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Abstract: Background: the credit scoring model is an effective tool for banks and other financial
institutions to distinguish potential default borrowers. The credit scoring model represented by
machine learning methods such as deep learning performs well in terms of the accuracy of default
discrimination, but the model itself also has many shortcomings such as many hyperparameters
and large dependence on big data. There is still a lot of room to improve its interpretability and
robustness. Methods: the deep forest or multi-Grained Cascade Forest (gcForest) is a decision tree
depth model based on the random forest algorithm. Using multidimensional scanning and cascading
processing, gcForest can effectively identify and process high-dimensional feature information. At the
same time, gcForest has fewer hyperparameters and has strong robustness. So, this paper constructs
a two-stage hybrid default discrimination model based on multiple feature selection methods and
gcForest algorithm, and at the same time, it optimizes the parameters for the lowest type II error as
the first principle, and the highest AUC and accuracy as the second and third principles. GcForest
can not only reflect the advantages of traditional statistical models in terms of interpretability and
robustness but also take into account the advantages of deep learning models in terms of accuracy.
Results: the validity of the hybrid default discrimination model is verified by three real open credit
data sets of Australian, Japanese, and German in the UCI database. Conclusions: the performance
of the gcForest is better than the current popular single classifiers such as ANN, and the common
ensemble classifiers such as LightGBM, and CNNs in type II error, AUC, and accuracy. Besides, in
comparison with other similar research results, the robustness and effectiveness of this model are
further verified.

Keywords: default discrimination; feature selection; deep forest; credit score; credit loan

1. Introduction

In recent years, research on the default discriminant model has received extensive
attention from researchers and financial institutions. The accuracy of its discriminant
greatly affects the risk control and profitability of financial institutions. To prevent the losses
caused by bad credit decisions, many recent studies are devoted to finding ways to improve
the accuracy of the default discrimination model. Most of these studies focus on optimizing
the model by adjusting the model parameters to improve the prediction accuracy.

At present, the research on the default discrimination model is mainly based on two
aspects. On the one hand, there are traditional default discrimination models, such as
Z-score Model [1], Probit analysis method [2], and Logistic analysis model [3]. This kind
of model has great advantages in variable interpretability and robustness. It is one of the
widely used models in the field of personal credit evaluation. Its disadvantage is that it
cannot handle high-dimensional data. On the other hand, there are artificial intelligence
models, such as artificial neural network (ANN) [4], support vector machine (SVM) [5],
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decision tree (DT) [6], and so on. Its advantages are high prediction accuracy and no
strict requirements on the distribution of data. Its disadvantage is that the robustness
of the model is poor. At the same time, because the model is a black box operation, the
interpretability of the results of default discrimination is not good.

Various types of default discrimination model have their advantages and disadvan-
tages. At the same time, with more and more data acquisition channels, the dimensionality
of variables is getting higher and higher. Multicollinearity between variables will reduce
the explanatory and predictive accuracy of the model. So, it is very important to select a
set of feature subsets with more predictive information. Reducing the number of irrelevant
or redundant features greatly reduces the training and running time of the classification
model and can promote data visualization and data understanding. Besides, it can reduce
acquisition and storage requirements, and break the curse of dimensionality, and improve
prediction performance.

To solve the shortcomings of the single model, research of the default discrimination
model gradually turns to the ensemble model. The ensemble model can not only absorb
the advantages of the basic model but also reduce the shortcomings of the basic model.
It has become the current research hotspot of the personal credit default discrimination
model. The two most common forms of ensemble models are hybrid methods and ensem-
ble methods (hybrid classifiers and classifier ensemble). The hybrid method refers to the
combination of feature selection or parameter optimization before classification, and the
ensemble method refers to the ensemble of multiple classifiers [7]. Many existing ensemble
models are changes or improvements of the two methods [8,9]. As part of data preprocess-
ing, feature selection algorithms have been proven by many researchers to improve the
performance of machine learning models [10].

However, although a lot of studies have been devoted to hybrid models and ensemble
models, a few studies have examined the interpretability of feature selection methods and
the influence of several feature selection methods on the problem of default discrimination.
Besides, existing research on deep learning models is mostly based on neural networks.
Although deep learning models have been proven to perform well in many fields, they still
have many shortcomings: many hyperparameters, training requires a lot of training data,
and determination the structure of the neural network before training.

To make up for the shortcomings of the above research and improve the interpretabil-
ity, classification performance, and robustness of the credit scoring model, this paper
establishes a new two-stage hybrid model combining multiple feature selection meth-
ods and gcForest. This model considers the differences and complementarities between
traditional statistical models and artificial intelligence models and combines the two to
complement each other.

In the hybrid model, five interpretable feature selection algorithms are selected in three
types of feature selection methods: filtering, packaging, and embedding: (1) Full-variable
Logistic regression; (2) Stepwise regression based on AIC criterion; (3) Stepwise regression
based on BIC criterion; (4) Lasso-logistic regression; (5) Elastic Net Logistic regression.
For each feature selection algorithm, its performance is tested according to type II error,
AUC and accuracy. The first principle is the lowest type II error, and the highest AUC
and accuracy are second and third principles. Then, using the feature set obtained in the
feature selection process, we combine different algorithms to construct different default
discrimination models.

To build a default discrimination model with better discriminative performance and
robustness, we introduce gcForest [11], which has an excellent performance in many fields,
into the credit field. Existing studies have shown that tree-based ensemble machine learning
techniques such as random forest (RF) [12] have advantages in dealing with nonlinear
classification problems and overfitting. Zhou et al. (2017) proposed a new tree-based
ensemble method, gcForest, and proved that it has highly competitive performance with
deep neural networks (DNNs) in a wide range of tasks. Although DNNs is powerful,
it also has many shortcomings [11]. Firstly, DNNs has too many hyperparameters, and
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its learning performance depends heavily on parameter adjustments. Secondly, network
architecture must be determined before training, and it is more complicated to adjust the
structure. Random forest [13] or XGBoost [14] have won many Kaggle competition tasks.
On this basis, Zhou et al. have deeply analyzed the key to success of the deep model
and believed that there are three key features behind the excellent performance of DNNs,
namely, layer-by-layer processing, feature conversion within the model, and sufficient
model complexity [15]. Zhou et al. have tried to give these features to the deep model of
the non-neural network, and then designed a gcForest based on decision tree. Compared
with deep learning, SVM, Logistic regression in image classification, face recognition,
music classification and other fields, Zhou et al. have proved the effectiveness of gcForest.
GcForest has also been successfully widely studied in many fields such as medicine and
social science [16,17].

Although gcForest has been proven to perform well in many fields, it has not yet
been applied in the field of personal credit default discrimination. GcForest uses a cascade
structure to process features layer by layer to further improve the learning ability of the
model and obtain better classification performance. To reduce the risk of overfitting,
the class vector generated by each forest in the cascade structure is generated by k-fold
cross-validation. Compared with most DNNs models with fixed complexity, gcForest
adaptively determines its model complexity by terminating training at an appropriate time.
This makes it applicable to training data of different scales, and is not limited to large-
scale training data. So, this article applies gcForest to the identification of personal credit
default and builds a personal credit default discrimination model with better predictive
performance and robustness.

The rest of this article is organized as follows. Section 2 reviews the relevant methods
used in this article. Section 3 describes the construction process of the proposed hybrid
model based on gcForest. Section 4 gives the experimental setup in detail, including data
set description, preprocessing, and performance evaluation. Section 5 is the empirical
research process of the two-stage hybrid model and the analysis of the experimental results.
Section 6 summarizes this article.

2. Literature Review

This part mainly introduces the application of feature selection and deep learning
model in credit scoring.

2.1. Feature Selection

Generally speaking, the data set contains multiple different features, which may in-
clude irrelevant or redundant features, making it difficult to train the model, and reducing
model interpretability and accuracy. Therefore, feature selection has become a basic task
in default discrimination. Feature selection methods can be divided into three categories:
filtering method, packaging method, and embedding method [18]. These three methods
have their own advantages and disadvantages. Researchers try to improve the perfor-
mance of the classifier by combining them [19]. Chen et al. (2010) compared four feature
selection methods such as LDA and rough set, and the experimental results showed that
the prediction result with feature selection process is better than the prediction result
without feature selection process. It also proved the effectiveness of feature selection to
improve the performance of the classifier [20]. Koutanaei et al. (2015) used four feature
selection methods such as principal component analysis (PCA) combined with ensemble
learning classification algorithms to study hybrid data mining models and proved that
the use of feature selection algorithms and ensemble classifiers can improve the model’s
performance in the default discrimination problem [21]. Liang et al. (2015) pointed out
that most studies only focus on the application of specific feature selection methods in
bankruptcy prediction or default discrimination problems. Therefore, they studied the
impact of feature selection of three filtering methods and two packaging methods on
financial distress prediction. The experimental results showed that there was no opti-
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mal combination of feature selection methods and classifiers on the four data sets [22].
Dahiya et al. (2017) used two feature selection methods, chi-square test and PCA, to sort
and select important features in the data set and proved that the hybrid model based on
feature selection and machine learning technology significantly improved the accuracy of
the independent model [23]. Trivedi (2020) compared and analyzed different feature selec-
tion techniques and different machine learning classifiers by using four feature selection
techniques such as information gain and five machine learning classifiers such as Bayes
on German data set, determined the best combination of feature selection technology and
machine learning classifier on this data set [24].

2.2. Application of Deep Learning Model in Credit Scoring

Existing studies have shown that compared with traditional statistical models and
classic machine learning models, the application of deep learning technology in financial
forecasting has been significantly improved, but in terms of credit scoring, deep learning
technology has not been widely used [25]. Wang et al. (2018) based on online operation
behavior data of borrowers in P2P lending proposed a consumer credit scoring method
based on the LSTM model and evaluated the method on a real data set [26]. Kim et al. (2019)
proposed a convolutional neural networks (CNNs) architecture for classifying the loan
status of borrowers in P2P lending to automatically select complex features and improve
model performance [27]. Pawiak et al. (2019) proposed a support vector machine deep
genetic cascade ensemble classifier (DGCEC) based on evolutionary computation, ensemble
learning, and deep learning technology, which could effectively classify borrowers, accept,
or reject applications. In the empirical study, Australian Statlog data set was used to verify
the performance of the model [28]. Zhang et al. (2020) aimed at the problem that P2P credit
data usually contains dense numerical features and sparse category features, proposed
an online integrated credit scoring model (OICSM) that combines a GBDT and a neural
network. The scoring model could deal with the two types of features more effectively, and
the effectiveness and superiority of the model were verified through empirical research [29].
Plawiak et al. (2020) proposed a Deep Genetic Hierarchical Network of Learners (DGHNL)
credit scoring model integrating SVM, KNN, probabilistic neural network, and fuzzy
system, and the validity of the method was proved by German credit data set in UCI
database [30]. To deal with the imbalance of credit data, Shen et al. (2021) developed a new
deep learning ensemble credit risk assessment model that combined the LSTM algorithm
and the AdaBoost algorithm, and compared the performance of the proposed model and
other widely used credit scoring models on two imbalanced credit data sets [31].

Generally speaking, the number of features in the credit scoring system of commercial
banks and other financial institutions cannot be too many. Although typical machine learn-
ing algorithms have high predictive performance, most algorithms lack interpretability.
To solve this problem, more and more researchers have studied feature selection in recent
years. Previous studies have shown that a single feature selection method cannot handle
all classifiers and data sets well [32]. Although the existing studies have begun to focus on
combining multiple feature selection methods to improve the performance of the classifier,
there is a lack of interpretable optimal feature set determination method analysis. Besides,
existing studies have found that in the field of default discrimination, deep learning can
reveal the complex relationship between credit data variables, making its performance
better than traditional statistical methods and machine learning methods [31]. However,
existing research on deep learning models still has shortcomings such as many hyper-
parameters, requiring a large amount of training data, and determination the structure
of the neural network before training. Therefore, to make up for the deficiencies of the
existing research, gcForest with excellent performance in multiple fields is introduced
into the field of default discrimination and combined with a variety of feature selection
methods to construct a two-stage hybrid model with better interpretability, robustness, and
classification performance in this article.
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3. Construction of Hybrid Default Discriminant Model Based on GcForest

To construct a default discrimination model with better interpretability, accuracy, and
robustness, this section proposes a two-stage hybrid model that combines multiple feature
selection methods and the default discrimination model based on gcForest. Figure 1 shows
the framework of the proposed model. It is mainly divided into two stages. The first stage
is determination of the optimal feature set; the second stage is construction of the default
discrimination model based on gcForest. This research divides the original training data set
into a training set (I) and a test set (I) in the first stage. In the second stage of constructing
the default discrimination model, we use the 10-fold cross-validation method to evaluate
classification performance of the model.

The first stage: determination of the best feature set. Firstly, the best feature set should
have good interpretability. Secondly, the lowest type II error is the first principle and the
highest AUC and accuracy are the second and third principles, respectively. The detailed
steps are as follows:

(1) Data preprocessing. Data preprocessing is very important for the efficiency and accuracy
of the classification model. In empirical work, we use multistage data preprocessing
technology and use the processed data set in the feature selection process.

(2) Feature selection. No one feature selection algorithm can be applied to all data
sets. Instead of using a single feature selection algorithm, we have selected five
different feature selection methods among three types of feature selection methods:
filtering, packaging, and embedding. Then, we find a feature selection algorithm
suitable for the data set and a set of optimal feature subsets, so that the classification
algorithm can obtain better performance in the second stage (the modeling stage). The
feature selection methods used at this stage are as follows: (1) Full-variable Logistic
regression; (2) Stepwise regression based on AIC criterion; (3) Stepwise regression
based on BIC criterion; (4) Lasso-logistic regression; (5) Elastic Net Logistic regression.
The Akaike information criterion (AIC criterion) was founded and developed by
Japanese statistician Akaike Hiroji in 1974. It is based on the concept of entropy, which
can weigh the complexity of the estimated model and the goodness of the model to fit
the data. The AIC criteria is shown in Equation (1):

AIC = −2 log L(θ̂) + 2p, (1)

where the first term on the right side of the Equation (1) is the negative log-likelihood
loss, θ̂ is the likelihood function of θ, and the second term is the penalty for the number
p of model parameters (model complexity). The smaller the value of AIC, the better.
Bayesian Information Criterion (BIC criterion), like AIC criterion, is used to maximize
the fitting of the likelihood function and is shown in Equation (2):

BIC = −2 log L(θ̂) + p log n, (2)

where n is the number of samples. Other variables have the same meaning as Equation (1).
The smaller the value of BIC, the better. Among them, the Full-variable Logistic regres-
sion is the filtering method, and Stepwise regression based on AIC criterion and Stepwise
regression based on BIC criterion are the packaging methods, and Lasso-logistic regres-
sion and Elastic Net Logistic regression are the embedding methods.

(3) Feature set evaluation and optimal feature set determination. At this stage, all feature
selection methods are studied, and the constructed five groups of default discriminant
feature sets are used for Logistic regression, and the feature selection methods are
analyzed through Logistic regression classification type II error, AUC, and accuracy.
In the evaluation, the first principle is the lowest type II error, and the second and third
principles are the highest AUC and accuracy respectively to select a set of optimal
default discrimination features for the second stage of model.
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The second stage: using gcForest combined with the optimal feature subset of the first
stage to construct a default discrimination model.

Original Data
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Figure 1. Model frame diagram.
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Multi-Grained Cascade Forest (gcForest) is a deep model based on decision tree, which
uses a cascade structure to let gcForest do representation learning. When input data has
high-dimensional features, its characterization learning ability can be further improved
through multigranularity scanning. GcForest can adaptively determine the number of
cascading layers according to the data set and determine the complexity of the model by
itself. Besides, gcForest has fewer hyperparameters than DNNs and has relatively good
robustness for hyperparameter settings. In most cases, even if it encounters different data
in different fields, it can still use the acquiescent setting to achieve excellent results.

Representation learning in DNNs mainly relies on layer-by-layer processing of original
features. Deep learning imitates the mechanism of the human brain to interpret data and
combines low-level features to form more abstract high-level features, making it more and
more able to express internal laws. Inspired by this, gcForest adopts a cascade structure,
in which each layer in the cascade receives characteristic information processed by the
previous stage and outputs the processing result of this stage to the next stage.

Each level of the original cascade includes two random forests and two Extra-Trees.
In our credit default discrimination problem, there are two categories of borrowers: default
and nondefault. Since there are two categories to predict the final state of the borrower,
each forest will output a two-dimensional category vector, which is then connected with the
original input vector as the input of the next layer, and so on. Each forest in the last layer
will output a two-dimensional category vector, and then we average the two-dimensional
category vectors, and finally get a two-dimensional category vector.

An example of the calculation process is as follows:
We give a sample of the t-th borrower Ot = (Xt,Yt), Xt = (Xt1, Xt2,. . . , Xtl , . . . , Xtn)

represents the n feature set of the t-th borrower, where Xtl represents the l-th characteristic
value of the t-th borrower. Yt = (0,1) represents the default status of the t-th borrower,
which is a binary variable. When Yt = 0, it means that the borrower is in nondefault status,
and when Yt = 1, it means that the borrower is in default status.

We suppose the initial feature set of the t-th borrower Xt = (Xt1, Xt2,. . . , Xtl , . . . , Xtn)
as the first layer of gcForest cascade structure X(1)

t = (Xt1, Xt1, . . . Xtn) , t = 1, 2, . . . , w.
The value of w in the cascade structure is automatically determined. When a new layer is
extended, the performance of the entire cascade will be estimated on the verification set. If
there is no significant performance improvement, the training process will be terminated.
We suppose there are z forests in each layer and each forest contains m decision trees. For
each decision tree in the random forest, the leaf node corresponding to the sample Oi
can be obtained, and the proportion of all training samples in the leaf node in different
categories is taken to obtain a two-dimensional vector, which represents the proportion
of the two categories. Assuming that the decision tree belongs to the k-th tree in the j-th
forest of the i-th layer, the two-dimensional class vector obtained from the decision tree
can be expressed as Yijk

t =
(

pijk
t , qijk

t

)
and satisfy pijk

t + qijk
t = 1 . Then, we average the

two-dimensional vectors obtained from all trees in the forest to generate an estimate of the
distribution of the class. Then, the calculation process of the final class vector Yij

t obtained
from the j-th forest of the i-th layer is shown in Equation (3):

Yij
t =

1
m

m

∑
k=1

Yijk
t =

(
pij

t , qij
t

)
, (3)

where,

pij
t =

1
m

m

∑
k=1

pijk
t , (4)

qij
t =

1
m

m

∑
k=1

qijk
t . (5)
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We connect the class vectors Yij
t generated by different random forests in the same

layer as the enhancement feature of the t-th borrower. The enhanced features Y(i)
t of this

layer can be expressed as Equation (6):

Y(i)
t →

(
Yi1

t , Yi2
t , . . . , Yiz

t

)
=

(
pi1

t , qi1
t , pi2

t , qi2
t , . . . , piz

t , qiz
t

)
, (6)

where z is the number of forests in the layer. If there are z forests in this layer, the calculation
equation of the enhanced feature number Ne f of this layer is shown in Equation (7):

Ne f = c∗z. (7)

Among them, c represents the number of categories of the outcome variable. The enhanced
features obtained at this layer are connected with the original features to form a new feature
and transfer to next layer. Therefore, the feature set of the t-th borrower at the i-th layer of
the cascade structure can be expressed as Equations (8)–(10):

The feature set of the first layer is the original feature set X(1)
t :

X(1)
t = (Xt1, Xt2, . . . , Xtn). (8)

The first layer feature set connects the enhanced features Y(1)
t to generate the second

layer feature set:

X(2)
t =

(
X(1)

t , Y(1)
t

)
=

(
Xt1, Xt2, . . . , Xtn, p11

t , q11
t , p12

t , q12
t , . . . , p1z

t , q1z
t

)
. (9)

The number of features accepted by the second layer is

NX2
t
= n + 1 ∗ Ne f . (10)

The feature set of the i-th layer is connected to the enhanced features Y(i)
t to generate

the feature set of the i + 1th layer:

X(i+1)
t →

(
X(i)

t , Y(i)
t

)
=

(
Xt1, . . . , Xtn, p11

t , q11
t , . . . , p1,z

t , q1,z
t , . . . , pi,1

t , qi,1
t , . . . , pi,z

t qi,z
t

)
. (11)

The equation for calculating the number of features accepted by the i+1 layer is shown
in Equation (12):

N
X(i+1)

t
= n + i ∗ Ne f . (12)

To reduce the risk of overfitting, the class vector generated by each forest is generated
by k-fold cross-validation. Each sample will be used as k-1 training data to generate k-1 class
vectors and then we average them to generate the final class vector as the enhancement
feature of the next stage in the cascade. In the expansion process, after each new layer is
expanded, the performance of the entire cascade will be estimated on the verification set.
If there is no significant performance improvement, the training process will terminate
automatically. Therefore, the number of intermediate stages in the cascade is automatically
determined. Contrary to most DNNs models with fixed complexity, gcForest can determine
the complexity of its model appropriately by terminating training, which makes gcForest
adaptive to different sizes of training data.

In the original cascade structure, to encourage diversity, different types of forests are
included. Because of the serious problem of imbalance of credit default discrimination data
and the advantage of heterogeneous ensemble model in handling imbalanced samples [33],
this article improves the cascade structure in gcForest and combines Logic regression and
XGBoost algorithm to enrich the original base classifier categories of the cascade layer. The
parameters are optimized by the enumeration method to further strengthen the model’s
ability to recognize minority samples and reduce type II error.
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To prove the effectiveness of the constructed model, comparisons were made with
five single classifiers, five ensemble classifiers, and convolutional neural networks (CNNs)
in deep learning. Single classifiers include KNN, Bayes, Support Vector Machine (SVM),
Artificial Neural Network (ANN), and Decision Tree (DT). Among the five ensemble
classifiers, Bagging, RF, GBDT, XGBoost, and LightGBM are typical isomorphic ensemble
methods. This study uses 10-fold cross-validation to verify the effectiveness of the model.
To evaluate the classification algorithm, the following three indicators are used: (1) type II
error; (2) AUC; (3) accuracy. Through these measures, the best classification algorithm is
used to determine the credit score of the borrower of the financial institution. It is worth
noting that this article focuses on the evaluation indicator of the type II error.

4. Experimental Setup
4.1. Experimental Data Set

This section uses three real credit data sets from UCI public database to conduct
empirical research. Specifically, three credit data sets of Japanese, Australian, and German
are used to evaluate the performance of the proposed two-stage hybrid model. The details
of the three data sets are shown in Table 1.

Table 1. Description of the three data sets used in the study.

Data Set Samples Good Bad Features Category Numerical
Features Features

Japanese 690 307 383 15 11 4
Australian 690 307 383 14 6 8

German 1000 700 300 20 13 7

4.2. Data Preprocessing

In reality, credit data inevitably has data missing. Before building the model, it is
necessary to preprocess missing data to improve the prediction performance of the model.
Besides, to avoid the magnitude difference between the data from affecting the classification
results, the data set should be standardized before the model is constructed. In this study,
the data preprocessing includes the following three steps. The first is the filling of missing
values; the second is scoring processing for categorical variables according to the default
situation of each category; the third is data standardization. After preprocessing the original
data through these steps, new data is obtained.

The multistep data preprocessing process is as follows:

(1) Missing value filling. Based on the types of missing data in the original data set, we
use the mode category to replace the missing values for categorical variables, and we
use the mean to replace the missing values for numeric variables [34].

(2) Scoring with qualitative variables. Categorical variables are scored according to
the default situation of each category: the relationship between each value of the
categorical variable and the probability of default is calculated. In short, the higher
probability of default, the lower the score.

(3) Standardize data to eliminate dimensional differences between variables. This ar-
ticle uses the z-score standardization method to standardize the data. The z-score
standardization method [34] is shown in Equation (13):

x′ =
x− x̄

s
, (13)

where x′ represents the processed value, x is the original value, x̄ denotes the mean of
the feature, s stipulates the standard deviation of the feature.

In the three public data sets used in this article, the Australian data set and the German
data set are all complete data sets, while the Japanese data set has certain missing values,
and the missing values need to be filled. For categorical variables, the missing values are
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filled in by the mode category, and the missing values of the numeric variables are filled in
by the mean of the corresponding variable.

After the missing values are processed on the data, the category variables of each data
set are scored according to the default situation of each category value. We use the EXCEL
pivot table to calculate the relationship between the values of the categorical variables and
the probability of default. The higher probability of default, the lower the score, and the
lower probability of default, the higher the score. For numerical variables, the third step
z-score standardization method is used to standardize the data to eliminate dimensional
differences between variables.

After multistep data preprocessing, the data set is divided into a training set (I) and a
test set (I) according to the ratio of 8:2 in the first stage. It means 80% of the data is used to
train the model, and 20% of the data is used to verify the effectiveness of the model. In the
second stage, we use 10-fold cross-validation to further improve the performance of each
model. The enumeration method is used to optimize the parameters of gcForest, taking
into account the type II error, AUC, and accuracy.

4.3. Evaluation Indicators

To evaluate the performance of the model, this section uses three evaluation indicators,
namely the type II error, AUC, and accuracy, which are based on the confusion matrix
shown in Table 2. In this study, we take the lowest type II error, the highest AUC, and
accuracy as the first, second, and third principles separately to comprehensively evaluate
the default feature set and default discrimination model. The type II error indicates the
proportion of default borrowers who are misjudged as nondefault borrowers. In the credit
loan situation, type II error will cause more losses to banks and other financial institutions,
so they should pay more attention to type II error. AUC is a tool for binary classification
analysis. The larger the value, the better the performance of the classifier. Besides, because it
has better robustness than accuracy, when comparing the performance of machine learning
algorithms, AUC is considered to be a more appropriate performance evaluation indicator
than accuracy [35]. Accuracy represents the proportion of good and bad borrowers that are
correctly classified and measures the classification ability of the model.

Table 2. Confusion matrix for credit scoring.

Predicted

Positive (Non-Risk) Negative (Risk)

Real Positive (Non-Risk) True Positive (TP) False Negative (FN)
Negative (Risk) False Positive (FP) True Negative (TN)

The confusion matrix is widely used to evaluate the performance of classification
models. According to the true category and predicted category of the sample, the data
sample can be divided into four categories, namely true positive (TP), false positive (FP),
false negative (FN), and true negative (TN). Based on the confusion matrix, the calculation
equations for the accuracy and the type II error are shown in Equations (14) and (15):

Accuracy =
TP + TN

TP + FN + FP + TN
, (14)

Type II error =
FN

TP + FN
. (15)

5. Experimental Results and Analysis
5.1. Analysis of Feature Selection Results

The three real credit data sets of Japanese, Australian, and German in the UCI database
and the constructed two-stage hybrid default discrimination model are used for empirical
research. The various methods involved in the experiment are implemented using R 4.0.2
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and Python 3.8.5. In this model, after data preprocessing in the first stage (Section 4.2), five
feature selection algorithms are applied, and the results of feature selection are evaluated
according to type II error, AUC, and accuracy of Logistic regression. Tables 3–5 show the
regression coefficients and the feature selection results of the five feature selection methods
on the three data sets.

Table 3. The regression coefficients and feature selection results of the 5 feature selection methods on the Japanese data set.

Variable
Full-LR AIC BIC Lasso-LR EN-LR

Coef Whether Coef Whether Coef Whether Coef Whether Coef Whether
Keep Keep Keep Keep Keep

A1 0 – 0 – 0 – 0 – 0 –
A2 0 – 0 – 0 – 0 – 0 —
A3 0 – 0 – 0 – 0 – 0 –
A4 −3.91 keep −3.86 keep 0 – −0.48 keep −0.56 keep
A5 0 – 0 – 0 – −3.47 keep −0.54 keep
A6 −2.53 keep −2.50 keep −2.63 keep −1.31 keep −1.35 keep
A7 0 – 0 – 0 – 0 – −0.03 keep
A8 0 – 0 – 0 – 0 – −0.09 keep
A9 13.17 keep 13.15 keep 12.56 keep 10.96 keep 9.14 keep

A10 0 – 0 – 0 – −2.41 keep −2.58 keep
A11 −0.95 keep −0.95 keep −1.05 keep −0.20 keep −0.25 keep
A12 0 – 0 – 0 – 0 – 0 –
A13 −6.51 keep −6.51 keep 0 – 0 – −0.82 keep
A14 0.37 keep 0.39 keep 0 – 0 – 0.01 keep
A15 −3.00 keep −2.97 keep −2.73 keep −0.11 keep −0.13 keep

Table 4. The regression coefficients and feature selection results of the 5 feature selection methods on the Australian data set.

Variable
Full-LR AIC BIC Lasso-LR EN-LR

Coef Whether Coef Whether Coef Whether Coef Whether Coef Whether
Keep Keep Keep Keep Keep

A1 0 – 0 – 0 – 0 – 0 –
A2 0 – 0 – 0 – 0 – 0 –
A3 0 – 0 – 0 – 0 – 0 –
A4 −2.34 keep −2.29 keep −2.23 keep −0.48 keep −0.64 keep
A5 −3.94 keep −3.77 keep −3.92 keep −2.13 keep −2.10 keep
A6 0 – 0 – 0 – 0 – −0.13 keep
A7 0 – −0.36 keep 0 – −0.02 keep −0.10 keep
A8 −4.82 keep −4.77 keep −4.77 keep −3.98 keep −3.42 keep
A9 0 – 0 – 0 – −1.07 keep −1.18 keep
A10 −0.69 keep −0.79 keep −0.82 keep −0.28 keep −0.29 keep
A11 4.18 keep 4.58 keep 0 – 0 – 0 –
A12 0 – 0 – 0 – 0 – 0 –
A13 0 – 0 – 0 – 0.01 keep 0.06 keep
A14 −2.26 keep −2.25 keep −2.39 keep −0.16 keep −0.18 keep
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Table 5. The regression coefficients and feature selection results of 5 feature selection methods on the German data set.

NO. Variable

Full-LR AIC BIC Lasso-LR EN-LR

Coef Whether Coef Whether Coef Whether Coef Whether Coef Whether
Keep Keep Keep Keep Keep

1 Duration in month 0.23 keep 0.24 keep 0.45 keep 0.29 keep 0.24 keep
2 Credit amount 0.33 keep 0.34 keep 0 – 0.02 keep 0.08 keep

3 Installment rate in
percentage of

disposable income

0.37 Keep 0.37 keep 0 – 0.09 keep 0.11 keep

4 Present residence
since

0 – 0 – 0 – 0 – 0 –

5 Age in years −0.21 keep −0.16 keep 0 – −0.03 keep −0.06 keep

6 Number of existing
credits at
this bank

0 – 0 – 0 – 0 – 0 –

7
Number of people

being liable
to provide

maintenance for

0 – 0 – 0 – 0 – 0 –

8 Status of existing
checking account

−3.86 keep −3.91 keep −3.97 keep −3.69 keep −3.16 keep

9 Credit history −4.00 keep −3.82 keep −4.18 keep −2.47 keep −2.28 keep
10 Purpose −5.65 keep −5.74 keep −5.27 keep −3.02 keep −2.81 keep
11 Savings account

bonds
−4.03 keep −4.01 keep −3.88 keep −2.36 keep −2.33 keep

12 Present employment
since

−3.52 keep −3.10 keep −3.67 keep −1.79 keep −1.83 keep

13 Personal status
and sex

−5.92 keep −5.44 keep 0 – −1.88 keep −2.17 keep

14 Other debtors
guarantors

−4.48 keep −4.59 keep 0 – −1.82 keep −1.95 keep

15 Property 0 – 0 – 0 – −0.78 keep −0.98 keep
16 Other installment

plans
−3.63 keep −3.85 keep 0 – −1.24 keep −1.61 keep

17 Housing 0 – −2.85 keep 0 – −0.65 keep −0.97 keep
18 Job 0 – 0 – 0 – 0 – 0 –
19 Telephone −15.9 keep −14.7 keep 0 – 0 – −0.88 keep
20 foreign worker −7.75 keep −7.97 keep 0 – −1.73 keep −2.09 keep
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The five feature selection methods in this article have good interpretability. For the
above five feature selection methods, if a feature has a regression coefficient and the
corresponding significance level p-value is less than 5%, the feature has a significant impact
on the borrower’s default status; if the regression coefficient is positive, then the increase in
the value of this feature corresponds to the increase in the possibility of default, and for the
feature with negative regression coefficient, the increase in the feature value corresponds
to the decrease in the possibility of default. Taking the Japanese data set as an example,
Table 3 shows that for Full-variable Logistic regression method, the characteristics, A4,
A6, A9, A11, A13, A14 and A15, have a significant impact on the default status of the
borrower. Among them, the regression coefficients of A9 and A14 are positive, and their
increase corresponds to an increase in the probability of default; the regression coefficients
of A4, A6, A11, A13 and A15 are negative, therefore their increase corresponds to a
decrease in the probability of default. For Stepwise regression based on AIC criterion,
the retained features are exactly the same as those retained by the Full-variable Logistic
regression, and the coefficients are not much different. In Stepwise regression based on
BIC criterion, the predictive variables that have a significant impact on the borrower’s
default behavior are A6, A9, A11, A15. The Stepwise regression based on BIC criterion
eliminates the three characteristics, A4, A13, and A14, based on the Full-variable Logistic
regression. Elastic Net Logistic regression retains a total of 11 features, including A4,
A5, A6, A7, A8, A9, A10, A11, A13, A14 and A15. Lasso-logistic regression retains a
total of seven features and eliminates A7, A8, A13, A14 based on the Elastic Net Logistic
regression. Compared with Elastic Net Logistic regression, the Lasso-logistic regression
is more concise. In summary, on the Japanese data set, four feature selection methods
all believe that the five features A6, A9, A11, and A15 have a significant impact on the
default status, while the features, A1, A2, A3 and A12, have no significant impact on the
default status. This shows that feature selection for the Japanese data set is necessary,
which can help us select features that have significant default identification capabilities for
borrowers, and can eliminate some less useful features and improve the interpretability
of the feature system. Analysis of the Australian data set and the German data set in
Tables 4 and 5 can conclude similar conclusions to the Japanese data set.

Table 6 shows the type II error, AUC, and accuracy of five feature selection methods
on the test set of three data sets. Obviously, the lower the type II error, the greater the AUC
and accuracy, and the better the effect of the feature system. According to the constructed
five groups of default discrimination feature sets, the type II error is the first principle, and
the highest AUC and accuracy are the second and third principles to select a set of optimal
default discrimination feature sets.

From the comparison of the results of five feature selection methods in the Japanese
data set in Table 6, the Lasso-logistic regression performs best on the Japanese data set. The
type II error measures the probability of predicting a defaulting borrower as a nondefaulting
borrower. The lower the value, the better the model. The type II error of the Lasso-logistic
model is 0.0909, the AUC is 0.9619, and the accuracy is 0.9203, which are better than
other feature selection methods. Therefore, on the Japanese data set, the feature system
constructed by Lasso-logistic regression is considered to be the feature set with the best
default identification ability. On the Australian data set, the Lasso-logistic regression has
a better predictive effect. From the perspective of the type II error, Full-variable Logistic
regression, Lasso-logistic regression, and Elastic Net Logistic regression are all 0.1781,
which is lower than the two stepwise regression models. For the AUC, the Lasso-logistic
regression is 0.9444, which is slightly better than other methods. It is 0.0015 higher than the
Elastic Net Logistic regression and 0.0114 higher than the Full-variable Logistic regression.
The AUC of the Lasso-logistic regression is higher than that of the Full-variable Logistic
regression, and the accuracy is lower than that of the Full-variable Logistic regression.
Therefore, on the Australian data set, the feature system constructed by Lasso-logistic
regression is considered to be the credit scoring feature system with the best ability to
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identify defaulters. Based on the first principle is the lowest type II error, and the second
and third principles are the highest AUC and accuracy, the feature selection results on the
German data set show that the prediction performance of the Stepwise regression based on
AIC criterion is better. The Full-variable Logistic regression and the Stepwise regression
based on AIC criterion have the lowest type II error. On the evaluation indicator of AUC,
the Stepwise regression based on AIC criterion performs better. Therefore, the feature
system constructed by the Stepwise regression based on AIC criterion is selected as the
optimal default discrimination feature set of the German data set.

Table 6. Comparison of 5 feature selection methods on 3 data sets.

Data Set Feature Selection
Method

Evaluation Indicator

Type II Error AUC Accuracy

Japanese

Full-LR 0.1169 0.9520 0.8841
AIC 0.1039 0.9530 0.8986
BIC 0.1299 0.9550 0.8913

Lasso-LR 0.0909 0.9619 0.9203
EN-LR 0.0909 0.9615 0.9130

Australian

Full-LR 0.1781 0.9330 0.8768
AIC 0.1918 0.9280 0.8696
BIC 0.1918 0.9350 0.8623

Lasso-LR 0.1781 0.9444 0.8696
EN-LR 0.1781 0.9429 0.8696

German

Full-LR 0.4545 0.8140 0.7900
AIC 0.4545 0.8200 0.7900
BIC 0.4727 0.8040 0.8000

Lasso-LR 0.4909 0.8350 0.8050
EN-LR 0.4909 0.8342 0.8000

5.2. Analysis on the Results of Ddefault Discrimination

We used three real credit data sets of Japanese, Australian, and German in the UCI
database, and combined with the optimal feature set with good interpretability selected in
the first stage, and then constructed a default discrimination model using gcForest. The
enumeration method was used to simultaneously take into account the three goals, the
first principle is the lowest type II error, and the second and third principles are the highest
AUC and accuracy, to optimize the parameters of gcForest. This part of the experiment
uses Python 3.8.5 for demonstration. The computer processor is i7-10700, and the memory
is 48 G.

Table 7 shows the running results and computational times of the gcForest and other
11 common classifiers on the data sets of Japanese, Australian, and German. To evaluate
the model comprehensively, three evaluation indicators of type II error, AUC, and accuracy
are used, and the top three classifiers on each evaluation indicator are highlighted in bold.
On the Japanese data set, the performance of the gcForest is better than the current popular
single classifiers such as ANN, and the common ensemble classifiers such as LightGBM,
and CNNs in type II error, AUC, and accuracy. Type II error of gcForest is 0.0500, which
is 4.09% lower than that of the first stage. Type II error is significantly reduced through
effective identification of defaulting borrowers, which can further help banks and other
financial institutions reduce the possible default losses of borrowers. On the Australian
data set, comparing with the popular ANN, RF, XGBoost, and CNNs, gcForest has the
lowest type II error, which is 0.0553; compared with type II error of 0.1781 in the first stage,
gcForest has decreased by 12.28%. In terms of AUC and accuracy, the performance of
gcForest is slightly inferior to other ensemble algorithms such as GBDT, but it still maintains
a high performance. On the German data set, gcForest’s performance is the best in the three
evaluation indicators of type II error, AUC, and accuracy. Type II error in the second stage
is 0.2942, which is a 16.03% drop compared to 0.4545 in the first stage, and the AUC and
accuracy are increased by 4.80% and 2.20%, respectively. From this data, gcForest further
improves the ability to discriminate defaults of borrowers based on the first-stage model. In
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summary, on the three data sets in the UCI database, the overall discriminative performance
of the gcForest can maintain the best or the second-best. Compared with other models, it
has better robustness and can be better adapted to different data sets. From the results in
Table 7, CNNs and ensemble algorithms such as GBDT have better performance, but from
the perspective of robustness, they are slightly inferior to the gcForest.

From the last column in Table 7, CNNs have the longest computational times, followed
by gcForest and ANN. The average computational time of the three algorithms on the
data sets of Japanese, Australian, and German is 156.43 h, 85.60 h, and 36.17 h respec-
tively. The shortest computational time is NB, followed by KNN and DT. The average
computational time of the three algorithms is 0.01 h, 0.02 h, and 0.04 h respectively. The
shorter computational time is SVM, RF, and Bagging. The average computational time
of the three algorithms is 0.98 h, 2.64 h, and 3.06 h respectively. Although gcForest has a
longer computational time, the overall performance of gcForest is the best. In particular,
financial institutions such as banks pay more attention to type II error, and they can use
multiple servers in parallel to shorten computational time. NB, KNN, and DT require just
minutes and obtain good performance. Low computational time can be a plus when data
analysts need the result soon.

Table 7. Evaluation results of 12 classification models on UCI data set.

Data Set Classifier
Evaluation Inditcator

Total Time (h)
Type II error AUC Accuracy

Japanese

KNN 0.1053 0.9418 0.8710 0.02
NB 0.0658 0.9363 0.8217 0.01

SVM 0.0947 0.9523 0.8841 0.87
ANN 0.0789 0.9543 0.8884 32.10

DT 0.0816 0.9354 0.8884 0.04
Bagging 0.1237 0.9522 0.8826 2.68

RF 0.0605 0.9570 0.8957 2.37
GBDT 0.0579 0.9545 0.8826 20.07

XGBoost 0.0816 0.9490 0.8986 30.58
LightGBM 0.0605 0.9422 0.8609 10.69

CNNs 0.0763 0.9555 0.8928 135.14
gcForest 0.0500 0.9602 0.8899 76.65

Australian

KNN 0.1158 0.9231 0.8652 0.02
NB 0.0737 0.9191 0.7986 0.01

SVM 0.0868 0.9320 0.8754 0.85
ANN 0.0868 0.9385 0.8783 34.67

DT 0.0895 0.9340 0.8812 0.04
Bagging 0.1158 0.9393 0.8783 3.05

RF 0.0763 0.9435 0.8754 2.66
GBDT 0.0553 0.9435 0.8551 24.58

XGBoost 0.0711 0.9450 0.8855 34.03
LightGBM 0.0842 0.9343 0.8826 11.37

CNNs 0.0816 0.9431 0.8768 145.76
gcForest 0.0553 0.9425 0.8855 81.12

German

KNN 0.9033 0.7126 0.7130 0.03
NB 0.6504 0.7439 0.7570 0.01

SVM 0.8100 0.8350 0.7420 1.22
ANN 0.4933 0.8306 0.7810 41.73

DT 0.4667 0.7588 0.7410 0.05
Bagging 0.6767 0.8268 0.7590 3.46

RF 0.6300 0.8413 0.7800 2.90
GBDT 0.3967 0.8330 0.8010 32.16

XGBoost 0.4067 0.8255 0.7980 40.30
LightGBM 0.4300 0.8183 0.7930 15.46

CNNs 0.3933 0.8373 0.7780 188.39
gcForest 0.2942 0.8680 0.8120 99.03

Figures 2–4 compare the performance of the 12 classification models on the three
data sets on type II error, AUC, and accuracy more intuitively. In this article, we focus on
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the evaluation indicator of the type II error, so Figures 2–4 are obtained after sorting the
classification models according to type II error from low to high.
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Figure 2. Evaluation results of 12 classification models on the Japanese data set.

Figure 2 shows the performance of 11 comparative classification models and gcForest
on the Japanese data set. The smaller the type II error, the higher the performance of the
classification model. However, AUC and accuracy are opposite to type II error. These
two indicators show the same trend. When the value of the two indicators of a classifi-
cation model is larger, the overall classification loss will be smaller. It can be seen from
Figure 2 that, compared with other classifiers, gcForest has the best performance in the two
evaluation indicators of type II error and AUC but has the slightly inferior performance
in accuracy.
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Figure 3. Evaluation results of 12 classification models on the Australian data set.
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Figure 3 shows the performance of five single classifiers, five ensemble classifiers, a
deep learning model, and a gcForest model on the Australian data set. From the perspective
of type II error and accuracy, gcForest has better performance than other models. However,
indicator of AUC in gcForest is slightly inferior to ensemble models such as GBDT.
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Figure 4. Evaluation results of 12 classification models on the German data set.

It can be seen from Figure 4 that on the German data set, gcForest has the lowest
type II error and the highest AUC and accuracy, indicating its excellent overall discrimina-
tion performance.

All in all, gcForest not only has the best performance in accurately identifying default
borrowers but also maintains the best or second-best overall discrimination performance
in most cases. Compared with other models, it maintains a higher discrimination ability
and ensures the robustness. Therefore, gcForest is more suitable as an effective tool for
banks and other financial institutions to distinguish potential defaulting borrowers.

5.3. Comparison with Other Studies

Section 5.2 proves the discriminative accuracy and robustness of the constructed two-
stage hybrid model through empirical results on three real credit data sets. To further verify
the applicability and effectiveness of the model in the credit field, this section compares the
research results of other researchers on the same credit loan data set. The specific results
are shown in Table 8. The comparison results show that compared with other models, the
prediction performance of this model on different data sets can achieve better results, and
the prediction results on different data sets are more robust.
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Table 8. Performance comparisons with other default discrimination models.

Model Evaluation Indicator Japanese Australian German

Our proposed
model

Type II error 0.0500 0.0553 0.2942
AUC 0.9602 0.9425 0.8680

Accuracy 0.8899 0.8855 0.8120

Zhang et al.’s work
(2020) [36]

Type II error – – –
AUC 0.9696 0.9666 0.8312

Accuracy 0.9316 0.9236 0.7950

Papouskova et al.’s work
(2019) [37]

Type II error – – –
AUC – 0.9280 0.7948

Accuracy – 0.8828 0.7866

Guo et al.’s work
(2019) [38]

Type II error – – –
AUC 0.9420 0.9400 0.8060

Accuracy 0.8700 0.8740 0.7830

Zhang et al.’ work
(2019) [19]

Type II error – – –
AUC 0.9387 0.9370 0.8029

Accuracy 0.8720 0.8754 0.7682

6. Conclusions

Establishing a borrower’s default discrimination model is an important task for banks
and other financial institutions to make loan decisions. Therefore, the discriminative
performance, interpretability, and robustness of the default discrimination model are
crucial to the profitability of banks and other financial institutions. In this study, we
combine a statistical model with good interpretability and an artificial intelligence model
with better predictive performance to construct a hybrid default discrimination model.

Firstly, we choose five traditional statistical methods with good interpretability to
construct a feature selection model, including (1) Full-variable Logistic regression; (2)
Stepwise regression based on AIC criterion; (3) Stepwise regression based on BIC criterion;
(4) Lasso-logistic regression; (5) Elastic Net Logistic regression. The feature selection is
performed separately, constructing five groups of different default discrimination feature
sets. This paper takes type II error as the first principle, the highest AUC and accuracy as
the second and third principles respectively, and evaluates five groups of feature systems,
so as to select a set of optimal default discrimination features that are most suitable for the
data set.

Secondly, based on the optimal default discrimination feature set constructed in the
first stage, we combine with gcForest to construct a personal credit default discrimination
model. Existing studies show that gcForest has excellent predictive performance in many
fields such as medicine. GcForest uses cascade processing to effectively identify and
process high-dimensional feature information. At the same time, gcForest has fewer
hyperparameters and strong robustness. Taking into account the imbalance of data in the
credit default discrimination data and the advantages of heterogeneous ensemble models
in handling imbalanced samples, this articel modifies the cascade structure in gcForest, and
combines Logistic regression and XGBoost algorithm to enrich the original base classifier
categories in cascade layer and further improve the prediction performance and robustness
of the model. The enumeration method is used to adjust the model parameters at the same
time, taking into account type II error, AUC, and accuracy, to further strengthen the entire
forest’s ability to recognize minority samples and reduce type II error.

Finally, we use three real open credit data sets in the UCI database, including Aus-
tralian, Japanese, and German, to verify the performance of the hybrid model constructed
in this article. From three aspects of type II error, AUC, and accuracy, gcforest is compared
with single classifier, ensemble classifier, and deep learning model. To further prove the
effectiveness of the proposed model, gcForest is compared with other models of existing
research on the same data set. The results show that the hybrid default discrimination
model has better interpretability, discrimination accuracy, and robustness than other single
classifiers, ensemble classifiers, and deep learning model.
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In addition, this study has some limitations. Firstly, in this study, we adopt a prepro-
cessing step to fill in missing values and standardize data. Therefore, the first research
direction is to compare the nonprocessing of missing values and standardization, and we
will further discuss these steps and estimate how much they influence the classification
performance. Secondly, in the first stage, the machine learning algorithm is not used to
select feature. Therefore, the second research direction is to use machine learning algo-
rithms (i.e., XGBoost), which is guided by the lowest type II error of default prediction,
retain the features with higher importance, and reverse the optimal feature set. Thirdly, in
this research, we only try four kinds of base classifiers in gcForest. Therefore, in further
exploration, more base classifiers (i.e., CNNs algorithm) should be used in gcForest, which
may lead to better performance.
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The following abbreviations are used in this manuscript:

ACC accuracy
AIC Stepwise regression based on AIC criterion
ANN artificial neural network
AUC the area under the Receiver Operating Characteristic (ROC) curve
Bagging Bootstrap aggregating
BIC Stepwise regression based on BIC criterion
CNNs the convolutional neural networks
Coef coefficient
DNNs the deep neural networks
DT decision tree
EN-LR Elastic Net Logistic regression
ET Extra-Trees
Full-LR Full-variable Logistic regression
FS feature selection
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GBDT Gradient Boosting Decision Tree
gcForest the multi-Grained Cascade Forest
KNN k-Nearest Neighbor
Lasso-LR Lasso-logistic regression
LDA Linear Discriminant Analysis
LR Logistic regression
NB Naive Bayes
RF Random forest
SVM support vector machines
XGBoost eXtreme Gradient Boosting
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