their
solid-state structures.

2. Results and Discussion
2.1. Supramolecular Architectures of Cyclic Alkoxy-Organotellurium Trihalides

Analysis of the crystal structure of the 8-alkoxy-4-cyclooctenyl-tellurium tribromides
1 and 3 (see Scheme 1) demonstrated that, despite the fact that they are close homologues
(R = Et (1) and Me (3)), they provide different self-assembly patterns in solid-state. In
particular, ethoxy-homologues C8H12(TeX3)OEt (R = Et, X = Br (1), I (2)) are assembled
into 1-D chains stabilized by Te—π(C=C) ChBs (3.479–3.577 Å) (see Figure 1a), while their
chloro- (X = Cl, R = Et [10] and methoxy- (R = Me X = Br (3), I (4) congeners, form dimeric
associates [11–13], stabilized by two Te—X ChBs (see Figure 2). The tellurium center in 1–2
can be described as a typical octahedral [14] (see Figure 1), with the sixth position of the
octahedron occupied by a weakly associated C=C double bond.
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Figure 1. Fragments of the packing pattern of 1 (P21/c, Z’ = 2, (a)) and 2 (Pbca, Z’ = 1 (b)). Notice the (a) 1D chain of al-
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(intermolecular): Te(1A)-C(6) 3.430(3), Te(1A)-C(5) 3.648(4), Te(1)-C(6A) 3.830(4), Te(1)-C(5A) 3.435(3). Selected distances 
in 2 (b) (Ǻ): (intermolecular) Te1---C5 3.548(5), Te1---C6 3.592(5). 
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In an electron-withdrawing environment, the electrophilic Te atom tends to form
Te—π(C≡C)acetylene chalcogen bonds (ChB). Like Te—π-aryl ChBs [15], the Te—π-acetylene
ChBs are well documented [16], except for, to the best of our knowledge and after a
Cambridge Structural Database (CSD) search, the Te—π(C=C)alkene. Chalcogen bonding
found in 1 and 2 is unprecedented.
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):
(intramolecular); Br(1)-Te(1) 2.6562(5), Te(1)-Br(2) 2.5121(7), Te(1)-Br(3) 2.6880(5), Te(1)-O(1) 2.416(3), (intermolecular)
Br(3)-Te(1) 3.7389(6).

Taking into account the existence of centrosymmetric dimeric associates of C8H12(TeCl3)
OEt [10], we can assume the existence of the corresponding polymorphs of 1 and 2. Al-
though our attempts to crystallize them were not successful, the expected Te—X cen-
trosymmetric dimers were found in their methoxy congeners: the isomorphic pair of
cyclo-C8H12TeBr3(OMe) (3) and cyclo-C8H12TeI3(OMe) (4) (see Figure 2).

Under the same conditions as for 1–4, but using the cyclohexene instead of COD, we
obtained a series of 2-alkoxy-cyclohexyl-tellurium trihalides cyclo-C6H10TeX3(OR) (X = I,
R = Et (5), X = Br, R = Et (6), X = Br, R = Me (7), X = I, R = Me (8). The synthesis and 13C/1H
NMR characterization of tribromides 6, 7 was reported earlier [17], but the trichloride
cyclo-C6H10TeCl3(OEt) has been the only structurally characterized member of this family
until now [18]. Our SC-XRD investigation 5–8 demonstrated a noticeable lengthening
of intramolecular Te—O distance in 5–8 (~2.7–2.8
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) compared to ~2.4 Å in 1 and 2 (see
Figures 1–4). This lengthening of the distance between adjacent substituents in the six-
member ring is a natural consequence of the rigid torsion angles in the six-membered
ring, compared to the more flexible seven- and eight-membered rings (see Table S1 and
Scheme S1).
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): (intramolec-
ular) Te1-Br1 2.6749(4), Te1-Br3 2.6271(4), Te1-Br2 2.4800(5), Te1-O1 2.716(2); (intermolecular); Te1-Br2
3.9027(5), Br2-Br1 3.5956(5).
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Analysis of the molecular geometry around the Te center in this series suggests that it
is mainly the steric rather than the electronic motif that drives the TeX3 and OEt functions
apart from each other so that in the seven-membered 2-ethoxy-cycloheptyl-tellurium
tribromide [19] (see Table S1) the Te—O distance (2.492 Å) is exactly between C6 and C8
derivatives. This rather mechanical weakening of the intramolecular Te—O bonding in
5–8 leads to a switching of electrophilic Te from the intra-molecular Te—O interaction with
the methoxy-oxygen atom in 1–3 to the inter-molecular Te—O bonding in isomorphic 7
(3.427 Å) and 8 (3.604 (8) Å) (see Figure 4).

Formal substitution of Et (in 6) for a more compact Me group (in 7) can reduce the
shielding of the alkoxy-oxygen atom and allow closer interaction between the molecules,
which leads to the stabilization of the catemer chain by Te—O ChBs. Analysis of the
bonding angles around the Te—O ChB and X—X (X = Br (7), I (8)) XB interactions in the
catemer chains shows that they are genuine (type II) σ-hole bonds.

2.2. Polymorphism of Cyclo-C6H10(OEt)TeI3

Crystallization of a saturated solution of 5 from DCM/hexane (3:1 mixture) yields the
crystals that are isostructural with 6 and therefore are packed in the centrosymmetric Te—I
ChB dimers (5a see Figure 5a). Further crystallization of the filtered mother liquor resulted
in another polymorphic form of 5, build of catemeric chains, stabilized by Te—I ChB (5b,
see Figure 5b). Surprisingly, in the crystal of C6H10(OEt)TeCl3 (WEQTUH [18], which is
the chloride congener of 5), we noticed both dimeric [S,S RTeCl2(µ-Cl)]2 and catemer [R,R



Molecules 2021, 26, 1583 6 of 13

RTeCl2(µ-Cl)] architectures are simultaneously and independently present in one (and so
far the only) crystal form (see Figure 5c,d).
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0202 Ȃ \textroundcap{A} LATIN CAPITAL LETTER A WITH INVERTED BREVE

0203 ȃ \textroundcap{a} LATIN SMALL LETTER A WITH INVERTED BREVE

0204 Ȅ \G{E} LATIN CAPITAL LETTER E WITH DOUBLE GRAVE

0205 ȅ \G{e} LATIN SMALL LETTER E WITH DOUBLE GRAVE

0206 Ȇ \textroundcap{E}
\textinvbreve{E}

LATIN CAPITAL LETTER E WITH INVERTED BREVE

0207 ȇ \textroundcap{e}
\textinvbreve{e}

LATIN SMALL LETTER E WITH INVERTED BREVE

0208 Ȉ \G{I} LATIN CAPITAL LETTER I WITH DOUBLE GRAVE

0209 ȉ \G{i}
\G{\i}

LATIN SMALL LETTER I WITH DOUBLE GRAVE

020A Ȋ \textroundcap{I}
\textinvbreve{I}

LATIN CAPITAL LETTER I WITH INVERTED BREVE

020B ȋ \textroundcap{i}
\textroundcap{\i}
\textinvbreve{i}
\textinvbreve{\i}

LATIN SMALL LETTER I WITH INVERTED BREVE

020C Ȍ \G{O} LATIN CAPITAL LETTER O WITH DOUBLE GRAVE

020D ȍ \G{o} LATIN SMALL LETTER O WITH DOUBLE GRAVE

020E Ȏ \textroundcap{O}
\textinvbreve{O}

LATIN CAPITAL LETTER O WITH INVERTED BREVE

020F ȏ \textroundcap{o}
\textinvbreve{o}

LATIN SMALL LETTER O WITH INVERTED BREVE

0210 Ȑ \G{R} LATIN CAPITAL LETTER R WITH DOUBLE GRAVE

0211 ȑ \G{r} LATIN SMALL LETTER R WITH DOUBLE GRAVE

0212 Ȓ \textroundcap{R} LATIN CAPITAL LETTER R WITH INVERTED BREVE

0213 ȓ \textroundcap{r} LATIN SMALL LETTER R WITH INVERTED BREVE

0214 Ȕ \G{U} LATIN CAPITAL LETTER U WITH DOUBLE GRAVE

0215 ȕ \G{u} LATIN SMALL LETTER U WITH DOUBLE GRAVE
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) in
5b (b): (intramolecular) I2-Te1 2.699(1), Te1-I3 2.717(2), Te1 I1 2.869(1), Te1 O1 2.775(9); (intermolecular); Te1-I2 3.902(1),
I1-I2 3.493(2).

This suggests that special attention should be paid to the packing patterns of each
independent molecule in the crystals with Z’ > 1, in the light of rationalizing the existing,
as well as predicting possible polymorphism. With this in mind, we searched through
the Z’ ≥ 2 RTeXn (n = 1,2) structures deposited in CSD with the intention of identifying
those that have two independent molecules and belong to two different packing patterns.
Our surface CSD screening for the Z’ ≥ 2 was limited to organotellurium halides to be
consistent with the main compounds of this work. Below are some of the most illustrative
and relevant examples of the crystals that have two independent molecules, each of which
belongs to a different type of packing pattern (see Figures 6–8). The first Z’ = 2 crystal to
mention is (Z)-2-iodo-2-phenylvinyl)-phenyl-tellurium diiodide (CUCQEX, see Figure 5)—
a product of anti-Markovnikov electrophilic addition of PhTeI3 to phenylacetylene (PhC2H).
Overlooked in our original communication in 2008 [20], like cyclo-C6H10(OEt)TeCl3, it has
both catemer chain (see Figure 5a) and dimeric associates (see Figure 5b) present in parallel
in one (and yet the only) crystal form. Its cognate chloride (GOKFAO [21]) Z’ = 1 has only
the catemer chains (see Figure 6c). It is noteworthy that these iodide and chloride catemer
chains, belonging to different crystals, are quite identical, and we can assume the existence
of a centrosymmetric dimeric form of chloride.

We noticed similar parallel dimer/catemer chains (see Figure 7a,b) vs. only dimeric
crystal form (see Figure 7c) in a polymorphic pair of di-iodo-phenyl-(trimethylsilylmethyl)-
tellurium (ISALOE01/ISALOE [22]). Unlike this, discrete dimers in Z’ = 2 (Figure 7a) and
I—I associated dimers in Z’ = 1 (see Figure 7c) form different chains.

Not all of these tellurium halides with Z′ = 2 are characterized by the interplay of Te—halide
dimer/catemer patterns. For example, in the crystal of diiodo-(2-(4-nitrobenzylideneamino)
-5-methylphenyl)-(4-methoxyphenyl)-tellurium (TARGAV. P-1, Z’ = 2, see Figure 8a,b), the
supramolecular synthon crossover [23] between [Te—I] and [Te-O=NO] resulted in two
corresponding dimeric associates [24].
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Figure 6. Fragment of packing of (Z)-2-iodo-2-phenylvinyl)-phenyl-tellurium diiodide (Z’ = 2, a,b)
and (Z)-2-chloro-2-phenylvinyl)-phenyl-tellurium dichloride (Z’ = 1, c), showing the parallel chains
of Te—I ChB stabilized catemer (a) and centrosymmetric dimers (b) in Ph(I)C=C(H)TeI2Ph (CUCQEX)
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are omitted for clarity.
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Figure 7. Fragment of packing of two polymorphic forms of phenyl-(trimethylsilylmethyl)-tellurium
diiodide: (a,b)—dimer/catemer parallel chains (ISALOE01, C2/c, Z’ = 2) and (c)—dimeric (ISALOE,
P-1, Z’ = 1) (c), showing the parallel chains of Te—I ChB stabilized centrosymmetric dimers (a) and
catemer (b) in C2/c form and only associated dimers in P-1 form (c). Hydrogen atoms are omitted for
clarity. Notice that dimeric chains (a) and (c) have a different packing pattern.

This is by no means an exclusive feature of telluro-halides, and a similar phenomenon
was noted in the polymorph landscape of 1,1,4,4-tetraphenyl-1,3-butadiene [25]. Therefore,
we can expect that new experimental data combined with deeper and more extensive CSD
analysis, will definitely yield more Z’ > 2 “midway” crystals, which will advance our under-
standing of the crystallization mechanism and the prediction of new polymorphic forms.

2.3. Energy Frameworks

It is important to note that the chains and centrosymmetric dimers discussed for
1–8 are not just the visually observed patterns, the existence of which is only confirmed
by short contacts, but correspond to the shape and geometry or energy framework of
the corresponding crystal. The energy framework is the visualization of intermolecular
interaction energies between pairs of molecules, presented in the form of cylinders joining
the centroids of pairs of molecules (with a cylinder radius proportional to the magnitude of
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the interaction energy) [26]. They are an effective tool for visualizing the supramolecular
architecture [27] or even supramolecular reactions [28–31], considering the molecular
crystal as a whole. For example, the total energy framework of 5a and 8 at the maximum
cutoff (i.e., the strongest intermolecular interactions) matches the close contact pattern (see
Figures S2–S4). However, for most of the remaining structures, not the total energy, but its
electrostatic component framework has the same chain geometry as suggested by the short
contacts pattern (see Figure 9, Figures S1 and S3).
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Intermolecular interaction energies (CE-B3LYP DGDZVP) used for the energy frame-
work for 2 were also evaluated using PBE0 and (DLPNO-CCSD(T) with def2 triple-zeta
basis sets and demonstrated a good agreement (see Table S2 for details). It worth noting that
the total energy of intermolecular interactions in a neutral molecular crystal is contributed
mostly by electrostatic and dispersion components, and electrostatic interactions, in turn,
fall-off as a minus two power of distance, while dispersion falls-off as a minus six power
of distance [32]. This leads us to suggest that chalcogen bonding (which is dominated
by electrostatic) may have a stronger orienting effect at the earliest stages of nucleation,
pre-organizing the molecules into the chains (according to Kitaigorodsky Aufbau Principle,
KAP [33]), which further, according to the same KAP, are associated into the layers and so
on up to the 3D crystal structure. This structure-directing influence of specific chemical
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interactions (ChB, XB) can be noticed in a resulting crystal structure as the predominantly
electrostatically stabilized architectures.

3. Materials and Methods

All reactions and manipulations were performed using standard Schlenk techniques
under an inert atmosphere of pure nitrogen or argon. Solvents were purified, dried and
distilled in nitrogen or argon atmosphere prior to use. Commercial reagents (cyclohexene,
1,5-cyclooctadiene) were distilled before use. C8H12TeBr3OR and C6H10TeBr3OR were
prepared following the reported procedures [7,10]. Tri-iodides 2, 4, 5, 8 were prepared by
Finkelstein reaction of the respective bromides with KI in acetone as described in [7].

3.1. X-ray Crystallography

Suitable X-ray quality crystals of 1–2 and 5–8 were obtained directly during prepara-
tion (see the synthetic part for details). A Bruker APEX II CCD area detector diffractometer
equipped with a low-temperature attachment was used for the cell determination and
intensity data collection for compounds 1–2 and 5–8. Structures 1–2 and 5–8 were solved
by direct methods and refined by means of the least squares method for F2 in anisotropic
(isotropic for H atoms) approximation using Olex2 and SHELXTL software [34,35]. Posi-
tions of H atoms were calculated geometrically. Appropriate empirical absorption correc-
tions were made using the programs SADABS. Atomic coordinates and other structural
parameters of 1–2 and 5–8 have been deposited with the Cambridge Crystallographic Data
Centre CCDC 760,039 (1), CCDC 760,040 (2), CCDC 2,062,201 (5a), CCDC 2,062,200 (5b),
CCDC 2,062,202 (6), CCDC 2,062,203 (7) and CCDC 2,062,204 (8), which also contains the
supplementary crystallographic data for this paper.

3.2. Computational Details

Intermolecular interaction energy calculation and subsequent Hirshfield surfaces [36]
and energy frameworks generation were performed using Crystal Explorer 17.5 (TONTO,
B3LYP-DGDZVP) [26] for all unique molecular pairs in the first coordination sphere of a
molecule (4.8 Å), using experimental crystal geometries.

Pairwise interaction energies for XRD dimer geometries provided by Crystal Explorer
were also evaluated for 2 using the hybrid functional PBE0 [37] and domain based local
pair natural orbital coupled cluster theory with single-, double-, and perturbative triple
excitations (DLPNO-CCSD(T) [38] implemented in ORCA 4.1.2 program package [39],
def2 triple-zeta basis sets [40] and appropriate correlation fitting basis sets [41] were used
for all calculations. Basis set superposition error was avoided by using dimer basis for
monomer energy evaluation. TightPNO keyword was used for accuracy control of DLNO
calculation [42]. Dispersion correction with Becke–Johnson damping (D3BJ) [43,44] was
used for energies calculated with DFT. This evaluation demonstrated a good agreement
between CE-B3LYP and higher level computations (see Table S2 for details).

4. Conclusions

The electrophilic tellurium atom in organoalkoxy-tellurium trihalides has a distinct
tendency to form intermolecular Te—halide, Te—O, Te—π(C=C) chalcogen bonds (ChB).
In some cases, the formation inter-molecular Te—O ChBs may compensate for the weak-
ening of intra-molecular Te—O ChBs. This complex interplay of Te-centered ChBs and
thermodynamic/lattice symmetry factors provides a complex structural landscape with
several close-by local minima, resulting in polymorphism and different packing patterns of
organotellurium halides. The slightest changes in the chemical structure and/or crystal-
lization conditions can shift the balance towards one of these multiple variants of packing
patterns: Te—X dimers, chains, Te—O chains and their combinations. In this context,
the case of catemer chains and centrosymmetric dimers, both observed independently
in the same lattice of C6H10TeCl3OEt (WEQTUH [18] see Figure 5) provides convincing
evidence that crystallographically independent fragments are fossil relics of early stages of
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the crystallization process [45], when two precursors (i.e., supramolecular synthons [46])
of two different polymorphic forms can coexist in one crystal.

This is typical not only for organotellurium halides—they are just good examples of
compounds capable of forming various combinations of energetically close σ-hole interac-
tions. Previously, it was shown that hydrogen bonding potential slightly increases a molecule’s
likelihood of being polymorphic [47]; therefore, other types of weak σ-hole intermolecular inter-
actions can also increase the chances of polymorphism. However, unlike hydrogen bonds,
the latter (XBs. ChBs) are more directional and specific [48–50] and, therefore, can make a
polymorphic pattern more predictable. In this work, we observed the supramolecular syn-
thons evolution [51] at the early stages of crystallization, when crystal on the way [52] through
the phase space [1], finds itself at a carrefour between the evolutionally close routes, but
fails to choose one, therefore taking the “middle path”, which incorporates both packing
patterns (and results in two crystallographically independent molecules). We expect that
further analysis of packing patterns of each independent molecule in the single-component
crystal structures with Z’ = 2, with particular attention to polymorphs, can provide more
important examples for later understanding of the early stages of crystal genesis.

Supplementary Materials: The following are available online, Figure S1: The energy framework
of 2. (a) Electrostatic component is represented by a red cylinder (cut-off 30 kJ/mol); dispersion
by a green cylinder (cut-off 35 kJ/mol). (b) Total intermolecular (blue cylinder, 30 kJ/moll cut-off);
Figure S2: The energy framework of 5a. Electrostatic component is represented by red cylinder
(cut-off 43 kJ/mol); dispersion by green cylinder (cut-off 25 kJ/mol). (b) Total intermolecular (blue
cylinder, 24 kJ/moll cut-off). Figure S3: The energy framework of 5b. (a-b) Electrostatic component is
represented by red cylinder (cut-off 32 kJ/mol); (b) dispersion by green cylinder (cut-off 32 kJ/mol).
(c) total intermolecular (blue cylinder, 20 kJ/moll cut-off). Figure S4: The energy framework of
8. Electrostatic component is represented by red cylinder (cut-off 38 kJ/mol); dispersion by green
cylinder (cut-off 20 kJ/mol). (b) Total intermolecular (blue cylinder, 30 kJ/moll cut-off); Table S1:
Intramolecular Te—O distances in 1,2—alkoxy cyclic tellurium trihalides; Table S2: Interaction
Energies (kJ/mol) ) for the 5 Å cluster of 2 (see Figure S5); Scheme S1: Elongation of the Te—O
distance in a row C8 > C7> C6. Notice the slight variation in the angles around the C-C bond and
significant increase of the Te-C-C-O torsion changes as we move from the six- to eight-member ring.
This is typical for cycloalkanes since the increase of the chain length facilitates the torsion.
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