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Motivated by the increasing energy consumption of
supercomputing for weather and climate simulations,
we introduce a framework for investigating the bit-
level information efficiency of chaotic models. In
comparison with previous explorations of inexactness
in climate modelling, the proposed and tested
information metric has three specific advantages:
(i) it requires only a single high-precision time
series; (ii) information does not grow indefinitely for
decreasing time step; and (iii) information is more
sensitive to the dynamics and uncertainties of the
model rather than to the implementation details.
We demonstrate the notion of bit-level information
efficiency in two of Edward Lorenz’s prototypical
chaotic models: Lorenz 1963 (L63) and Lorenz 1996
(L96). Although L63 is typically integrated in 64-bit
‘double’ floating point precision, we show that only
16 bits have significant information content, given an
initial condition uncertainty of approximately 1% of
the size of the attractor. This result is sensitive to the
size of the uncertainty but not to the time step of the
model. We then apply the metric to the L96 model
and find that a 16-bit scaled integer model would
suffice given the uncertainty of the unresolved sub-
grid-scale dynamics. We then show that, by dedicating
computational resources to spatial resolution rather
than numeric precision in a field programmable gate
array (FPGA), we see up to 28.6% improvement in
forecast accuracy, an approximately fivefold reduction
in the number of logical computing elements required
and an approximately 10-fold reduction in energy
consumed by the FPGA, for the L96 model.

1. Introduction
The power wall that traditional supercomputing is
approaching means that future improvements in weather

2017 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2017.0144&domain=pdf&date_stamp=2017-09-06
mailto:stephen.jeffress@gmail.com
http://orcid.org/0000-0003-3581-789X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170144

...................................................

and climate forecasting may require a substantial increase in energy consumption. For example, it
has been estimated that running a global cloud-resolving climate simulation for a century would
need the type of ‘exascale’ supercomputing that is projected to consume gigawatts of power if
computing technology continues to scale as it currently does [1,2]. The present study contributes
to the effort to reduce energy consumption and improve forecast accuracy in climate modelling
by the use of inexact computing strategies. Below we explain how inexact computing works, why
it is beneficial for climate modelling, and why the development of a bitwise information metric is
an important contribution.

(a) Inexactness in computers
Computers use energy to achieve exact calculations in two ways: (i) by using high voltages to
ensure low bit flip error rates and (ii) by using more bits to increase precision in variables. At the
circuit level, a computer requires energy to change the voltage of a transistor from low to high. We
refer to this as ‘flipping’ a bit between zero and one. The low voltage is usually 0 V and the high
voltage is often 5 V. Using high voltages for the upper limit requires more energy but results in less
chance of a bit flip error. Using lower voltages to conserve energy while accepting errors is known
as ‘voltage overscaling’. It is often difficult to isolate the parts of a computer that can tolerate
occasional bit flip errors from the parts that cannot. However, if technologies and algorithms are
designed to gracefully combine traditional processors with voltage overscaled chips, then large
gains in energy efficiency may be possible. For example, Palem [3] found a fourfold improvement
in energy efficiency if a 1% bit flip error rate could be tolerated.

In addition to using high voltages, the other way that computers ensure high levels of
exactness is by representing variables with a large quantity of bits and more advanced number
representation formats. In most computer languages, the simplest format is an 8-bit integer and
the most advanced is a 64-bit floating point. The decision to use fewer bits or to switch from a
floating point to an integer is called ‘reduced precision’. Reducing precision will typically require
more engineering development time and produce less exact calculations, but will achieve greater
energy efficiency.

In both the integer and floating point number formats, the amount of bits used specifies the
quantity of unique numbers that can be represented. For example, 16 bits provides 216 = 65 536
unique numbers, while 64 bits provides 264 = 18 446 744 073 709 551 616 unique numbers, and this
is true regardless of whether it is an integer or a floating point. The difference in the formats is
in the upper/lower bounds and the size of the increments between each representable number.
The standard integer format represents all the integers between a maximum and minimum
determined by the number of bits. A more general version of the integer format, called ‘scaled
integer’ or ‘fixed point’, contains a scaling factor and offset that sets the upper/lower bounds
and fixes a constant increment (thus allowing decimal number representation). Appropriately
choosing the scale and offset, and then possibly redesigning algorithms to fit these choices, is the
primary reason that switching from a floating point to a scaled integer requires longer engineering
development time.

The floating point format with 32 or 64 bits (defined in IEEE standard 754 [4]) is convenient
from the code writer’s perspective because of its fixed upper/lower bounds and non-uniform
distribution of numbers. Having spacious gaps among large numbers and tiny increments near
zero provides variables with both a large upper/lower range and high precision where it is
usually needed the most. However, the simplicity that the non-uniform distribution provides
for the programmer is traded off in the complexity of the hardware needed for the arithmetic at
the circuit level.

As is illustrated in §4 of this paper, floating point arithmetic circuits occupy a larger chip area,
require more clock cycles and consume significantly more energy than integer arithmetic circuits.
Details of how much energy can be saved by switching to scaled integer formats depend heavily
on the distribution of arithmetic operations in an algorithm. But it is generally understood that
great energy savings are possible if the investment in engineering time can be made. In a recent
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example [5], a 16-bit integer version of a deep learning algorithm was created on a dedicated
hardware platform and a 10-fold gain was found in energy efficiency compared with the 32-bit
floating point version on a standard processor. We end up finding a similar performance gain in
this study.

(b) Inexactness in climate models
Although a natural assumption is that inexactness in calculation translates to inaccuracy in
climate modelling, the careful inclusion of random errors and imprecision can often be beneficial.
The two main reasons that this can happen are that (i) adding small amounts of randomness
provides a better representation of small-scale chaotic processes and (ii) reducing precision in
selected variables allows computational resources to be reinvested for better use.

The inclusion of specific kinds of randomness into climate simulations is known as ‘stochastic
parametrization’. The physical basis for stochastic parametrization is related to the phenomenon
that is known as the ‘butterfly effect’ and whose difficult solution is known mathematically
as the ‘closure problem’ in multi-dimensional systems. Chaotic processes are often too small
to be resolved in models, but they have important impacts that cannot be represented by a
deterministic function of large-scale variables [6]. In the last decade, studies have consistently
shown the benefits of using partially random instead of fully deterministic techniques to represent
the unresolved processes, and today stochastic parametrization is routinely used in operational
weather forecast centres [7].

The second argument for achieving greater accuracy through inexactness is that reducing
precision allows computational resources to be put to better use. Although it is standard
practice in scientific computing to use 64-bit double precision floating point numbers (for reasons
discussed above), it is almost certainly a poor allocation of computational resources for achieving
maximum efficiency in climate simulations. For example, Düben et al. [8] and Düben & Palmer
[9] study the effect of reducing precision on the long-term climatology of Intermediate General
Circulation Model (IGCM) simulations and on the short-term weather forecasts in the Open
Integrated Forecasting System (OpenIFS) operated by the European Centre for Medium-Range
Weather Forecasts (ECMWF). It was found that 98% of the 64-bit IGCM calculations could be
performed with only 15 bits, without degradation in simulation quality. In OpenIFS, the relatively
simple conversion of variables from a 64-bit double to a 32-bit single floating point (simple
compared with scaled integer conversion) achieves the same forecast accuracy with half the bits
and up to 40% less computation time.

The reason that computational savings are relatively quickly realized when switching from
double to single floating point formats is because redesigning algorithms is typically not required,
and separate arithmetic circuitry for these two formats is standard on modern microprocessors.
By contrast, converting to scaled integer or low bit floating point formats will probably require
custom hardware for the large efficiencies to manifest. For example, it is not common to have
16-bit ‘half-precision’ arithmetic units in a microprocessor (hopefully more common in the near
future), so a compiler will probably up-convert half-precision floats to single precision floats to
perform arithmetic. In this situation using half-precision may still save computational resources
in storage and data transport, but not likely in computation.

To take full advantage of the efficiency that reduced precision provides, custom hardware is
often built for the application. For example, even though graphic processing units (GPUs) are
now used for many purposes, they were originally designed and built specifically for rendering
graphics in video games. The most common way to begin designing hardware specific to
applications is to use a field programmable A (FPGA). Because FPGAs are coded in the same
hardware description language (e.g. Verilog) as custom printed chips, the reconfigurable FPGAs
are typically used to test circuit designs and work through bugs on the logic level before printing
onto fixed hardware. In recent years, however, FPGAs have been used not as a prototype, but as
production-level accelerators for scientific and financial computing. This transition is largely due
to new technologies such as Maxeler Technologies’ FPGA-based data flow engines. These devices
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streamline the process of designing massively parallel arithmetic structures at the hardware level
for complex algorithms. The technology is beginning to show promise for simplified atmospheric
model simulation. For example, Oriato et al. [10] encode the dynamical core of a limited area
meteorological model on an FPGA and report a 74× speed-up compared with a 12-core multi-
threaded central processing unit (CPU) implementation. A related study [11] uses the technology
to integrate a global atmospheric shallow-water system to achieve a 14× acceleration and a 9×
increase in energy efficiency compared with a hybrid CPU–GPU implementation. In both of these
studies, a variety of reduced precision techniques are used to maximize the efficiency of the
FPGA’s finite computational resources.

(c) Bitwise information content
A common theme emerging from the recent work on inexact computing for climate models is the
need to efficiently and robustly determine which bits in the model contribute most significantly
to simulation or forecast quality. It is for this purpose that we introduce the bitwise information
metric in this paper. Below we explain why the need for efficiency and robustness has arisen and
briefly outline how this study will unfold.

In the reduced precision climate modelling studies mentioned in the previous section, the
precision analysis is typically accomplished by a guess-and-check approach; in other words, by
running a control model, then removing or randomizing certain bits and then rerunning a reduced
precision version. This process not only consumes large amounts of time, but also can require
significant computational energy of its own for large models. The bitwise information metric
presented in this paper requires only one high-precision run to determine the value of each of
the bits in the simulation.

The other theme emerging in previous studies is the need for the precision analysis to be less
sensitive to a model’s time step. Ideally, we would like a precision analysis to be more reflective of
the dynamics and uncertainty in the chaotic system, rather than the size of the time step used in
the numerical integration. It is often the case that a small time step must be used to maintain the
numerical stability of a model integration—and a precision analysis performed on the model’s
output will certainly be influenced by the choice of time step—but it is not desireable to have
a precision analysis that tends to infinite precision as the time step tends to zero. The bitwise
information metric introduced in this study is not significantly influenced by decreasing a time
step beyond that which is needed for numerical stability. However, it is highly influenced by the
size of the uncertainty and chaos in the model. Thus, the metric presented quantifies information
in a manner that is more a property of the underlying dynamical system and less a property of
the numerical method.

The remainder of this study is organized as follows. Section 2 introduces our bitwise
information metric by providing the mathematical basis and relationships to other forms of
information theory used in climate science. Section 3 applies the information metric to the Lorenz
1963 (L63) model. The result is a quantification of the information contained in each bit of a 32-bit
L63 integration. Section 4 applies the information metric to the Lorenz 1996 (L96) model, and then
uses the results of the analysis to guide the design of reduced-precision FPGA implementations.
The reduced-precision FPGA implementations of the L96 model show the trade-off between
numeric precision, spatial resolution, forecast accuracy and energy consumption. The main
findings are summarized in the conclusion.

2. Mathematical framework
In this section, we define the bitwise information metric. Our approach is similar to other
usages of information theory in climate science such as predictive information, relative entropy
and mutual information [12–14]. However, these usages are typically designed to relate climate
events to one another for statistical significance or predictive purposes, whereas our goal is to
relate chaotic predictability to the act of bit flipping in a simulation. Thus, instead of defining
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an entropy to be conditioned on potentially related climate events, our measure of entropy is
conditioned on the true–false value of the bits used in the number representation format of
the variables in the model. Information is then the contribution that bit flipping makes towards
improving forecasts, given that natural uncertainties exist and grow chaotically in the system. The
natural uncertainties, such as the initial condition or stochastic parametrizations, are analogous
to noise in the communication channel of Shannon’s 1948 information theory [16]. The accuracy
of forecasts is measured by reducing the entropy of a forecast probability distribution function
(PDF) with bin widths the size of the natural uncertainty. Thus, a bit has high information
if its flipping results in a statistically significant improvement (reduction in entropy) in the
forecast PDF at a given forecast time. As the forecast time extends, the information content
of all bits will eventually become negligible because the natural uncertainty growing in the
chaos eventually removes all predictability. Integrating over all useful forecast periods therefore
provides a robust quantification bitwise information content that does not grow indefinitely for
decreasing time step.

(a) Method requirements
Let x(t) = {x(t), y(t), z(t), . . .}T be the state vector of a multi-dimensional, real-valued chaotic system
(d/dt)x(t) = f (x), and assume that we have access to a time-series sample of one element, namely
x(t). Often the sample time series will come from the numerical integration of f (x), as it will in
later sections of this paper, but the metric presented here could also be applied to a time series
obtained from observational measurement of a chaotic system. The simplest form of the metric is
applied to a single scalar element x(t), but a more advanced version (discussed at the end of the
section) can include the full vector x(t).

The method applied to the scalar x(t) is performed as follows. Assume that we have N time
samples x(n�t), n = 1, 2, . . . , N, separated by time step �t. This time step needs to be small
compared with the time scales of variability in the system, such as the time step required for
accurate numerical integration, but the method is not sensitive to ever-decreasing values of �t,
as is explained in the text below equation (2.4).

The next requirement is that the system being modelled should have a natural uncertainty
of size h when projected onto x(t). The uncertainty could arise from various (or a combination
of) sources including initial condition uncertainty, measurement error or the stochastic term
added to each time step (e.g. for stochastic parametrization or for reduced dimensional models
where noise is introduced to represent the missing dimensions [15]). Similar to the time step
requirement, the uncertainty h needs to be small compared with the variability of x(t). In contrast
to the time step, the information metric is highly sensitive to the value of h. This sensitivity
is intentional as the goal of the metric is to relate the information in the bits to the growth of
the chaotic uncertainty.

Another important matter is the size of the bin widths used for the PDFs of x, because it
determines the length of the data sample required. We have found it best to set the bin size to
the size of the uncertainty h. This is a natural choice for PDF bin widths because the uncertainty
gives us no reason to distinguish among values inside the bin. The bin size sets the length of the
time series required to achieve a stable PDF for the following reason: if we let h tend to zero, it
would not be clear when (if ever) the PDF would converge; because the system is chaotic and
the phase space of x is probably fractal. Also, due to the fractal nature of the system, inside every
phase space increment in x we will have additional structure which requires additional precision
to resolve. Thus in order for our precision analysis to be well defined, we require our time series
sample x(n�t) to be sufficiently long to produce a stable PDF with bin width h.

Although it would be highly unlikely to be otherwise, it is also important that the same
numeric type, i.e. the protocol that maps bit positions to real numbers, must be used throughout
the time series. This means that each time sample x(n�t) is stored using B bits of precision
(e.g. B = 64 bits for a double precision floating point). To denote each individual bit, let xb(n�t)
be the value of the bit in position b = 1, 2, . . . , B at time n�t. Note that xb(n�t) is always
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either zero or one, which allows conditional PDFs to be constructed in a very natural way,
i.e. p(x | xb = 0, 1).

(b) Information content definition
We now define the information content in each bit of the system following [16]. The information
content of the bit in position b = 1, 2, . . . , B comes from the difference in entropy that arises from
whether the bit is a one or zero. In order to find this difference, we first define the unconditional
entropy Hx as

Hx = −
M∑

i=0

p(x)i log p(x)i. (2.1)

Here, pi(x) is the ith bin of the M-bin PDF of x(t). The size of the bin width in this PDF is the
natural uncertainty h described above.

The conditional entropy H[x | xb(τ ) = 0, 1] is then the entropy of x conditioned on whether the
bit xb(τ ), the bit in position b, is a zero or one at forecast time τ ,

Hb0(τ ) = −
M∑

i=0

pi[x | xb(t − τ ) = 0] log {pi[x | xb(t − τ ) = 0]}

and Hb1(τ ) = −
M∑

i=0

pi[x | xb(t − τ ) = 1] log {pi[x | xb(t − τ ) = 1]}.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

Here, [x | xb(t − τ ) = 0, 1] means the value of x(t), given that bit xb was a zero or one at time offset
τ in the recent past. For τ = 0, the PDF is conditioned on the simultaneous value of the bit. In
this case, it simply shows the bit’s function in the number representation. For example, the PDF
conditioned on the sign bit at τ = 0 would simply select the positive or negative regions of the
unconditional PDF. As τ grows large, the conditional PDF becomes the same as the unconditional
PDF because the chaos has removed the predictability for all bits. The information content Ib(τ ) of
this bit and forecast time is, therefore, the difference between the unconditional and conditional
entropies weighted by q0 and q1, the a priori likelihoods of the bit being a zero or one throughout
the time series:

Ib(τ ) = Hx − q0Hb0(τ ) − q1Hb1(τ ). (2.3)

The total bitwise information content Jb is then obtained by integrating Ib(τ ) over all forecast times

Jb =
∫∞

τ=0
Ib(τ ) dτ . (2.4)

This integral converges under the assumption of a finite uncertainty in the chaotic system. This
uncertainty will eventually grow to remove all predictability in the system, meaning that there is
a τ at which Ib(τ ) becomes and remains zero. This indicates that the integration of Ib(τ ) over all τ

will be finite.
The fact that (2.4) integrates over all useful forecast times makes Jb insensitive to an ever-

decreasing time-step size. Here, we assume that the error associated with the choice of numerical
method and time step is small compared with the error associated with the growth of the
uncertainty. In this case, as �t becomes very small, more precision is required to represent the
change in the state variables over the small time step, so we would expect to see Ib(τ ) contain
more information for more bits at very small τ . However, Jb is not heavily affected by this
because Jb integrates Ib(τ ) over the useful forecast period, which is dominated by the growth
of the uncertainty in the system. Thus, a smaller �t will better approximate integrals in Jb, but
decreasing �t beyond a certain point will have diminishing effects.

In contrast to the insensitivity to small �t, equation (2.4) is highly sensitive to the size of the
uncertainty h. The reason for this is because the system is chaotic with exponential growth of
uncertainty. This means that, for large h, forecast times will be short and the information in Jb
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will be small. For small h, the forecast times become long, which makes more bits contain more
information. As h tends to zero, meaning no uncertainty, the information in all bits becomes very
large. For this reason, we argue that the information quantified by Jb is more a property of the
chaos and uncertainty in the model, and is less sensitive to the size of the model time step �t (and
presumably less sensitive also to the details of numerical methods in other ways).

(c) Multi-dimensional version
The method discussed to this point has been for the case that we possess only one element x(t)
of the multi-dimensional chaotic system x(t). If we have an additional element y(t), we can add
the information that the bits of x hold for predicting y. To do this, we would add the following
to (2.3):

+ Hy − {q0H[y | xb(τ ) = 0] + q1H[y | xb(τ ) = 1]}. (2.5)

This process can continue for each additional element of the system for which x may hold
prediction power. Each addition would modify Ib and (2.4) may provide a better overall
quantification of the information in bit xb. However, in practice, we expect that if bit b of x is
important for predicting y, it is probably also important for predicting itself, so it probably already
has a non-negligible information content. Thus, we would expect to see diminishing returns of
adding more multi-dimensional elements into the analysis.

3. Bitwise information in Lorenz 1963
In this section, we apply our bitwise information analysis to the prototypical chaotic attractor
known as the Lorenz 1963 (L63) model [17]:

dx
dt

= σ (y − x),

dy
dt

= x(ρ − z) − y

and
dz
dt

= xy − βz.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

The model is a system of three ordinary differential equations originally obtained by simplifying
the equations of turbulence arising in a thin layer of fluid when heated from below. Today the
model is used less for its insights into fluid convection and more for its ability to illustrate general
properties of chaos.

(a) L63 model set-up
To obtain the sample time series required by our method, we integrate (3.1) numerically using the
MATLAB development environment. After discarding the transient behaviour associated with a
random initial condition, the model is integrated for 108 model time units (mtu) with a fourth-
order Runge–Kutta (RK4) method, and a time step of �t = 0.01 mtu. The model parameters are
set to the values most commonly used in studies of the system, σ = 10, β = 8

3 and ρ = 28.
We assume an uncertainty of h = 0.3 in all three elements of x = [x, y, z]T at all times in the

integration. This uncertainty is interpreted as a measurement or initial condition error and is
used as the bin width in PDFs of x as discussed in §2a. We also use the uncertainty to start a
perturbation time series x′(t). This perturbation is restarted every 30 mtu from the current value
of x(t) plus a random offset (distributed normally with mean zero and standard deviation equal
to h). The perturbation time series is not necessary for the information analysis, but allows us
to check for consistency when precision is reduced after the analysis (§3c).

All variables in the numeric integration are represented using the IEEE-754 32-bit floating point
standard with a slight modification. The modification simplifies the information quantification
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because it greatly reduces the amount of redundant bit flipping when the exponent of x switches
between positive and negative. The IEEE-754 standard for a single precision floating point is

real number = (−1)b31 × 2(e−127) ×
(

1 +
23∑

i=1

b23−i2
−i

)
. (3.2)

Our modified version is similar in that the sign bit b31 and fraction bits b0 : b22 are the same
as in the standard above. However, in the standard the exponent e is an unsigned integer made
from bits b23 : b30. This ‘unsigned’ property is the reason for subtracting 127 in the standard
format (otherwise a negative exponent could not be achieved). Our slight modification makes
the exponent a signed integer such that the first exponent bit gives the sign of the exponent and
the last seven exponent bits give its value. With this change, when the exponent of x switches
from positive to negative, only one exponent bit has to flip, instead of nearly all of the exponent
bits when the IEEE standard is used.

(b) L63 bitwise information results
Figure 1 depicts how the bitwise information analysis is applied. Figure 1a shows a
25 mtu segment of x(t) and the perturbation x′(t). The bits comprising the value of x(t) at selected
points in the segment are aligned in the time series in the bit image in figure 1c. In the bit image,
we can see the sign bit flipping when x(t) goes from positive to negative, and the first bit of the
exponent flipping when the magnitude of x changes between less than one and greater than one.
Many of the exponent bits do not flip at all throughout the time series. This intuitively suggests
that these bits do not have any information content. And this is found to be the case. In contrast
to the exponent bits, fraction bits flip quite often and seemingly randomly. It is not immediately
clear whether all the bit flips in the fraction contribute meaningful (predictive) information until
the analysis is performed.

The PDFs in figure 1d illustrate how the unconditional entropy Hx (dotted line) and sign bit
conditional H1, H0 (black, grey lines) give the information content I of the sign bit. The bin width
used for the PDFs is the initial condition uncertainty h = 0.3 as explained above. As expected,
the conditional PDFs simply map out the positive and negative sides of the unconditional
PDF. Following equations (2.1)–(2.3), the unconditional entropy at τ = 0 is H = 6.65, whereas the
entropy conditioned on the sign bit has a weight average of H = 5.65. The difference in entropy
gives I = 1 for the information content of the sign bit at zero forecast time. The information is
exactly one here because the unconditional PDF is symmetric about zero and is divided in half
by the conditional PDFs.

Figure 2 applies the information analysis to other bits and forecast times. Starting from
figure 2a(i) and proceeding to figure 2a(iii), we see the decay of information in the sign bit as
the forecast time increases. At a relatively short forecast time τ = 0.2, the sign of x usually remains
the same, so the conditional PDFs map out mostly non-overlapping regions, thus there is still
significant information I = 0.669 at this forecast time. However, at τ = 1 the sign bit has lost nearly
all of its information content because the sign of x(t) is nearly impossible to predict one time
unit later. Figure 2b shows the first bit of the exponent that indicates the sign of the exponent.
At zero forecast time, the conditional PDFs cleanly map out whether |x| > 1. Again the amount
of overlapping of the conditional PDFs grows as forecast time extends, and information is lost.
Perhaps unexpectedly, the sign of the exponent is found to have more information content than
the sign of the number at τ = 1. This means that knowing whether |x| < 1 is more important than
knowing whether x < 0 when forecasting 1 mtu into the future.

Figure 2c–e shows the seventh exponent bit and two of the more significant fraction bits,
respectively. The seventh exponent bit is the second least significant bit of the exponent. This
means it is true (one) for 2−3 ≤ x < 2−2, false (zero) for 2−2 ≤ x < 22, true for 22 ≤ x < 23, false for
23 ≤ x < 24, etc., as seen in the τ = 0 panel (figure 2c(i),d(i),e(i)). The conditional PDFs overlap
near zero because of the h = 0.3 uncertainty. This uncertainty grows and the information content



9

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170144

...................................................

time series
0 5 10 15 20 25

–20

–10

0

10

20
x(t)

x(
t)

x b(
nD

t)

x¢(t)

bit image 
0 5 10 15 20 25

sign

ex
p

fr
ac

tio
n

attractor
–15 0 15

0

10

20

30

40

50

z

PDF
–15 0 15

0

0.01

0.02

0.03

0.04

p(x)
p(x | x1 (0) = 1)
p(x | x1 (0) = 0)

Hx = 6.65
H1 = 5.65
H0 = 5.65

I = 1.00
p

(a) (b)

(c) (d)

Figure 1. Time series, attractor, bit image and example information calculation from bit-conditional PDFs of the x(t) in the
Lorenz [17] model with initial condition uncertainty h= 0.3. (a) A 25 time-unit sample of x(t) (black line) from the Lorenz
attractor (b) togetherwith perturbation x′(t) (grey line) resulting froma slight difference in the initial condition. (c) The floating
point bits xb(n�t) that hold the numeric value of x at several time samples. (d) The information content of the sign bit for
predicting the current state of x, I = 1.00, is obtained from the difference in entropy H between the unconditional PDF p(x) and
the weighted average of the PDFs conditioned on the true–false value of the sign bit p(x|xb=1(τ = 0)= 1, 0).

correspondingly decreases with an increase in forecast time. Figure 2d,e shows the regions of the
PDFs mapped out by the first and third most significant fraction bits. The bounds of the regions
mapped by these bits are more complicated and distract from our analysis, so we do not explain
them here. The general trend is that the less significant the fraction bit, the finer-grained mapping
of the number line (finer precision), and the information content for finer-grained mappings
decreases faster in forecast time.

Figure 3 shows the log of information content of all bits (except some of the fraction) and
at all useful forecast times Ib(τ ) along with the total information content Jb. Of the 32 bits used
for the floating point type, it is clear that only 16 bits—the sign bit, five of the exponent bits
and 10 of the fraction bits—have significant information content. Surprisingly, we find that the
bit with the highest total information content is the second least significant bit of the exponent,
JE7 = 0.93. This means that the conditional PDF mapping of this bit (figure 2c(i)) is the most
helpful for predictability purposes. The most significant exponent bits, E4, E3 and E2, have no
information content. Of these bits, the one with the smallest dynamic range is bit E4, which is low
for the entire range 2−5 = 0.031 ≤ x < 25 = 32. To explain these results, note that no information is
contained by mapping out this range because values less than 0.031 are blurred by the uncertainty
and values greater than 32 are never reached by the variable in the model. In contrast to the
exponent bits, the more significant fraction bits contain more information. Instead of indicating
larger and smaller dynamic ranges, fraction bits indicate coarser and finer-grained mappings
of the number line. Fraction bits F1 to F10 produce mappings that are more coarse than the
higher-order fraction bits, so they provide more useful predictive information content. The fact
that Ib is not monotonically decreasing in time for these bits is due to the quasi-periodic nature
of the attractor.
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Figure 2. Bit-conditional PDFs and information content for forecasting x(t + τ ) in L63. This figure extends the idea in figure 1d
to five different floating point bits (the sign (a), two exponent (b,c) and two fraction (d,e) bits), and to three forecast times
(current τ = 0 (i), short τ = 0.2 (ii) and long τ = 1 (iii)). In general, the information content (shown in the top right of each
panel) decreases for less significant bits of the floating point and as forecast time increases.

The total bitwise information metric Jb in figure 3 is not highly sensitive to decreasing the time
step of the model. For example, using a smaller time step might produce a very small amount of
information in the fraction bits less significant than F11. However, their total information content
Jb would not be significantly changed because this quantity is an integration over the entire useful
forecast period. By contrast, Jb is highly sensitive to the uncertainty h as slightly smaller (larger)
uncertainty in the initial conditions of a chaotic system will significantly improve (diminish) the
predictability, thus lengthening (shortening) the useful forecast period.
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Figure 3. The decay of information content in all of the floating point bits representing x(t) at forecast time τ . The log (base
10) of the information Ib(τ ) for each bit of the sign (S), exponent (Ei) and fraction (Fi) decays as a function of τ . Integrating over
τ gives the total predictive information content J for each bit in the floating point representation of x(t).

(c) L63 testing the analysis
To test our information content metrics, we re-ran the L63 model in three versions of reduced
precision: 12 bit, 14 bit and 16 bit. In each version, we retained the sign bit and five bits of the
exponent, but varied the number of bits in the fraction. In agreement with the precision analysis,
the five exponent bits were found to be mandatory as using anything less resulted in model
failure or unrecognizable output. Decreasing the number of fraction bits from 10 to 6, however,
showed a slower degradation of quality. The bit limitation was enforced by manually setting the
unused bits to zero, using MATLAB’s bitset() command, at the beginning of each time step.1 Each
reduced precision model was started from the beginning of each 30 mtu forecast segment of the
full precision perturbation x′(t). We then analysed whether the reduced precision versions are
creating a different climatology or faster forecast departure from x(t).

The results are shown in figure 4. The schematic on the left indicates which bits were set to zero
(coloured grey) in the three reduced precision versions. In figure 4a(i)–d(i), we see that all of the
reduced precision runs (grey) separate from the reference run (black) quickly, but the 16-bit model
separates at approximately 4 mtu, the same time as the full precision perturbation x′(t) in figure 1.
The 12- and 14-bit runs also produce noticeably different attractor phase spaces and climatologies,
as shown in figure 4a(ii,iii)–d(ii,iii), whereas the 16-bit model is negligibly different from the
full-precision perturbation. Figure 4a(iv)–d(iv) shows the growth of perturbations averaged over
approximately 107 initial conditions. The wavy pattern in the error growth curve is due to the

1In MATLAB R2015a the command bitset() only works on integers, so we typecast() the float to an integer (preserving the bit
pattern), set the bits and then typecast back to float.
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Figure 4. Reduced precision runs of L63 to test the information quantification. The time series (i), attractor (ii), climatology (iii)
and error growth rates (iv) are shown for numerically integrating the L63 model in 12-bit (a), 14-bit (b) and 16-bit (c) precision.
The graphic on the left indicates which bit is removed (in grey) for each reduced precision run. It is seen that 16-bit precision is
satisfactory, given the initial condition uncertainty of h= 0.3.

quasi-periodic structure of the attractor, which is independent of the precision reduction, as it is
also seen in the full-precision perturbation growth (black line). Thus, the overall result is that,
given the initial condition uncertainty of h = 0.3, we see a negligible difference between a 32-bit
and a 16-bit floating point implementation, as predicted by the information content metric.

4. Hardware efficiency in the Lorenz 1996 model
In the previous section, we demonstrated the calculation of the bitwise information metric in
the L63 model. We now explore how this information can be used to improve forecast accuracy
and reduce computational energy consumption in the Lorenz 1996 (L96) model. First, we apply
the information metric to the L96 model in the same manner as performed for L63. The results
of the analysis for L96 are quite similar to those for L63, so we do not reproduce those figures.
Instead we use the analysis to guide the implementation of reduced precision L96 models in
an FPGA hardware test bed. We then assess the trade-off of dedicating the finite computational
resources of the FPGA to spatial resolution rather than numeric precision in the L96 model. What
is shown is that a tolerable reduction in precision, yet major reduction in arithmetic circuitry and
energy consumption, occurs when switching from a 32-bit floating point to a 16-bit scaled integer
arithmetic.

(a) L96 experimental set-up
The L96 model was designed to illustrate the chaotic dynamics of atmospheric variables along a
single latitudinal band [18]. The model is defined by a system of K ordinary differential equations:

dXk

dt
= −Xk−2Xk−1 + Xk−1Xk+1 − Xk + F, (4.1)
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truth coarse exact medium fine inexact

64 grid points 8 grid points 16 grid points 32 grid points

64-bit float 64-bit float 32-bit float 16-bit integer

Figure 5. Four versions of the L96 model of atmospheric dynamics along a single latitudinal band. The truth model has the
highest spatial resolution and numeric precision. The coarse exact, medium and fine inexact models are implemented on an
FPGA and evaluated against the truth model in order to test the trade-off between spatial resolution and numeric precision in
terms of energy efficiency and forecast accuracy.

where k = 1, 2, 3, . . . , K represent the grid points along the latitudinal band, and the forcing is held
constant at F = 20. As illustrated in figure 5, we construct four versions of this model. First, we
construct a truth model (sometimes called a perfect model) that has the highest spatial resolution
(K = 64 grid points) and the highest numeric precision (64-bit floating point). The truth model is
implemented only in MATLAB. We then implement three test models that explore the trade-off
between resolution and precision in terms of forecast accuracy and computational resources on
an FPGA. The coarse exact model has low spatial resolution and high numeric precision (K = 8-
and 64-bit float); the fine inexact model has high spatial resolution and low precision (K = 32 and
16-bit scaled integer); and the medium model has mid-range values of both (K = 16 and 32-bit
float). There is no real sense of physical space in the equations (e.g. no �x), so we modify the time
step in proportion to the resolution (�t = 0.032/K) to allow the same speed of signal propagation
around the latitudinal band.

The least precise number format used in the test models is the 16-bit scaled integer in the
fine inexact model. This level of precision was determined by the bitwise information analysis of
the coarse exact model. The analysis looks very similar to that in figure 3 for the L63 model in
that only 10 bits of the fraction contained significant information content. This is not surprising
as the dynamic range of the L96 variables is approximately −25 to 25 and they experience
similar properties of nonlinearity to the x variable in L63. Reducing a floating point to 10
fraction bits corresponds to a precision of about four digits after the decimal. This turns out
to be approximately the same as a 16-bit integer that uses one bit for the sign, five bits for the
integer and 10 bits for the decimal. For example, π is 3.1416016 in the 16-bit floating point, and
3.1416015625 in the 16-bit scaled integer. Thus, using the bitwise information analysis, we knew
that using a 16-bit integer number format was probably sufficient precision, and this switch would
allow more computation to be dedicated to spatial resolution on the FPGA.

The three test models are constructed on an FPGA using tools from Maxeler Technologies.2 For
each model, all of the arithmetic operations required for one RK4 time step are fully parallelized
and laid out in space so that each individual addition and multiplication has its own dedicated
circuit. For example, dedicated circuits are constructed for each of the 80 double precision
multiplications and 152 double precision additions required for a coarse exact RK4 model time
step. The FPGA has a finite amount of logical elements available for circuit construction, so we can
compare the percentage of logic utilization for each model. It turns out that the coarse exact model
with eight grid points barely fits on the FPGA. A 16-grid point, double precision model would
not fit. The medium model has 16 grid points but uses a 32-bit instead of a 64-bit floating point

2We use Maxeler’s MAIA MAX4848A Desktop Data Flow engine, which operates on a Altera Stratix V FPGA.
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so that its 160 multiplications and 304 additions will fit. The 32 grid points of the fine inexact
model using 16-bit scaled integer arithmetic requires 320 multiplications and 608 additions.
Special care has to be taken when ordering the operations of the fine inexact model in order to
keep the intermediate values of every calculation within the dynamic range of the scaled integer.
However, this arithmetic easily fits on the FPGA because the 16-bit integer arithmetic requires
approximately 24 times less logic than the 64-bit floating point.

To compare forecast accuracy, we integrate the truth and three test models for 106 mtu with a
forecast period of 1 mtu. At the beginning of each forecast period, we reset all models to the most
similar state possible, given the different resolutions. We do this by interpolating each resolution
to the next highest resolution and adding random values resembling the L96 climatology to the
interpolated points. For example, at the beginning of each forecast period the values on grid
points 1, 3, 5, 7, 9, 11, 13, 15 of the medium model are set equivalent to grid points 1, 2, 3, 4,
5, 6, 7, 8 of the exact coarse model, and random values are assigned to points 2, 4, 6, 8, 10, 12,
14, 16 of the medium model. The random values are drawn from a Gaussian approximation of
the L96 climatology (mean 3.6 and s.d. 4). The same interpolation procedure is applied from the
medium to the coarse exact model, and from the coarse exact model to the truth model. Applying
this procedure results in each model being identical to each other model at the wavenumbers
shared by the models (at the beginning of each forecast period). As the forecast period extends,
the models drift away from one another and the forecast error is measured only on the lowest
wavenumber signal (K = 8) of all models. Thus, the forecast error measures how errors in the low
wavenumber signal grow due to higher wavenumber signals that are not representable in the
coarser models.

(b) L96 efficiency and accuracy results
Figure 6 displays the FPGA resources and forecast accuracy of the three test models. The
chip area and resource report where generated by the Quartus II software provided the
FPGA manufacturer, Altera. Overall, the fine inexact model requires approximately 10-fold less
computing resources than the coarse exact and medium models. The dark grey regions in the
chip area images indicate areas of the chip where a significant amount of the FPGA’s available
logic was consumed. The coarse exact and medium models both consume nearly around 60%
of the logic. This similarity is because the higher precision of the coarse exact model trades off
equally with the higher resolution of the medium model. Double precision arithmetic on eight
grid points requires almost the same resources as single precision arithmetic on 16 grid points.
The fine inexact model makes a significantly smaller footprint on the chip as it consumes only
10% of the logic. Owing to this smaller footprint, there is less circuit propagation delay, so the
fine inexact model is able to operate at a faster speed (250 MHz) than the other two models (200
and 225 MHz). The simplicity of integer arithmetic is seen not only in the amount of logic, but
also in the number of clock cycles needed for each arithmetic operation. For example, a double
precision floating point addition requires 14 clock cycles, whereas a 16-bit integer requires only
one. And because not all of the time-step arithmetic can be performed simultaneously, the coarse
exact and medium models require 355 clock cycles per time step, whereas the fine inexact model
requires only 34. The dynamic power of the models, also provided by the Quartus II resource
report, is an estimate of the power consumed while bits are actively propagating through the
device. While still much greater, the fine inexact model consumes approximately only three times
less dynamic power because a basic amount of dynamic power is needed even for the simplest
logic. To calculate the total amount of energy consumed E (joules) by each model, we must take
into account not only the dynamic power rate P (watts = J s−1) but also the total running time.
The total running time is calculated using the number of clock cycles N needed for a time step,
the operating frequency of the device F (Hz = 1 s−1) and the number of equivalent time steps T
(due to the different size of the time steps for different resolutions):

E = P × NT
F

. (4.2)
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Figure 6. FPGA resources (a) and forecast accuracy (b) of the three test models. FPGA designs were created on a Maxeler
Data Flow Engine, which uses an Altera Stratix V FPGA. Altera’s Quartus II software provided the chip area and resource report.
Energy/mtu is calculated via equation (4.2) in the main text. Even though the fine inexact model has four times more spatial
resolution, it consumes approximately 10 times less computational resources and energy than the coarse exactmodel because of
the simplicity of the integer arithmetic comparedwith thefloating point. In the forecast accuracy plot at 0.1 mtu, thefine inexact
model’s forecasts are 28.6% better than those of the coarse exact model because the error in numeric precision is negligible
compared with the accuracy gain from increased spatial resolution.

The result is that the fine inexact model consumes approximately 10 times less energy than the
coarse exact or Medium models.

Figure 6b compares the forecast accuracy of the models. The forecast error is the root mean
squared error between the test models and the truth model at the K = 8 wavenumber (explained
above) and as a function of forecast time. The error is averaged over 105 forecast periods. For
all models, the error begins at zero and stabilizes at its maximum error by 1 mtu. At 0.1 mtu, the
fine inexact model shows a 28.6% improvement in forecast accuracy compared with the coarse
exact model. This shows that the error in numeric precision in the fine inexact model is negligible
compared with the accuracy it has gained from its increased spatial resolution.
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5. Conclusion
In this study, we have introduced a bitwise information metric for chaotic models, and
demonstrated how removing bits with negligible information content reduces the energy required
to computationally integrate the model. The metric quantifies the information content of bits
in relation to the growth of an uncertainty in the chaotic system. We applied the metric to the
well-known L63 model with an initial condition uncertainty of h = 0.3 and found that only 16
of the 32-bit number format contained significant information. We then re-ran the model, in a
reduced precision mode, and verified that using only 16 bits indeed did not add any additional
error on top of the growth of the h = 0.3 initial condition uncertainty. This result is specific to the
level of uncertainty and model parameters, but the metric we have introduced can be used to
identify the information content of bits for any non-zero uncertainty or choice of parameters in a
chaotic model.

The second part of the study demonstrated a significant gain in energy efficiency at the
hardware level of an FPGA, by removing the low information content bits and increasing the
spatial resolution of the L96 model. In the L96 model, uncertainty arises from the unresolved
dynamics of sub-grid-scale processes. Given the finite amount of bits available in an FPGA,
a trade-off must be made between the number of bits used to represent a variable at a grid
location and the number of grid locations that contain variables. We were guided in this trade-off
by using the bitwise information metric to identify bits that contained negligible information
(compared with the growth of the sub-grid-scale errors), and then repurposed those bits for
increased spatial resolution. More specifically, we found that a 16-bit integer format would suffice
for the L96 model, given our choices of parameters. We then tested the trade-off between numeric
precision and spatial resolution by constructing three hardware-level implementations: a coarse
exact model (low spatial resolution, high numeric precision), a medium model and a fine inexact
model (high spatial resolution, low numeric precision). The result was that the fine inexact model
was both more accurate (up to 28% better forecasts) and more energy efficient (six times fewer
logic operations and 10 times less power, per model time step) than the coarse exact model. The
efficiency gains were largely due to the simplicity of the integer over floating point arithmetic at
the hardware level. Similar to the first part of this study, the efficiency gains of the L96 FPGA
implementations are specific to the model parameters chosen. However, we suggest that the
process of identifying and then removing bits of low information content, as demonstrated in
this paper, can be used to the improve the energy efficiency of integrating a large class of chaotic
models in the presence of uncertainty.

Data accessibility. The code and data are freely available at https://github.com/StephenJeffress/BitwiseInfo.
Authors’ contributions. S.J. and T.P. conceived the mathematical models. S.J. and P.D. interpreted the
results. S.J. developed the computer code and wrote the paper. All authors gave their final approval
for publication.
Competing interests. We have no competing interests.
Funding. The authors are supported by ERC grant no. 291406 (Towards the Prototype Probabilistic Earth-
System Model for Climate Prediction). P.D. was also supported by the ESIWACE project funded from the
European Union’s Horizon 2020 programme under grant no. 675191.
Acknowledgements. Helpful discussions took place with Fenwick Cooper, Stephan Juricke, Aneesh Subramanian,
Peter Watson, Andrew Dawson, Hannah Christensen and Kristian Strommen. We thank Maxeler Technologies
for their products and technical support.

Appendix A. Computational solution
The L63 model is integrated numerically using the MATLAB development environment. After
discarding the transient behaviour associated with a random initial condition, the model is
integrated for 108 mtu with an RK4 method, and a time step of �t = 0.01 mtu. The model
parameters are set to the values most commonly used in studies of the system, σ = 10, β = 8

3
and ρ = 28.

https://github.com/StephenJeffress/BitwiseInfo
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The three L96 test models are constructed on an FPGA using tools from Maxeler Technologies.
We use Maxeler’s MAIA MAX4848A Desktop Data Flow engine, which operates on an Altera
Stratix V FPGA. For each model, all of the arithmetic operations required for one RK4 time step
are fully parallelized and laid out in space so that each individual addition and multiplication has
its own dedicated circuit.
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