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ABSTRACT: As a supervised machine learning algorithm, conditional random fields
are mainly used for fault classification, which cannot detect new unknown faults. In
addition, faulty variable location based on them has not been studied. In this paper,
conditional random fields with a linear chain structure are utilized for modeling
multimode processes with transitions. A linear chain conditional random field model is
trained by normal data with mode label. This model is able to distinguish transitions
from stable modes well. After mode identification, the expectation of state feature
function is developed for fault detection and faulty variable location. Case studies on
the Tennessee Eastman process and continuous stirred tank reactor (CSTR) testify the
effectiveness of the proposed approach.

1. INTRODUCTION
Process monitoring in process industry has always been a
challenging problem. Massive process data from process control
computers andmanufacturing execution systems contain fruitful
information about the production status. Arunthavanathan et
al.1 analyze process fault diagnosis approaches from safety
perspectives. Risk-based methods for fault detection develop
risk indication, which creates a new concept.2−4 Hybrid or
integrated approaches exploit multiple algorithms for better
performance. Don and Khan use the hidden Markov model for
abnormality detection and Bayesian network (BN) for root
diagnosis.5 Amin, Imtiaz, and Khan propose a hybrid approach
using PCA and BN.6 Machine learning, acting as a data analysis
tool, has attracted researchers’ and engineers’ attention in last
decades.7−11 Although successful and promising advances have
been made in process data analytics, opportunities still exist due
to its three important and unique attributes.12

Many efforts based on machine learning have also been made
for multimode process monitoring. Clustering and classifying
approaches are often used. Hard clustering/classifying divides
each sample to a particular cluster/class, such as k-means and its
variants. Soft clustering/classifying uses probability, such as
Gaussian mixture model,13 mixture of probabilistic principal
component analysis,14 support vector data description,15

Bayesian decision theory,16 hidden Markov model
(HMM),17,18 Bayesian network,19,20 and so on. This probability
is often utilized to combine monitoring results. Window-based
methods take time series information into account, such as
dynamic mutual information similarity,21 moving window
hidden Markov model,22,23 and so on.

In the meantime, supervised and semisupervised methods are
used as classifiers for fault classification and identification. Yu,
Khan, and Garaniya use a three-layer nonlinear Gaussian belief
network for diagnosis.24 Yu utilizes a multiway discrete hidden
HMM to transform three-dimensional data into two-dimen-
sional for batch processes.25 Sen et al. combine segmental k-
means with the HMM to improve classification accuracy.26 Yu
revises emitting distribution of the HMM to capture high-order
statistical information.27 Sammaknejad et al. develop condition
diagnosis based on the transition probability of the HMM.28

Fang et al. construct a marginalized conditional random field
(CRF) for fault diagnosis.29 After that, Fang et al. design a
switching CRF based on multiple linear chain CRFs for
multimode fault diagnosis.30 As a powerful discriminative
probabilistic model, a CRF is also used for working condition
classification in oil drilling31 and sucker rod pumps.32 Similar to
other machine learning algorithms, CRFs can also be directly
used for modeling. Zhang et al. design a fault detection index
based on log conditional probability of the CRF.33 Arunthava-
nathan et al.34 utilize convolution neural network and long
short-term memory for fault sequence learning.
However, using CRF as a fault classifier cannot recognize new

unknown faults because CRF is a supervised approach.
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Therefore, establishing a monitoring model based on the CRF
may be a better choice. In addition, identifying transitions
between stable operating modes has not been studied
intensively. Faulty variable location based on the CRF also
remains unsolved.
Targeting the above-mentioned problems, a historical normal

dataset with mode label is used to train a linear chain conditional
random field model (LCCRF). Operating mode identification is
achieved by the Viterbi algorithm. During the test phase, this
model is able to distinguish stable modes and transitions well.
Subsequently, a new fault detection index called expectation of
state feature function (ESFF) is proposed. Faulty variable
location based on it has a specific and interpretable engineering
physical meaning. At last, applications of the Tennessee Eastman
process and continuous stirred tank reactor verify effectiveness
of the proposed method.
There are two goals to achieve in this paper. The first objective

is better normal operating mode identification. The step-by-step
procedure is shown as follows. First, construct a historical
dataset by labeling each normal sample with its operating mode.
Operating modes include stable modes and transitions between
them. Then, normalize this dataset using the mean and standard
deviation. Subsequently, train an LCCRF using the dataset.
When one new online sample comes, its operating mode label
can be obtained by the Viterbi algorithm. The second objective
is fault detection and fault variable location. The step-by-step
procedure is demonstrated below. First, build a historical dataset
with normal data. The labels of training data are known. Then,
normalize the dataset utilizing the mean and standard deviation.
After that, train the LCCRF model via a scaled conjugate
gradient algorithm. A new monitoring index named ESFF is
calculated for each normal sample. The control limit of every
operating mode is separately computed by kernel density
estimation afterward. At last, when an online sample comes,
calculate its ESFF and compare it with the control limit. If this
online sample is regarded as faulty, contribution of every
monitored variable can be calculated by ESFF of the variable.
Process variables with remarkable contribution are considered
fault variables.
The remainder of this manuscript is organized as follows.

Section 2 provides a brief introduction to LCCRFs. Section 3
gives the structure of the LCCRF, the construction of ESFF,
faulty variable location method, and procedure of methodology.
Applications of the Tennessee Eastman process and continuous
stirred tank reactor are shown in Section 4. Section 5 presents
the conclusion.

2. LINEAR CHAIN CONDITIONAL RANDOM FIELDS
A CRF is just a conditional distribution p(y|x), where output
variables y are attributes of entities and input variables x are
observed knowledge about the entities.35 The job of a CRF is to
model the conditional distribution using an associated graphical
structure. An LCCRF is one important case. Its conditional
distribution has the following forms.36 The probability form is
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where tk(·) is the feature function of the edge that describes the
transition relationship between yi−1 and yi. sl(·) is the feature
function of the node that represents the current state about yi
and x.
Summing the transition and state feature functions at each

position i gives the simplified form.
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The abundant selection of the feature function makes the
LCCRF complex, diverse, and powerful. Similar to the HMM,
there are three primary problems: calculation of conditional
probability, parameter estimation of an LCCRFmodel, and state
inference.
Given training dataset D = {xi,yi}i=1N , where xi means inputs

and yi represents corresponding label/state. Parameter estima-
tion is carried out by penalized maximum likelihood. The
conditional log likelihood is
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After substituting the LCCRF model (eq 6) into eq 8, the
following expression is obtained.
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To avoid overfitting, regularization which is a penalty on
weight vectors is added. The regularized log likelihood is
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The partial derivatives of eq 10 are
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The first term is expectation of f k given the empirical
distribution.
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The second term is expectation of f k given the model
distribution p(y|x;θ)p̃(x). Therefore, these two expectations
should be equal when the gradient is zero in an unregularized
maximum likelihood method. This important and pleasing
interpretation is predictable in exponential family maximum
likelihood estimation.
A scaled conjugate gradient algorithm is used for optimizing

l(θ) in this work because quasi-Newton approaches are often
numerically unstable. The forward−backward algorithm is
utilized to calculate the conditional probability.
For each i, a matrix of order m is defined, where m stands for

the number of states yi.
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Backward variables βi(x) are defined:
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Normally, the Viterbi algorithm35−37 is used for state
inference as eq 20.

y P y xarg max ( )* = | (20)

3. MODE IDENTIFICATION AND PROCESS
MONITORINGUSING LINEAR CHAIN CONDITIONAL
RANDOM FIELD
3.1. Structure of Linear Chain Conditional Random

Field. The design of transition and state feature functions leads
to different structures of LCCRF. Fang et al.29 and Zhang et al.33

have proposed an effective and clear structure. They also
analyzed the structural relationship between the HMM and
LCCRF, which shows the superiority of the latter. The structure
developed by Fang29 is used in this work for the following
reasons. The full connection of states and observations is
beneficial tomode identification. A newmonitoring index can be
constructed using state feature function.
The transition feature function is
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3.2. Expectation of State Feature Function. From the
point of view of physical meaning, state feature function sl(·)
describes the relationship between observations and states.
Observations x = [x1, x2, ..., xq] are the values of q monitored
process variables. States y = [y1, y2, ..., ym] are m possible normal
operating modes. In the offline modeling phase, normal data are
used for training. The weights of state feature function μl = [μl1,
μl2, ..., μlm] are calculated. They are parameters of the trained
LCCRF model. Therefore, the ESFF for one mode yi can be
constructed.

y s y x xESFF( ) ( , )i i i
l

l l=
(24)

where μli is a vector, which contains the corresponding weights
for mode yi. Its computation is quite easy. The new monitoring
index called ESFF is given.

y yESFF (ESFF( ) ESFF( ))i i
2= (25)

In this work, the distribution of ESFF is uncertain, so the
control limit is calculated through kernel density estimation. For
a fault sample, the contribution of every variable xj can be
calculated for the contribution plot,

y x s y x xESFF( , ) ( , )i j ij i j
l

l l=
(26)

x y x y xcontribution( ) (ESFF( , ) ESFF( , ))j i j i j
2= (27)

where μlij is the weight which corresponds to the monitored
variable xj.
3.3. Procedure of Operating Mode Identification.

Offline modeling:
(1) Construct a historical dataset. Label each sample with its

operating mode (serial number of stable modes and
transitions between stable modes).

(2) Normalize dataset using the mean and standard deviation.
(3) Train an LCCRF by a scaled conjugate gradient

algorithm. Its structure is defined by eqs 21−23.
Online monitoring:
(1) Normalize online sample utilizing the mean and standard

deviation.
(2) Operating mode identification. The mode label of this

online sample is obtained by the Viterbi algorithm.
3.4. Procedure of Fault Detection and Fault Variable

Location. Offline modeling:
(1) Build a normal historical dataset. Label each normal

sample with its known operating mode.
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(2) Normalize dataset using the mean and standard deviation.
(3) Train an LCCRF by a scaled conjugate gradient

algorithm. Its structure is defined by eqs 21−23.
(4) Calculate ESFF of every stable mode separately by eq 25.

The control limit for each stable mode is computed by
kernel density estimation (KDE).

(5) Compute ESFF of every transition separately via eq 25.
The control limit for each transition is calculated via
kernel density estimation.

Online monitoring:
(1) Normalize online sample utilizing the mean and standard

deviation.
(2) Operating mode identification. Label the online sample

by the Viterbi algorithm.
(3) Calculate its ESFF via eq 25. If the label of this online

sample is one stable mode, the ESFF should be compared
to cognate control limit of stable modes. Otherwise,
corresponding transition control limit should be used.

(4) If this online sample is regarded as faulty, contribution of
each monitored variable is computed by eqs 26 and 27.
The contribution plot points out faulty variables.

3.5. Methodology. In this section, a simple example is used
to explain the steps of the proposed methodology. Consider a
basic unit of process industry; there are four monitored
variables. They are temperature x1, pressure x2, flow x3, and
level x4. This equipment could run in three modes due to its
manufacturing technique. Therefore, three mode labels are yi ∈
[y1 = 1,y2 = 2, and y3 = 3].
The procedure of operating mode identification is as follows.

Historical data of four monitored variables are collected to build
a training dataset D = {xi,yi}i=1N . This dataset contains values and
mode labels of those variables. After normalization, a LCCRF
model is trained by a scaled conjugate gradient algorithm. When
an online sample comes, its mode label yi can be calculated in the
trained model by the Viterbi algorithm.

The procedure of fault detection and fault variable location is
as follows. Construct a historical dataset with normal data of four
monitored variables. The dataset D = {xi,yi}i=1N consisted of
normal operating data and their mode labels. After normalizing,
train an LCCRF model through a scaled conjugate gradient
algorithm. Compute ESFF of all data with mode y1 label. The
control limit for mode y1 is calculated by kernel density
estimation. The other two modes are the same. There are three
control limits for three modes. When a new sample comes, its
mode label yi is obtained by the Viterbi algorithm. Calculate its
ESFF and compare it with the corresponding control limit. If the
control limit is not exceeded, it is considered as a normal sample.
Otherwise, ESFF of every variable xi is computed to find fault
variables.

4. RESULTS AND DISCUSSION
4.1. Tennessee Eastman Process. Revised version of the

Tennessee Eastman (TE) process model38 is used in this work
(https://depts.washington.edu/control/LARRY/TE/
download.html#Updated%20TE%20Code). The monitored
variables contain 22 continuous measurements and nine
manipulated variables. Their variable numbers and names are
listed in Table 1.

4.1.1. Mode Identification for Stable Modes and
Transitions. A total of 3000 samples of mode 3 and mode 1
and the transition between them are produced for training
(Figure 1). The change trend of products G and H is shown in
Figure 2. The transition starts from the 1001st sample due to the
change of several set points. In this experiment, the 1800th
sample is considered the end of the transition because all
variables are relatively stable after that. The change trend of
some typical variables is demonstrated in Figure 3. The number
of states is 3. The samples of mode 3 are labeled as 1. Transition
samples are marked as 2, 3 is for mode 1. The value of
regularization weight σ in eq 10 is selected as 1. Three test
datasets are designed for trained LCCRF. Test dataset 1 includes
mode 3 and the transition. The transition happens since the
1167th sample.Mode 1 brings out test dataset 2. Test dataset 3 is
generated from mode 3.
It can be known from Figures 4−6 that all test samples are

labeled correctly. Although in actual production, engineers often
judge the beginning and end of transition according to some
indicator variables, data-driven approaches have their uses and
advantages.
The HMM is used for comparison. Mode identification also

relies on the Viterbi algorithm. Training and testing data are the
same. The number of hidden states is 3. The Gaussian
component of each hidden state is 1. Mode identification
results for three test datasets are shown in Figure 7. Although the
number of hidden states is set as 3, the trained HMM considers
transition and mode 1 as the same class. Three types of labeled
data are considered as two types. The transition cannot be
successfully identified. Thus, LCCRF has superiority.

4.1.2. Process Monitoring Based on ESFF. First, process
disturbance IDV (4) is used. A step change occurs in reactor
cooling water inlet temperature. Reactor cooling water flow
(monitored variable No. 30) will increase for compensation
because of the control loop. As a result, qualities of products G
and H are not affected, as well as the other monitored variables.
This disturbance happens since 201st sample in the test dataset.
During offline modeling, the number of states is 2 (modes 1

and 3). The samples of mode 1 are labeled as 1. Mode 3 samples
are marked as 2. The value of regularization weight σ in eq 10 is

Table 1. Numbers and Names of Monitored Variables

number name number name

1 A feed 17 stripper underflow
2 D feed 18 stripper temperature
3 E feed 19 stripper steam flow
4 A and C feed 20 compressor work
5 recycle flow 21 reactor cooling water outlet

temperature
6 reactor feed rate 22 separator cooling water

temperature
7 reactor pressure 23 D feed flow
8 reactor level 24 E feed flow
9 reactor temperature 25 A feed flow
10 purge rate 26 A and C feed flow
11 product separator

temperature
27 purge valve

12 product separator level 28 separator pot flow
13 product separator

pressure
29 stripper liquid flow

14 product separator
underflow

30 reactor cooling water flow

15 stripper level 31 condenser cooling water flow
16 stripper pressure
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Figure 1. Flowchart of the proposed method.

Figure 2. Change trend of products G and H.
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selected as 1. Regularization of weights prevents overfitting by
restricting the number of parameters. The value of regularization
weight σ determines the severity of penalty, so the ordinary value
of this parameter will lead to effective results. The confidence
level is 0.99 when calculating both control limits. Figures 8 and 9
describe fault detection results for modes 1 and 3. Figures 10 and
11 present faulty variable location results for modes 1 and 3.

These results come from the 600th sample in the test dataset.
Figures 12 and 13 provide monitoring results based on the
negative log likelihood probability (NLLP) of the HMM for
comparison. Training and testing data are the same. The
confidence level is also 0.99 when computing the control limit of
NLLP.

Figure 3. Change trend of some typical variables.

Figure 4. Mode identification result for test dataset 1.
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According to those charts, both methods provide satisfactory
monitoring performance. All faulty samples are detected. But the
negative log likelihood probability lacks the faulty variable
location technique. In Figures 10 and 11, the faulty variable is
obviously the monitored variable No. 30 due to its significant
contribution. This variable is reactor cooling water flow, which is
consistent with reality. The effectiveness of the proposed
method is verified.

Then, process disturbance IDV (1) is used for modes 1 and 3.
This step is about reactants A and C. The change of A/C feed
ratio affects several monitored variables at the beginning.
Subsequently, the compensatory effect of A feed flow makes
qualities and other variables normal. This disturbance also
happens since the 201st sample in the test dataset.
During offline modeling, the number of states is 2 (modes 1

and 3). The samples of mode 1 are labeled as 1. Mode 3 samples
are marked as 2. The value of regularization weight σ in eq 10 is

Figure 5. Mode identification result for test dataset 2.

Figure 6. Mode identification result for test dataset 3.
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selected as 1. The confidence level is 0.99 when calculating both
control limits. Detection results of modes 1 and 3 are shown in
Figures 14 and 15. Figures 16 and 17 demonstrate the change of
faulty variable location with different samples.
Fault detection results are satisfying. At the initial stage of

fault, there are many faulty variables. In the end, only two faulty
variables remain. They are monitored variable Nos. 1 and 25.
Variable No.1 is a continuous process measurement, namely, A
feed in stream 1. Variable No. 25 is one manipulated variable
called A feed flow in stream 1. This outcome accords with the
fact, which testifies the availability of the proposed approach.
4.2. Continuous Stirred Tank Reactor. As a benchmark,

the continuous stirred tank reactor (CSTR)39,40 is used to testify
the proposed methodology in this section. This simulation
system consisted of feed stream containing reactant stream,

product stream, and cooling water stream. Two differential eqs
28 and 29 describe its component material and energy balance.
Table 2 lists its primary parameters.
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The standard deviations of noises are selected as 0.01 mol/
(min L) and 0.02 K/min. Monitored variables are CA, T, Tc, and
q. The standard deviations of those measured noises are 0.001
mol/L, 0.01 K, 0.01 K, and 10 mL/min, respectively. All noises

Figure 7. Mode identification result for three test datasets using the hidden Markov model.

Figure 8. Fault detection result based on ESFF for IDV (4) in mode 1. Figure 9. Fault detection result based on ESFF for IDV (4) in mode 3.
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are assumed to be independent and Gaussian. The sampling
time is 0.5 min.

Figure 10. Faulty variable location based on ESFF for IDV (4) in mode
1.

Figure 11. Faulty variable location based on ESFF for IDV (4) in mode
3.

Figure 12. Fault detection result based on NLLP for IDV (4) in mode
1.

Figure 13. Fault detection result based on NLLP for IDV (4) in mode
3.

Figure 14. Fault detection result based on ESFF for IDV (1) in mode 1.

Figure 15. Fault detection result based on ESFF for IDV (1) in mode 3.
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Two operatingmodes are designed for verification. Inmode 1,
the value of CA is 0.816 mol/L. Thousand samples are generated
for training. Their labels are marked as 1. CA equals 1.273 mol/L
inmode 2. Thousand samples are also produced for training, and
their mode label is 2. For the LCCRF model, the number of
states is 2. The value of regularization weight σ in eq 10 is
selected as 1. Two test datasets are constructed for the trained
model. Test dataset 1 contains 500 samples, which come from

mode 1. Similarly, 500 samples are generated from mode 2 to
build test dataset 2. It can be known from Figures 18 and 19 that
all test samples are labeled correctly.

5. CONCLUSIONS
In this manuscript, linear chain conditional random fields are
used for mode identification and process monitoring for
multimode processes with transitions. Distinguishing stable

Figure 16. Faulty variable location based on ESFF for IDV (1) in mode 1.

Figure 17. Faulty variable location based on ESFF for IDV (1) in mode 3.
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modes from transitions is emphasized. The essence of
conditional random field makes it superior to the hidden
Markov model. The expectation of state feature function is
developed by physical and engineering meaning. Fault variable
location based on it is effective. Case studies on the TE process
and continuous stirred tank reactor verify the availability of the
proposed methodology.
However, there are several problems that need to be further

studied. The selection of transition and state feature functions
remains an open question. Transition feature functions describe
relationship between labels. State feature functions determine

connections of observations and labels. How to choose them
better according to specific applications is worth exploring. In
addition, the structure of a linear chain conditional random field
is very important. How to design it can be a future work.
Semisupervised conditional random fields can also be a future
direction. The training requires correct labels for all samples. It is
very useful to have satisfactory performance given only a small
amount of labeled data.
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