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The Effect of Tissue Preparation and
Donor Age on Striatal Graft Morphology
in the Mouse
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Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disease in which striatal medium spiny neurons (MSNs) are lost.
Neuronal replacement therapies aim to replace MSNs through striatal transplantation of donor MSN progenitors, which
successfully improve HD-like deficits in rat HD models and have provided functional improvement in patients. Transplants in
mouse models of HD are more variable and have lower cell survival than equivalent rat grafts, yet mice constitute the majority
of transgenic HD models. Improving the quality and consistency of mouse transplants would open up access to this wider
range of rodent models and facilitate research to increase understanding of graft mechanisms, which is essential to progress
transplantation as a therapy for HD. Here we determined how donor age, cell preparation, and donor/host strain choice
influenced the quality of primary embryonic grafts in quinolinic acid lesion mouse models of HD. Both a within-strain (W-S)
and a between-strain (B-S) donor/host paradigm were used to compare transplants of donor tissues derived from mice at
embryonic day E12 and E14 prepared either as dissociated suspensions or as minimally manipulated tissue pieces (TP). Good
graft survival was observed, although graft volume and cellular composition were highly variable. The effect of cell preparation
on grafts differed significantly depending on donor age, with E14 cell suspensions yielding larger grafts compared to TP.
Conversely, TP were more effective when derived from E12 donor tissue. A W-S model produced larger grafts with greater
MSN content, and while high levels of activated microglia were observed across all groups, a greater number was found in B-S
transplants. In summary, we show that the effect of tissue preparation on graft morphology is contingent on the age of
donor tissue used. The presence of microglial activation in all groups highlights the host immune response as an important
consideration in mouse transplantation.
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Introduction

Huntington’s disease (HD) is an inherited neurodegenerative

disease caused by an expanded polyglutamate cytosine-ade-

nine-guanine (CAG) repeat in the Huntingtin gene on chro-

mosome 41. The resultant mutant Huntingtin protein leads to

progressive neuronal dysfunction and loss, with medium

spiny neurons (MSNs) primarily affected in the early stages

of the disease2. HD is a debilitating disease causing a broad

range of physical and mental deficits, and currently there is

no disease-modifying treatment.

The relatively targeted nature of the primary neuronal

loss in HD makes it an ideal candidate for cell replacement

therapy. Primary neuronal progenitors derived from the

whole ganglionic eminence (WGE; from which the striatum

develops) and transplanted directly into the quinolinic acid

(QA)-lesioned striatum develop into MSNs, integrate into

the parenchyma, and form functional connections with host

neural circuitry in rats3,4. A number of clinical trials confirm

that transplantation of fetal WGE in HD is safe, and there is

preliminary evidence that it can improve some disease
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symptoms in people with HD.5–8 However, more work is

required. First, tests must be conducted to determine whether

fetal transplantation can reliably improve function in peo-

ple with HD, and second it should be determined whether

the efficacy and consistency of this approach can be

improved, before its development as a potential treatment.

Moreover, optimizing the protocols for achieving success-

ful embryonic WGE grafts will solve many issues that are

also relevant to pluripotent stem cell–derived grafts,

which are currently being developed as a more sustain-

able source of donor cells.

Protocols have been optimized and are well established

for rat-to-rat striatal transplants, with extensive preclinical

literature showing consistent large and functional grafts from

embryonic day (E)14 to E16 WGEs9,10. Rat protocols have

been refined over many years, with donor age and tissue

preparation identified as critical factors affecting graft sur-

vival, morphology, and function of rat-to-rat striatal trans-

plants11–13; however, these factors have not been

systematically investigated in mice. It is evident throughout

the literature,14–18 and from experience within this lab, that

the direct translation of these protocols to mice results in

considerable graft variability. Graft survival is lower and

surviving grafts are smaller and contain less striatal-like tis-

sue compared to rat striatal grafts. This suggests that either

there are unrecognized differences between rat and mouse

host models and the way in which they interact with trans-

planted tissue or species differences in the way the trans-

planted tissue develops following transplantation, or both.

Typically, immunosuppressive treatment is not required

when transplanting rat cells into the rat brain, even using

outbred stocks, with good graft integration and functional

recovery19,20. It has therefore been assumed that transplants

in mice would also not require immunosuppression in the

supposed “immune-privileged” brain. However, as the

immunological response to transplanted tissue is likely to

be critical for graft survival, we have considered the host

response to transplantation (including the disparity in immu-

nological background between donor and host and the pre-

paration of transplanted cells) as a potential factor in survival

of neural mouse grafts.

Establishing a reliable protocol in the mouse is essential to

use the array of well-characterized genetic HD mouse models

for cell transplantation, as well as a wide range of transgenics

that could be used to contribute to a better understanding of

graft survival integration and functional mechanisms. The

present study examined whether modifications to current stan-

dard transplant protocols could produce more reliable and

effective striatal grafts in mouse models of HD, both within

and between strains. The effects of donor tissue age and cell

preparation were assessed by characterizing the cell content of

striatal grafts of mouse primary embryonic tissue and analyz-

ing the activated microglial response. The QA lesion model of

HD was used, as it is the most widely used and well-validated

model to date for preclinical studies and provides a reliable

starting point for later translation to genetic models of HD.

Materials and Methods

This experiment was subject to project, personal, and facil-

ities licenses and local ethical review in accordance with the

United Kingdom Animals (Scientific Procedures) Act 1986

as amended.

Subjects

Young adult male C57BL6/J (N ¼ 32) and CD1 (N ¼ 32)

mice (20 to 30 g, Harlan, Bicester, UK) were housed in pairs

under standard conditions in a 12:12-light/dark cycle. Tem-

perature and humidity were maintained at 21 + 2 �C and

60% + 1%, respectively. Food and water were available ad

libitum.

QA Lesion Surgery

Mice received unilateral QA (P6320-4; Sigma-Aldrich,

Gillingham, UK) lesions to the right striatum, with 2 mice

of each strain retained as intact controls. Fresh 0.09 M

QA solution was prepared each day in 0.1 M phosphate

buffer (10010-056; Thermo Fisher, Loughborough, UK).

All animals were anesthetized in an induction chamber

using 4% isoflurane gas in oxygen, the head shaved, and

a subcutaneous (sc) injection of meloxicam 2.5 mg/kg

(Metacam, Boehringer Ingelheim, Germany) given as pain

relief prior to surgery. Mice were transferred to a stereotaxic

frame and maintained on 1.5% to 2% isoflurane in a mix-

ture of oxygen and nitrous oxide (2:1). The skull was

exposed and a small hole drilled at the following stereotaxic

coordinates: anterior-posterior (AP) þ0.8 mm and medial-

lateral (ML) �2.0 mm from bregma. A 30-gauge stainless

steel cannula attached to a 10 mL microvolume syringe

(2035; SGE Analytical Sciences, Thermo Fisher) driven

by a mechanical pump was used to inject 0.75 mL of 0.09

M QA at dorso-ventral (DV) �3.0 mm below dura. The QA

was infused over 6 min and the cannula left in position for

an additional 3 min to prevent back flow of solution. The

cannula was removed and the incision closed using 5-0

Vicryl dissolvable sutures (W9915; Ethicon, Livingston,

UK). 0.5ml of 0.9% glucose saline (FKE1323; Baxter, New-

bury, UK) was administered sc during surgery to reduce

dehydration and a 7.5 mg/kg intramuscular injection of dia-

zepam (Hameln Pharmaceuticals Ltd, Gloucester, UK) was

given post-anesthesia prevent seizures. Mice were placed

into a warm recovery chamber for 2 to 3 h until completely

awake and returned to their home cages for 10 d. The

general health of mice was monitored daily and mice were

fed a wet mash of standard food in their cages for at least 3-

d post surgery. In the week following lesion surgery, 7

C57BL6/J mice became unwell, necessitating hand-feeding

of wet mash via a syringe daily until weight was regained.

In addition, 4 pairs of C57BL6/J mice were separated due to

fighting. Animals that did not fully recover from illness or

fighting were removed from the study (n ¼ 8).
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Donor Tissue

Two transplant paradigms were used incorporating common

strain combinations studied within the lab: a within-strain

(W-S) model with CD1 tissue transplanted into CD1 hosts

and a between-strain (B-S) model with Chrm4-EGFP-CD1

tissue transplanted into C57BL/6J hosts. The CD1 mouse is

used as a standard transplantation model for assessing graft

survival and composition, chosen primarily for their large

litter sizes. The C57BL/6J/Chrm4-EGFP-CD1 model is used

to investigate the functional efficacy of transplants, as

C57BL/6J mice are particularly adept at performing beha-

vioral tasks and are the background strain for many of the

genetically modified HD mouse models. The bacterial arti-

ficial chromosome (BAC) Chrm4-EGFP-CD1 mice express

green fluorescent protein (GFP) attached to M4 receptors in

a subset of MSNs19, allowing easy identification of donor-

derived MSNs.

Time-mated CD1 and Chrm4-EGFP-CD1 mice from an

in-house colony (originally purchased from Harlan, and

MMRRC, Farmington, CT, USA, respectively) were sacri-

ficed by cervical dislocation at E12 or E14, and the embryos

dissected into Dulbecco’s modified Eagle’s medium: nutri-

ent mixture F-12 (DMEM/F12; 12634-028; Thermo Fisher).

Using a dissecting microscope in a laminar flow hood, the

brains were removed and, following a longitudinal cut in the

medial cortex, the whole (medial and lateral) striatal primor-

dium was identified on the floor of the lateral ventricle and

removed via a horizontal cut as described21. Four transplant

preparations were made for each donor strain: (1) E12 cell

suspension (CS), (2) E12 tissue pieces (TP), (3) E14 CS, and

(4) E14 TP. Transplantation surgery was spread across mul-

tiple days with fresh suspensions made each morning for

each group.

Transplantation Surgery

Approximately 10-d postlesion mice were randomly

assigned to experimental groups with 20 C57BL6/J and 27

CD1 mice receiving primary tissue transplants (n ¼ 4 to 7

per group, see Table 1). In addition, a group of mice from

each strain were retained as lesion-only controls (C57BL6/J,

n ¼ 2; CD1, n ¼ 3). Surgery was conducted using the same

anesthetic regime described for lesions; however, no diaze-

pam was administered post-transplantation. Cell prepara-

tions were injected at the lesion coordinates via the same

burr hole, �3.2 and �2.8 mm below dura.

Single-cell Preparations

CS preparations consisted of pooled E12 WGEs (Chrm4-

EGFP-CD1, n ¼ 26; CD1 n ¼ 24) or E14 WGEs (Chrm4-

EGFP-CD1, n ¼ 22; CD1, n ¼ 26) for each strain. Tissue

was incubated at 37 �C for 10 min in 0.1% bovine trypsin

(25300-054; Thermo Fisher) þ 0.05% deoxyribonuclease

(DNase) (D4527; Sigma-Aldrich) in DMEM/F12 solution,

before adding 0.01% bovine trypsin inhibitor (T6522-

250MG; Sigma-Aldrich) for an additional 5 min, and

washing with direct addition of DMEM/F12 followed by

centrifugation for 3 min at 1,000 rpm. Cells were resus-

pended in DMEM/F12 and triturated using a Gilson pipette

with a 200 mL tip to mechanically dissociate into a single CS.

Cell number and viability were determined with trypan blue

(T8154 20ML; 0.4% trypan blue solution, Sigma-Aldrich,

UK) exclusion using a hemocytometer, confirming all sus-

pensions had >90% viability. Cells were concentrated at

250,000 cells/mL for transplantation in DMEM/F12. 1 mL

of suspension was injected at each depth using a 10 mL

microvolume syringe (2035; SGE Analytical Sciences,

Thermo Fisher), depositing approximately 500,000 cells in

total into the lesioned striatum over 2 min (1 mL/min), with

the syringe left in situ for an additional 3 min to allow

diffusion and reduce backflow. All suspensions were kept

in the dark at room temperature.

Tissue Piece Preparations

For TP preparations, no cell counts could be conducted

directly from nondissociated tissue, therefore WGE units

equating to approximately 500,000 cells (the number of cells

Table 1. Summary of Survival Rates and Untransformed Data for Surviving Grafts.

Host Strains Groups
Number of

Surviving Grafts
Graft Volume
(�106 mm3)

Number of NeuNþ

Cells (�103)
P-zone Volume

(�106 mm3)
Number of DARPP-32þ

Cells (�103)

Percentage of
DARPP-32þ

Patches (%)

C57BL6/J E12 CS 4 of 5 (80%) 110.3 + 52.4 11.1 + 5.1 61.2 + 42.4 1.4 + 0.7 51.0
C57BL6/J E12 TP 5 of 5 (100%) 301.6 + 88.5 28.4 + 8.0 180.6 + 67.7 2.5 + 0.8 55.5
C57BL6/J E14 CS 4 of 4 (100%) 188.9 + 32.7 12.9 + 4.1 127.6 + 5.7 2.4 + 0.4 74.4
C57BL6/J E14 TP 2 of 6 (33%) 97.0 + 16.3 6.8 + 0.5 44.7 + 3.7 0.8 + 0.5 48.1
CD1 E12 CS 5 of 6 (83%) 226.0 + 52.9 11.1 + 2.4 91.1 + 31.1 2.1 + 0.5 34.0
CD1 E12 TP 6 of 7 (86%) 335.6 + 46.5 16.4 + 2.8 237.5 + 66.4 4.2 + 0.7 68.4
CD1 E14 CS 6 of 7 (86%) 194.0 + 21.6 9.6 + 1.4 84.3 + 16.9 2.3 + 0.4 44.3
CD1 E14 TP 3 of 7 (43%) 146.9 + 36.8 6.6 + 1.6 119.0 + 25.6 2.5 + 0.3 89.9

Note: Untransformed data presented +standard error of the mean. High graft survival rates were seen in most groups with the exception of those derived
from E14 TP. Large differences in graft volume and cell numbers were observed within group. CS ¼ single-cell preparation; TP ¼ tissue piece.
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transplanted in the CS groups) were transplanted. Cell counts

calculated from the CS dissections showed this to equal

approximately a pair of WGEs for E12 tissue and a single

WGE for E14 (see Table 2). Separate preparations were

made for each individual surgery, with WGEs treated with

bovine trypsin, DNase, and trypsin inhibitor as described

above. However, after gentle washing, tissue was transferred

directly into *4 mL DMEM/F12 for transplantation, with no

trituration, therefore minimizing mechanical manipulation

to maintain integrity of the TPs. TP preparations were

injected as above, at a rate of 1 mL/min over 4 min (2 min

at each depth). Mice were monitored daily until full

recovery.

Perfusion and Immunohistochemistry

At 12 wk after transplantation surgery, mice were perfused and

the brains were processed for histological analysis of the grafts.

Animals received a terminal intraperitoneal injection of

sodium pentobarbital (Euthatal, Merial Animal Research,

Woking, UK) and were transcardially perfused using phos-

phate buffered saline (PBS, pH 7.3) followed by 150 mL of

4% paraformaldehyde solution (PFA, pH 7.3; 10131580;

Fisher Scientific, Loughborough, Lutterworth, UK) over

4 min. Brains were removed, postfixed in 4% PFA for 4 h,

and transferred to 25% sucrose solution in PBS for at least

48 h. Brains were cut at 40 mm on a freezing microtome, and

sections stored in antifreeze—5.45 g disodium-hydrogen-

orthophosphate (28029.26; VWR, UK), 1.57 g sodium-

dihydrogen-orthophosphate (28013.264; VWR), 300 mL

ethylene glycol (102466-2.5L; Sigma-Aldrich), and 300 mL

glycerol (G7893-2L; Sigma-Aldrich) in 400 mL dH2O—at

�20 �C until immunohistochemical analysis. The 1:12 series

were incubated at room temperature as free-floating sections

with primary antibodies for neuronal nuclei (NeuN) (MAB377;

1:2,000; Millipore, Watford, UK), ionized calcium-binding

adapter molecule 1 (Iba1) (019 19741; 1:8,000; Wako, Chuo-

ku, Japan), parvalbumin (P3088; 1:4,000; Sigma-Aldrich) or

anti-GFP (AB11122; 1:1,000; Invitrogen, Loughborough,

UK), and streptavidin–biotin reaction (PK-6100; Dako,

Glostrup, Denmark), then stained using 3,30-diaminobenzidine

(DAB, D5637-1G; Sigma-Aldrich). Parvalbumin series were

double-stained with dopamine- and cAMP-regulated phospho-

protein antibody (DARPP-32) (1:30,000; the kind gift of Pro-

fessor H. C. Hemmings, Cornell University22) and Vector SG

kit (SK-4700; Dako). Sections were mounted onto gelatinized

slides and left to air-dry overnight before being dehydrated and

cover-slipped with distyrene plasticizer and xylene (DPX)

mounting medium (12658646; Fisher Scientific).

In Vitro Primary Cultures

Time-mated CD1 dams were sacrificed at E12 or E14 (n¼ 3

per group), and WGEs were dissected as described previ-

ously21. Tissue from each litter was pooled to prepare 3

separate suspensions for each embryonic age, as described

above. Cells were resuspended in neuronal differentiation

media—DMEM/F12 þ 1% FCS (10270-106; Thermo

Fisher, Waltham, MA, USA) þ 2� B27 (17504-044;

Thermo Fisher, Waltham, MA, USA) and plated on poly-

L-lysine treated coverslips at 100,000 cells per well. CS of 30

mL was left for approximately 1 h before flooding with 500

mL of differentiation media and incubated at 37 �C in humi-

dified 5% CO2 and 95% atmospheric air. A complete media

change was performed after 3 d in culture using the same

media described above. After 24 h and 7 d in vitro, 12 wells

of each suspension were fixed with 4% PFA and stored at 4
�C until immunocytochemical staining.

Immunocytochemistry

Cells were quenched in 100% ethanol for 2 min, washed 3

times in PBS, and then blocked with PBS þ 0.3% Triton X-

100 (PBST; X100-500ML; Sigma-Aldrich) þ 1% BSA

(A3059; Sigma-Aldrich) þ 1% serum at RT for 1 h. Cells

were then incubated at 4 �C overnight with the following

pairs of primary antibodies in PBS þ PBST þ 1% BSA þ
1% horse serum (16050-122; Thermo Fisher, USA): neuro-

nal marker bIII-tubulin (T2200; 1:500; Sigma-Aldrich) and

astrocyte marker glial fibrillary acidic protein antibody

Table 2. Summary of Transplanted Cell Numbers and Associated Proportion of WGE Used in Each Group.

Donor Strains Embryonic Age Preparation Cells per WGE Proportion WGE Transplanted Number Cells Transplanted

Chrm4-EGFP-CD1 E12 CS 180,769 2.77 500,000
Chrm4-EGFP-CD1 E12 TP 180,769 2.00 361,538
Chrm4-EGFP-CD1 E14 CS 577,273 0.87 500,000
Chrm4-EGFP-CD1 E14 TP 577,273 1.00 577,273
CD1 E12 CS 357,143 1.40 500,000
CD1 E12 TP 357,143 2.00 714,286
CD1 E14 CS 1,041,667 0.48 500,000
CD1 E14 TP 1,041,667 1.00 1,041,667

Note: The number of cells per WGE was estimated based of the mean cell counts of the CS preparations. The number of WGEs used in the TP preparations
was adjusted based on the mean number of cells in the WGE for each particular donor strain and age with the aim of transplanting a similar number of cells in
each group. Since it was only possible to use whole WGE units in the nondissociated TP preparations, the number of cells transplanted could not be exactly
matched but was kept as close to 500,000 as possible. Subsequently, the proportion of WGE transplanted was used to transform the data to account for the
differences in proliferative potential of the cells transplanted. CS ¼ single-cell preparation; TP ¼ tissue piece; WGE ¼ whole ganglionic eminence.
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(GFAP AB32010; 1:500; Abcam, Cambridge, UK) or early

MSN marker forkhead box P1 (FoxP1 AB16645; 1:500;

Abcam) and COUP-TF-interacting protein 2 (CTIP2)

AB18465; 1:500; Abcam, UK). Cells were washed with

PBST before incubating for 2 h in the dark at RT with the

following fluorescent secondary antibodies in PBS (1:200):

Alexa594 (A11037; Thermo Fisher, UK) for bIII-tubulin and

CTIP2 and Alexa488 (A11034; Thermo Fisher, UK) for

GFAP and FoxP1. After washing with PBS, a Hoechst

(23000-1000; 1:10,000; Fisher Scientific) counterstain was

applied for 5 min. Cells were washed again in PBS and

coverslips mounted onto microscope slides with aqueous

mountant (PBS: glycerol; G7893-2L; Sigma-Aldrich, 1:1)

and stored in the dark at 4 �C. Five regions per coverslip

were counted, and the mean count from each suspension

recorded.

Analysis of Grafts and Statistics

The location of grafts in the C57BL6/J hosts was identified

through immunohistochemical labeling of the transplanted

Chrm4-EGFP-CD1 tissue using an anti-GFP antibody

(A11122; Invitrogen, Loughborough, UK), and corre-

sponded to clearly identifiable regions of NeuNþ staining

within the lesioned striatum (Fig. 1A). CD1 hosts were trans-

planted with CD1 tissue, and therefore could not be identi-

fied through GFP staining, consequently NeuNþ staining

was used to identify the graft location in these animals. The

presence of fully differentiated adult neurons (NeuNþ cells)

within the grafted area was used to determine graft survival

in all groups (Fig. 1B), with grafts with no positive NeuN

staining excluded from graft analyses. These animals were

however retained in the analysis of microglial immune

response. It is important to note that while successful grafts

are defined here as those containing NeuNþ cells, survival of

other cell types, such as immature neurons and glial cells,

cannot be excluded. Volumes were calculated by measuring

cross-sectional areas of NeuNþ (total graft volume) and

DARPP-32þ graft regions (P-zones) across 1:12 series and

using the formula: volume ¼ (SA �M)/f, where A ¼ area of

graft (mm3), M ¼ section thickness (mm), and f ¼ section

frequency (Fig. 1B and C).

For larger grafts, total cell numbers were calculated by

unbiased stereology. For smaller grafts, stereological analy-

sis would generate a large sampling error, therefore these

were counted manually using Image J v1.45 software

(National Institutes of Health (NIH), Bethesda, MD, USA)

following imaging of grafted sections. Mean cell diameter

was obtained for NeuNþ, DARPP-32þ, and parvalbuminþ

cells by measuring the minimum and maximum diameters of

10 cells per graft using Image J.

Iba1-labeled series were used to grade the host microglial

response in the grafted area using an established semi

quantitative rating scale23. Each section was graded 0 to 4

according to the following categories: (0) no specific acti-

vated microglia in the graft area, (1) low number of activated

microglia distributed as scattered single cells or clustered in

a few small patches in or around the graft, (2) several acti-

vated microglia distributed as single cells or clustered in

multiple prominent patches, (3) dense immunostaining of

the graft area and a large number of activated microglia in

and around the graft, and (4) very dense immunostaining

of the whole graft area and a very large number of activated

microglia in and around the graft. Activated microglia

were easily identified by their morphological appearance24

(Fig. 1D). The highest grade given to any section for each

animal was the grade assigned to that animal.

As TP were not dissociated, transplants were prepared by

WGE units rather than by cell number as in the CS prepara-

tions. Embryos used for CS and TP were collected from the

same litters, so although cell number could not be determined,

an estimate of the number of cells per WGE at each age was

calculated using total counts from the CS and dividing by the

total number of WGEs dissociated (see Table 2). Since E12

WGE contained approximately half the number of cells of E14

WGE, a pair of E12 WGEs were transplanted for each E14

WGE to maintain a consistent total cell number, as close to

500,000 as possible. However, transplanting different pro-

portions of WGE raises the issue that the E12 TP grafts of 2

WGEs may have twice the proliferative potential of the sin-

gle WGE E14 TP. As it is not possible to control for both cell

number and quantity of WGE transplanted, graft outcome

measures were subsequently transformed to account for the

proportion of WGE transplanted as described below:

Cell counts and volume data were corrected for the pro-

portion of WGE transplanted using the following transfor-

mations: Tn¼ n/proportion of WGE transplanted and Tvol¼
vol/proportion of WGE transplanted, where proportion of

WGE transplanted ¼ number of cells transplanted/mean

number of cells in WGE, Tn ¼ corrected cell count, n ¼
actual cell count, Tvol ¼ corrected volume, and vol ¼ actual

volume.

Transformed data from successful grafts in all groups

were analyzed together using 3-way analyses of variance

(ANOVAs) in Genstat for Windows v16.1 software. If a

significant main effect of strain was found, then B-S and

W-S groups were subsequently analyzed in separate 2-way

ANOVAs. Consequently, NeuNþ graft volume, DARPP 32þ

graft volume, DARPP-32þ cell count, proportion of

DARPP-32þ cells, parvalbuminþ cell counts, proportion of

parvalbuminþ cells, and activated microglia scores were

analyzed in separate ANOVAs for the B-S and W-S groups.

For immune response data, transplanted mice with no detect-

able surviving grafts, as well as lesion only controls, were

also included in the analyses.

Results

Mouse donor cells from E14 and E12 WGE were prepared

either as standard dissociated single-CS or as nontriturated

partially digested TPs. These cell preparations were trans-

planted into the striatum of 2 commonly used laboratory
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Fig. 1. Photomicrographs of typical large and smaller grafts (first and second row, respectively), lesion only and control (third and final row,
respectively). (A) GFPþ staining identifying Chrm4-EGFP-CD1-grafted tissue (indicated by *) within the host parenchyma. Paler areas of
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mouse donor/host strain paradigms; a B-S and a W-S model.

Grafts were analyzed using immunohistochemistry 12 wk

later and graft size, neuronal content, DARPP-32þ MSN,

and parvalbuminþ interneuron number compared, as well

as the microglial reaction to the graft by the host. CS of each

donor age was also analyzed after 24 h and 7 d in vitro to

assess whether the age at which tissue is harvested affects the

development of cells independently from the host

environment.

Graft Survival

The presence of DAB-labeled GFPþ Chrm4-EGFP-CD1 donor

cells corresponded with areas of NeuNþ and DARPP-32þ

staining in the C57BL6/J hosts, confirming the donor origin

of the cells (Fig. 1A and B). Transplanted cells could be clearly

identified within the lesioned host striatum by staining for

NeuNþ mature neurons in all hosts, including those trans-

planted with non-GFP donor cells (Fig. 1B). The proportion

of surviving grafts for each group and raw untransformed data

for surviving grafts are shown in Table 1. There was no effect

of donor/host on NeuNþ graft survival (t6 ¼ 0.208, ns), and a

high proportion of NeuNþ grafts was identified in all groups

(80% to 100%) except for E14 TP, of which only 5 of 13 (43%)

transplanted mice had NeuNþ cells in the grafted region after

12 wk. Graft volumes varied both within and between groups,

ranging from just 12 � 106 mm3 up to 588 � 106 mm3.

Graft Volume and Cellular Composition

Figure 2A shows the volumes of NeuNþ tissue in the surviv-

ing grafts for each group and a comparison of mean graft

volume of B-S (Chrm4-EGFP-CD1 tissue into C57BL6/J

hosts; B-S) and within strain (CD1 tissue into CD1 hosts;

W-S) groups. Grafts from the W-S group were significantly

larger than those observed in the B-S group (F1, 27¼ 19.08, P

< 0.001). Preparations of E14 CS yielded significantly larger

grafts than E14 TP in the B-S model, while the younger E12

tissue produced larger grafts when prepared as TP than as CS

(age � preparation: F1, 11 ¼ 14.52, P < 0.01). In the W-S

model, E14 CS also yielded significantly larger grafts than

E14 TP; however, there was no significant difference between

grafts derived from different preparations of E12 tissue (age�
preparation: F1, 16 ¼ 17.14, P < 0.001).

Distinct regions of DARPP 32þ staining were observed

within all surviving grafts (Fig. 1C). The volume of DARPP-

32þ patches (P-zones) within each graft is shown in Fig. 2B.

W-S transplants yielded significantly larger total P-zone

volumes than B-S (strain: F1, 27 ¼ 6.50, P < 0.05). B-S

transplants contained larger P-zone volumes when trans-

planted as CS than TP at E14, while the reverse was true for

E12 tissue (age � preparation: F1, 11 ¼ 18.27, P < 0.001). A

similar trend was observed in the W-S groups; however, a

statistically significant interaction was not found. As Fig. 2C

shows, there were no differences in the proportion of DARPP-

32þ P-zone volume (out of total NeuNþ graft volume) in B-S

and W-S groups. B-S transplants showed a trend toward higher

proportion of P-zones in E14 CS compared to E14 TP,

although this was not statistically significant. No difference

in the B-S E12 preparations was observed. W-S E12 groups

again showed a tendency for higher proportions of P-zone

tissue from E12 transplants as TP rather than CS. However,

at E14, TP produced the larger DARPP-32þ proportion com-

pared to CS—the only measure in which E14 TP outperformed

E14 CS (strain � preparation: F1, 27 ¼ 10.73, P < 0.01).

There was no difference between B-S and W-S trans-

plants in the total number of mature NeuNþ neurons within

the grafts (Fig. 2D). Cell counts reflected the data patterns

observed in graft volume, with E14 CS yielding more cells

than E14 TP, and E12 TP yielding more cells than E12 CS

(age � preparation: F1, 27 ¼ 23.43, P < 0.001). The W-S

grafts contained more DARPP-32þ cells than B-S (strain: F1,

27 ¼ 21.43, P < 0.001; Fig. 2E). Grafts of E14 tissue con-

tained more DARPP-32þ cells than those of E12 origin in

both W-S and B-S groups (age: F1, 16 ¼ 13.6, P < 0.01 and

F1, 11 ¼ 6.71, P < 0.05, respectively). E14 tissue yielded

higher DARPP-32þ content when transplanted as CS than

TP, while there was trend for E12 to produce more as TP in

both W-S and B-S groups (age � preparation: F1, 16 ¼ 8.94,

P < 0.01 and F1, 11 ¼ 17.25, P < 0.01, respectively).

The W-S models yielded the greatest proportion of

DARPPP-32þ cells within the grafts compared to the B-S

group (strain: F1, 27 ¼ 4.46, P < 0.05; Fig. 2F). Grafts

derived from E14 tissue contained a higher proportion of

DARPP-32þ cells than those from E12 in the W-S model

(age: F1, 16¼ 9.88, P < 0.01). In addition, TP preparations in

the W-S model yielded a greater proportion than the CS

(preparation: F1, 16 ¼ 12.97, P < 0.01).

Significantly more parvalbuminþ cells were found in W-

S transplants compared to B-S (strain: F1, 27 ¼ 20.67, P <

0.001; Fig. 3A). In addition, E14 generated more

parvalbuminþ cells than E12 tissue in both W-S and B-S

groups (age: F1, 16 ¼ 19.39, P < 0.001 and F1, 11 ¼ 14.14,

P < 0.01, respectively), and CS yielded more than TP pre-

parations (preparation: F1, 16 ¼ 4.49, P < 0.05 and F1, 11 ¼
8.05, P < 0.05, respectively) although this effect was mostly

due to very high numbers in the E14 CS groups compared to

all other combinations. E14 CS grafts contained significantly

Fig. 1. (Continued) non-medium spiny neurons cell types are seen within the graft (indicated by arrow). Scale bar represents 500 mm. (B)
NeuNþ staining of mature neurons. Areas of grafted cells can be clearly identified within the lesioned striatum (*). Scale bar represents 500
mm. (C) DARPP-32þ staining (blue) shows distinct P-zones within the grafts (*). Parvalbuminþ interneurons (brown stain; white arrow) are
present throughout the grafts. Black arrows highlight the nonspecific orange-colored staining of spherical dead cells. Scale bar represents
100 mm. (D) Iba1þ staining of microglia. Resting-state ramified cells (white arrow) can be seen on the peripheral cortex areas. Clusters of
darker, amoeboid activated cells (black arrow) can be seen within the grafts (*) and the surrounding striatum. Scale bar represents 500 mm.
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Fig. 2. (A) NeuNþ graft volumes. Within-strain (W-S) transplants were larger than the between-strain (B-S) transplants (***P <
0.001). E14 tissue yielded a larger volume than E12 tissue when transplanted as single-cell preparation (CS) in both strain models
(***P < 0.001). E14 tissue produced larger grafts when transplanted as CS than tissue piece (TP) style preparation in B-S (*P < 0.05)
and W-S (**P < 0.01) models. E12 tissue yielded a larger volume when transplanted as TP than CS in the B-S model only (*P < 0.05).
(B) DARPP-32þ graft volumes. W-S transplants contained a larger volume of DARPP-32þ tissue than the B-S (*P < 0.05). The B-S CS
transplants yielded a larger DARPP-32þ volume using E14 tissue than E12 (***P < 0.001), and E14 tissue yielded a larger volume when
transplanted as CS than TP (***P < 0.001). (C) Proportion of DARPP-32þ graft tissue (proportion ¼ [DARPP-32þ volume/NeuNþ

volume] � 100). There was no difference in the proportion of DARPP-32þ tissue in the different models; however, CS transplants
yielded a higher proportion of DARPP-32þ tissue in the B-S groups than in the W-S groups (P < 0.05). TP yielded a higher proportion
of DARPP-32þ tissue than CS in the W-S groups (**P < 0.01). (D) NeuNþ graft cell counts. No effect of model on neuronal cell
counts was detected. E14 tissue yielded a greater number of neurons than E12 (@P < 0.05). CS transplants contained more NeuNþ

cells than the TP in the W-S transplants (P < 0.05); however, TP grafts comprised of more NeuNþ cells than CS at age E12 (P < 0.05).
(E) DARPP-32þ cell counts. More DARPP-32þ cells were present in the W-S grafts than the B-S (***P < 0.001). E14 tissue produced
a greater number of DARPP-32þ cells compared to E12 in the B-S (@P < 0.05) and W-S model (@@P < 0.01). CS transplants yielded
more DARPP-32þ cells using E14 tissue than E12 in both the BS (**P < 0.01) and W-S (**P < 0.01) models. E14 tissue yielded a higher
DARPP-32þ cell count when transplanted as CS than TP in the B-S (*P < 0.05) and W-S (*P < 0.05). (F) DARPP-32þ cell counts as a
proportion of total NeuNþ cells. W-S grafts yielded a greater proportion of DARPP-32þ cells within the graft than the B-S (*P <
0.05). In the W-S groups, E14 tissue produced a greater proportion of DARPP-32þ cells compared to E12 (@@P < 0.01) and TP
preparations produced a greater proportion than CS (*P < 0.01).
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more parvalbuminþ cells than E14 TP in both W-S and B-S

groups (age � preparation: F1, 16 ¼ 18.40, P < 0.001 and

F1, 11 ¼ 10.13, P < 0.01, respectively), and there was a trend

for E12 TP to yield more than E12 CS, but this did not reach

significance.

The proportion of parvalbuminþ cells (as a percentage of

NeuNþ cells) was greatest in the W-S model (strain: F1, 27¼
12.97, P < 0.001; Fig. 3B). CS preparations yielded a higher

proportion compared to TP in the B-S groups (Preparation:

F1, 11 ¼ 7.13, P < 0.05), and E14 tissue yielded a higher

proportion than the E12 in the W-S groups (age: F1, 16 ¼
5.76, P < 0.05).

There was no difference in the diameter of the DARPP-

32þ cells between the B-S and W-S groups; however, those

derived from E14 tissue in the B-S groups were significantly

larger compared to those from E12 tissue (age: F1, 13 ¼
12.98, P < 0.01).

Microglial Response

Iba1 labeling revealed dense areas of microglial activation,

not only within the grafted area but also extending beyond

the transplant boundaries to the host striatum in all mice

except for intact control animals (Fig. 1D). Numerous dead

cells and cellular debris were observed within most grafts

and needle tracts, visible in sections stained with DAB as

spherical clusters of paler staining (arrows in Fig. 1C).

Figure 3D shows the graded microglial response for each

group. Activation of microglia was significantly higher in B-S

than in W-S groups (F1, 39¼ 99.09, P < 0.001). Grafts derived

from E14 tissue in the W-S model induced a greater micro-

glial activation than those of E12 tissue (F1, 23 ¼ 5.54, P <

0.05); however, this effect was not seen in the B-S groups. No

difference was detected between TP and CS preparations.

Differentiation In Vitro

To investigate the development and maturation of cells from

E12 and E14 donor embryos independent of the host envi-

ronment, CS from CD1 embryos was prepared as described

for transplantation and cultured for 24 h and 7 d in vitro. As

TP preparations were not dissociated, it was not possible to

culture these comparably. Cell counts from primary cultures

are shown in Fig. 4. There was no difference in the

Fig. 3. (A) Parvalbuminþ cell counts. A greater number of parvalbuminþ interneurons were present in the within-strain (W-S) model than
the between-strain (B-S) model (***P < 0.001). E14 tissue yielded a greater number of parvalbuminþ interneurons than E12 in both the B-S
(@@P < 0.01) and W-S (@@@P < 0.001) models. E14 tissue yielded a higher parvalbuminþ cell count when transplanted as single-cell
preparation (CS) than tissue piece style preparation (TP) in the B-S (*P < 0.05) and W-S (**P < 0.01) models. All data presented in Fig. 1 are
adjusted for proportion of whole ganglionic eminence transplanted. (B) Parvalbuminþ cell counts as a proportion of total NeuNþ cells. W-S
grafts yielded a greater proportion of parvalbuminþ cells within the graft than the B-S (***P < 0.001). E14 tissue produced a greater number
of parvalbuminþ cells compared to E12 in the W-S (*P < 0.05). CS preparations produced a greater number of parvalbuminþ cells compared
to TP in the B-S (*P < 0.05). (C) DARPP-32þ cell diameter. There was no difference in DARPP-32þ cell diameter between the B-S and W-S
groups. Cells derived from E14 tissue were larger than those taken from E12 tissue in the B-S groups (*P < 0.05). (D) Grading score for
activated microglia (0 to 4) in the grafted striatum in the B-S groups, W-S groups, and the mean grading score for activated microglia in all
grafted groups. Higher levels of activated microglia were found in B-S transplants than W-S (***P < 0.001). W-S transplants of E14 tissue
produced an increased microglial response than E12 (@P < 0.05). No effect of age on microglial response was found in the B-S groups.
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proportion of b-tubulinþ cells across any age or time point;

however, there was a trend toward a greater number of

b-tubulinþ cells at 7-d post plate-down compared to 24 h,

as well as for E14 compared to E12. Very few GFAPþ cells

were found in any group; however, there were signifi-

cantly more after 7 d in both E12 and E14 donor age

groups (F1, 8 ¼ 16.99, P < 0.01). There was a significant

increase in the proportion of CTIP2þ cells at 7 days in

vitro (DIV) compared to 24 h (F1, 8 ¼ 44.52, P < 0.001)

but there was no effect of embryonic age. FoxP1þ MSN

precursor cells also accounted for a higher proportion of

the population at 7 DIV compared to 24 h (F1, 8 ¼ 78.21,

P < 0.001) with no effect of embryonic age.

Discussion

The effect of donor age, cell preparation (single CS or dis-

sociated TP), and variability in donor/host strain on primary

embryonic striatal graft development and the host microglial

response was investigated. Preparation as a CS is the method

most routinely used, with trituration following enzymatic

digestion to form a quasi-single CS. The TP style preparation

used in this study, although not an identical treatment to

other chopped tissue piece preparations,25–27 provides a less

severe treatment than standard CS protocol28,29. Cells under-

went the same enzymatic digestion to aid in the transplanta-

tion process, but did not undergo manual trituration, thus

leaving the tissue relatively intact, thus theoretically reduc-

ing cell stress. To provide information on how model selec-

tion could affect the host response to transplants and

subsequent graft survival/development, 2 different donor/

host strain combinations were used: a B-S model transplant-

ing Chrm4-EGFP-CD1 tissue into C57BL6/J hosts and a

W-S model with CD1 tissue transplanted into CD1 mice.

A high percentage of graft survival was found across all

groups, except for E14 TP in both strains, which was the

least effective transplant protocol in terms of graft survival

(see Table 1). These data show that transplanted cells can

survive under a variety of protocol conditions, yet survival

rates were still not as high as usually seen in rat studies, and

considerable variation in graft volume and content was seen

within experimental groups. Graft cells were analyzed for

the expression of the mature neuron marker NeuN, MSN

marker DARPP-32, and the interneuron marker parvalbu-

min. Some NeuNþ cells did not appear to express either

DARPP-32 or parvalbumin and could be MSN cells not yet

producing DARPP-32, nonstriatal neural cells, or nonparval-

bumin interneurons.

Donor Age

In general, E14 tissue produced grafts containing a higher

number of mature neurons, DARPP32þ MSN cells, and

parvalbuminþ interneurons compared to preparations trans-

planted using E12 tissue after considering the number of

progenitor cells transplanted. Neural graft volume was larger

for E14 preparations than E12 in the W-S groups, and this

trend was also seen in the B-S groups, although not reaching

significance—possibly due to small group sizes.

CS preparations produced more NeuNþ cells, larger graft

volumes, and more DARPP32þ and interneuron content when

harvested at E14 than at E12. Additionally, B-S transplants of

E14 CS produced a higher proportion of P-zone tissue than

E12 CS. In contrast, there was no effect of age on TP in any of

the above measures, although a consistent trend was apparent

showing the opposite effect, with TP yielding better grafts at

E12 than at E14. Striatal transplants of E14 preparations in

rats have been shown to produce larger grafts and DARPP-

32þ P-zones within the graft compared to older tissue as well

as the greatest functional recovery.10,30,31 Given that the

developmental stage at E14 in rats is equivalent to age

E12.5 in mice, by comparing the Carnegie stages of develop-

ment32, it would be expected that E12 TP in mice should

reflect the results seen in E14 TP rat studies. It is possible

that the digestion process and trituration of the mouse CS have

more of a detrimental effect on the cells at this younger age

than at E14 and are less tolerant to the treatment than rat cells.

This could lead to a reduced capability of mouse E12 CS cells

Fig. 4. Cell counts from plate downs of 100,000 cells from E12 and E14 single-cell suspensions after 24 h and 7 DIV. No differences were
observed in the number of neurons across groups (bTubþ staining). Compared to 1 DIV, the cultures at 7 DIV contained a significantly
higher percentage of astrocytes (**GFAPþ, P < 0.01) and medium spiny neurons precursors (***CTIP2þ, P < 0.001; ***FOXP1þ, P < 0.001).
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to survive and develop posttransplantation. In addition, it is

possible that the Carnegie stages are not perfectly translated

from rat to mouse and E12 could be more representative of a

younger stage than the estimated E14 rat stage. This could

have important implications for fetal age selection in primary

human tissue transplants.

No effect of donor age was found in the in vitro measures

investigated, including numbers of mature neurons (b-tubu-

lin), early MSNs (FoxP1, CTIP2), and astrocytes (GFAP).

E12 and E14 cells were equally viable at the time of trans-

plantation/cell plating. However, in vitro conditions are not

reflective of the in vivo environment, and differences seen in

vivo may suggest that it is the interaction of cells with the

host environment affecting the apparent differences in devel-

opment. It has been shown that neuronal cells under stress

are more likely to be destroyed by the host33, therefore if

younger cells are more susceptible to stress, they may be

more susceptible to the host immune response. The high

levels of activated microglia seen within the grafted regions,

and even in the lesion only controls, confirm that the

immune response could play a critical role in the long-

term survival of cells14.

Parvalbuminþ interneurons were more abundant in grafts

derived from E14 CS than those from any other, an indica-

tion that these grafts may contain a greater proportion of this

interneuron population than the other groups, thereby pre-

senting a cell population more characteristic of the normal

striatum34. To obtain the neural diversity in grafts closest to

that seen in the adult striatum, it is necessary to transplant

both the lateral ganglionic eminence (LGE) and the medial

ganglionic eminence (MGE)13,35. In mice, the LGE, the

source of striatal progenitors36, is visible by E12, while the

MGE, where interneurons are born, is visible as early as

E1135,37, indicating that E12 might be the earliest time point

for obtaining all the necessary cell types in mice. It is known

that interneuron populations contribute to normal striatal

function and development35, and these may be playing a

supportive role in the development of the MSNs within the

graft38. The MGE is much larger at E14 than at E12, and as

this is the origin of interneuron progenitors39,40, would most

likely contribute a greater proportion of interneurons to the

transplanted population. In turn, this may have resulted in

the improved development of E14 grafts13,35.

It is interesting to note that the mean cell body diameter of

DARPP32þ grafted cells from Chrm4-EGFP-CD1 tissue

was significantly larger in the E14 age groups than in the

E12, although this was not seen in the CD1 grafts. Given that

at the time of perfusion all grafted cells were 12 wk old,

under normal physiological conditions, it would be expected

that they would have reached the same level of maturity and

hence size. This may be an indication that the E14 cells are

less inhibited by the local environment after transplantation

into the host than the E12 cells, although contrasting evi-

dence suggests that older cells, once past their proliferative

stage, may be able to compensate less well12. Alternatively,

E12 tissue could be undergoing proliferation for a longer

time posttransplantation, thus giving rise to cells until much

later. These, at the time of sacrifice, could be less mature

than those born closer to the time of transplantation. Changes

in cell size may also be because of shrinkage or swelling due

to physiological processes. For example, increases in cell

size have been linked to necrosis41, while cells in the early

process of apoptosis are reduced in size42. In this case, it is

possible that more E14-derived cells could be necrotic or

that more E12-dervived cells are undergoing apoptosis; how-

ever, this could not be determined within the current study.

No difference in the cell size of parvalbuminþ interneurons

was seen (data not presented).

Cell Preparation

There are potential benefits of delivering the transplant as

tissue pieces rather than triturated CSs. Limiting the manip-

ulation of the tissue can reduce disruption and death of neu-

ronal populations within the preparation, and the retention of

the extracellular matrix may protect cells during transplanta-

tion and in the initial postgraft period. However, it has been

suggested that the transplantation of whole tissue pieces may

induce a stronger immune response due to the presence of

the intact donor vasculature and antigen presenting cells

(APCs)26,43. Although the use of nonimmunogenic bioengi-

neered scaffolds could avoid this issue44,45, protocols gener-

ally require dissociation of cells prior to seeding into a

scaffold, therefore still posing a risk to neuronal populations.

Preparing tissue as partly digested tissue pieces without tri-

turation28,29 may prevent disruption to MSN precursors prior

to transplantation and thus improve graft survival.

The results show a significant difference in the effect of

preparation type on graft morphology depending on the age

of the tissue used. E14 tissue prepared as CS produced grafts

that are phenotypically superior to those transplanted as TP

in almost all parameters including graft survival. Dissociated

cell preparations are thought to provoke less of a host

immune response when transplanted because the immuno-

genic donor vasculature is at least partially destroyed prior to

implantation43,46. In addition, trypsinized single-cell pre-

parations provide an advantage over solid pieces of tissue

by potentially allowing transplanted cells access to the host

capillary network more easily. The necessity of establishing

contact in order to nourish the grafted tissue was demon-

strated early on in studies implanting in vessel-rich and

vessel-poor microenvironments47. Rat-to-rat grafts from

CS transplants produce a greater proportion of striatal-like

tissue, with more DARPP-32 expressing cell populations

than those from TP, as well as providing greater innervation

of the host parenchyma29. Cells transplanted as TP within a

surrounding matrix may be restricted in terms of migration

and integration into the host brain. The present study sug-

gests that the benefits of transplanting dissociated CSs may

outweigh those of a supportive matrix provided by TP trans-

plants and that the trituration process is not too harsh to

affect survival of the transplant at E14.
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Conversely, E12 tissue produced larger grafts with

greater striatal-like content when prepared as TP over CS.

Previous studies in rats have shown that, for transplants of

TP, older donor tissue is tolerated less and that younger

tissue has a better chance of survival11,12,47 corresponding

to what we find in mouse TP transplants. It is unclear why

the dissociation processes involved in CS preparation would

reverse this trend, although, as discussed above, it seems

that mouse WGE tissue is better able to withstand dissocia-

tion when processed at E14 than at E12 as evidenced

through E14 CS transplants yielding improved long-term

graft survival and larger grafts. Studies have suggested that

different subpopulations of rat neurons are more sensitive

to trypsinization than others12. Mouse cells may also be

more sensitive, particularly at different developmental

stages, warranting a systematic study of the effect of tryp-

sinization on mouse precursors.

E12 TP survived transplantation with an improved capac-

ity to produce successful grafts, although it is unclear why

the same results are not reflected with E14 TP. Potentially,

the less mature cells within the E12 TP are more prolifera-

tive and migratory at this early stage of development, there-

fore not restricted by the surrounding matrix. The

particularly low survival rate in E14 TP preparations may

indicate that TP at this age are not as amenable to integra-

tion as those at E12, potentially due to an increased poten-

tial of their vasculature and APCs to induce an immune

response in the host43. In addition, following expulsion

from the graft cannula, cells within the E14 TP might be

more densely packed within the host striatum than single

cells which could impede diffusion and timely integration

with the capillary18,46.

Strain Effects

The models selected for the purposes of this study were the 2

most commonly used paradigms within the lab, with the aim

of determining how the choice of these particular models

could affect the graft outcome.

We showed that the use of the different W-S and B-S

models did not affect the number of surviving grafts. How-

ever, the transplants in the W-S model yielded the largest

grafts in terms of neuronal volume compared to the B-S

paradigm and had a higher number and proportion

of DARPP32þ cells. The CD1 grafts also contained more

interneuron cells. A previous study using the same

Chrm4-EGFP-CD1 donor tissue observed much larger grafts

and survival19, although notably this CD1-derived tissue was

transplanted into CD1 hosts rather than the C57BL/6.

The results suggest that the choice of strain and matching

of donor and host animals for transplantation studies could

be critical in achieving robust results. Iba1 staining revealed

a significant amount of microglial activation within the

grafted areas of all mice except the intact controls, including

those in the lesion only group and those with no detectable

surviving grafts. A significantly higher grading of activated

microglia was found in the B-S than in the W-S groups.

Allotransplants elicit a greater immune response than iso-

genic tissue, and while neither of the models investigated

here are inbred strains, it is clear that the response is

increased when immunological disparity is greater43. This,

in turn, can be linked to reduced transplant survival. Since

the CD1 hosts received tissue derived from the same strain, it

is likely that this was tolerated more than the tissue in the

mismatched B-S groups. In addition, some studies have

shown that the GFP marker associated with the Chrm4-

EGFP-CD1 donor tissue could in itself be immunogenic48,

although it is unclear if this is the case in striatal transplants

in the C57BL/6 model49. It is also plausible that the C57BL/

6 strain is inherently more prone to an exaggerated inflam-

matory response compared to the CD1 mice. It has been

demonstrated that C57BL/6 mice have a strong bias to M1

inflammatory reaction, whereas other strains, such as Balb/c,

tend toward a more supportive M2 response50. The separa-

tion of the effects of immunogenicity of the different donor

tissues used and the reactivity of the hosts is beyond the

scope of this study; however, it does warrant further

investigation.

E14 tissue transplanted into the W-S models induced a

greater microglial reaction than the E12 tissue. It is possible

that tissue pieces transplanted from later embryonic ages

contain more vasculature and hence could invoke a greater

immune response, although this is yet to be tested. The fact

that this pattern was not detected in the B-S model could be a

result of a ceiling effect since the microglial response was

consistently high in all B-S groups.

The higher levels of activated microglia in the C57BL6/J

hosts could explain the lower surviving cell number and

graft volume51,52. It was noted that the area of activation

exceeded the area of transplantation, suggesting secondary

activation or recruitment of microglia to the site of trans-

plantation. Interestingly, the glial response appeared reduced

in individuals with rejected grafts, presumably because

the transplanted cells had already been subjugated and

the immune response had entered a post reactive phase. The

ongoing proliferation of activated glial cells in and around

the grafts is suggestive of ongoing reactivity with the surviv-

ing implanted cells. This could be an indication that the

grafts surviving to 12 wk may be hampered long-term by

the immune response of the hosts. Therefore, the study of

immunosuppressive regimes in mouse to mouse transplanta-

tion could be a key to resolving the less than optimum qual-

ity of the grafts seen, as immunosuppression is generally

only considered to be required for xenotransplant models.

Conclusions

The results highlight a capacity of mouse transplants to sur-

vive under a variety of conditions and a need for protocols to

be optimized to improve consistency and reliability. Donor

age and tissue preparation technique are important factors

that affect the morphology of primary fetal grafts. The data
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from this study suggest that more successful grafts are

derived from single-cell preparations of E14 tissue or from

less dissociated tissue pieces at E12.

We found large variation in grafts across all the experi-

mental groups, which implies the influence of other factors

that may be more fundamental than the methodological mod-

ifications investigated in this study. Any impact of changes

in cell preparation or donor age may be reduced by other

more influential factors in the mouse to mouse model, high-

lighted by the differences between the strains investigated

here. High levels of activated microglia in the grafted zones,

particularly in the B-S transplants, and the presence of dead

cells in all groups suggest that further investigation into

immune response of mouse hosts to specific tissues is

warranted.
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