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Liver is the main target of colorectal cancer (CRC) metastasis. Currently, the number of 
reports is small, which describe changes in gene expression supporting liver metastasis. 
Here, a rat model was used for analyzing mRNA modulations during liver colonization 
and compared with available literature. In the model, CC531 rat CRC cells were injected 
via a mesenteric vein into isogenic WAG/Rij rats and re-isolated at early, intermediate, 
advanced, and terminal stages of liver colonization. These cells were used for RNA 
isolation. Microarrays were used for analyzing mRNA profiles of expression. The number 
of deregulated genes is comparatively large and only part of it has been studied so far. 
As reported to date, claudins and insulin-like growth factor-binding proteins (IGFBPs) 
were found to be deregulated. The fact that the chosen method is efficient is confirmed 
by the study of claudins and IGFBPs, which show altered expression in the initial stages 
of liver colonization and then return to normalcy. In addition, cadherin was described 
to be downregulated in epithelial–mesenchymal transition models. It can, therefore, be 
concluded that the models used are helpful in finding genes, which are instrumental for 
metastatic liver colonization.

Keywords: animal models, liver metastases, tumor progression, colorectal cancer, metastasis-related genes

iNTRODUCTiON

With more than one million new cases, colorectal cancer (CRC) is one of the most common 
malignancies worldwide (1). In the primary operative treatment of CRC, metastasis is the limiting 
parameter. The progress of a CRC is also characterized by increased primary carcinoma growth and 
hematogenic and lymphatic spread. However, at the time of diagnosis, up to 25% of patients have a 
synchronous hematogenic metastasis, which is most frequently manifested in the liver. After resec-
tion of the primary tumor, a similar percentage (up to 25%) of the patients develops metastasis in 
the subsequent course of the disease, i.e., within the next 3 years (metachronous type of progression) 
(2–4). Surgery is only possible for a small proportion of these patients (about 10%). For the other 
patients, survival is limited to only 9–19 months (2–6).

When seeking explanations, why the liver is a main target of colorectal cancer metastasis, 
anatomical reasons are most often discussed. The liver represents the first capillary bed, in which 
disseminated colorectal cancer cells can become stuck. Subsequently, they grow and form life-
threatening metastases, which are reason for the aggressive behavior and resulting mortality of CRC 
(5–7). Treatment of these metastases is rarely curative, if conventional surgery, radiotherapy, and 
chemotherapy are being used (8).
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The primary tumors consist of a heterogeneous population of 
cells that are genetically distinct. This genetic variability allows 
the tumor cells to separate from the primary tumor and overcome 
various obstacles before growing in other organs. Nevertheless, 
only an extremely small part (0.001%) of disseminated tumor 
cells can form metastases (9, 10). This observation indicates 
that many aspects of the metastatic process are still unclear. 
Nevertheless, some of the sub-mechanisms are considered to 
be scientifically well explored. The metastatic process can be 
divided into three main processes, namely the initialization 
process, the progression process, and the establishment process.  
In order to develop a malignant and progressively metastasizing 
cell from a normal mucosal cell, many characteristics are neces-
sary, which enable the cells to grow autonomously, continuously, 
and invasively (11, 12).

ANiMAL MODeLS FOR LiveR 
MeTASTASiS

Typically, models should mimic the characteristics of the disease, 
which is to be investigated. Some animal models have been 
developed to mimic CRC and its progression. Most frequently, 
human tumor cells were transplanted subcutaneously into nude 
rodents (so-called xenografts), as the respective tumor growth in 
this model can easily be measured. However, the value of these 
models has been questioned, especially when it comes to assess-
ing the efficacy of new drugs, because these tumors are normally 
non-invasive and do not form metastases.

Pending on the origin of tumor cells, transplantation models 
can be isogenic or xenograft models. In the case of isogenic mod-
els, usually mouse or rat tumor cell lines are used. In xenograft 
transplantation models, human tumor cells or human tumor 
pieces are injected and implanted into immune-incompetent 
(nude) animals. Orthotopic cancer models are based on the 
implantation of cancer cells into the organ, from which the tumor 
cells originated. In the majority of these models, however, tumor 
growth cannot be assessed by eye. With regard to xenografts, 
it was observed that the produced tumors are histologically a 
mixture of human tumor cells and murine stromal cells (13).

An example of a transplanted isogenic model is the rat colorec-
tal cancer cell line CC531, which was originally developed from 
a colon cancer growing in a dimethyl hydrazine-induced WAG/
Rij rat (14). This tumor grew in various organs, including lymph 
nodes, abdominal cavity, and liver (15). For a considerable time, 
this property was used to evaluate the efficacy and toxicity of 
new antineoplastic treatment modalities (e.g., drugs, irradiation, 
antibodies, photodynamic therapy, locoregional administration) 
in experimental liver metastasis (16–27).

However, this model suffered from its growth in organs, which 
could not be inspected regularly. Therefore, markers were intro-
duced, which were to help in monitoring the growth of this tumor. 
Accordingly, CC531 cells were marked with genes that facilitate their 
detection, as well as their interaction with the environment. Exam-
ples of such marker genes are the Escherichia coli β-galactosidase 
(lacZ) gene (28). The exposure of cells, which are transfected with this 
gene, to X-Gal (5-Bromo-4-chloroindoxyl-β-d-galactopyranoside),  

leads to cleavage of this substrate into galactose and 5-bromo-
4-chloro-indoxyl. The latter dye is air-dried to the blue dye 
5,5-dibromo-4,4-dichloroindigo. The lacZ gene is considered a sta-
ble marker during tumor progression in vivo (28–37). Transfection 
of CC531 cells by the lacZ gene was performed by Wittmer et al. 
(38) and the resulting clone was used for determining the tumor 
load of the animals at the end of the respective experiments (39–45).

Green fluorescence protein (GFP) and its variants are also 
markers that allow the detection and sorting of tumor cells by 
using certain light wavelengths and fluorescence activated cell 
sorting (FACS) analysis, respectively (46–48).

Similar to the lacZ method, the luciferase reporter system is an 
alternative that enables an optical detection of tumor cells in vitro 
and in  vivo (49, 50). In transfected tumor cells, the luciferase 
gene is stably expressed, resulting in the presence and activity of 
the luciferase enzyme. Exposure of these cells to the respective 
substrate (luciferin, coelenterazine) results in light emission, 
which can be directly measured and correlated to the size of the 
tumor (51). Both markers, enhanced GFP and luciferase, were 
introduced into CC531 cells to allow improved detection during 
the lifespan of the animals (47, 52).

This final model was used most recently to identify new genes 
that are involved in the early stage of rat liver metastasis (47, 52).

The respective experiments, detailing the re-isolation of 
CC531 cells, being stably transfected with GFP as well as luciferase 
genes, from rat liver at various stages of colonization are detailed 
in the subsequent review. The aim of these experiments was to 
describe the genetic characteristics of liver-metastasis as a self-
regulating process, which has features that are independent from 
the primary tumor. So far, this question has not been sufficiently 
covered in the literature, although related work, which focused on 
the isolation of tumor nodules, was done by Velthuis et al. (44), 
Sun et al. (45), Georges et al. (53), and Speetjens et al. (54).

Specifically, the question was addressed, which temporal profile 
of gene expression tumor cells must show to enable their growth 
and metastasis in the liver. In view of the enormous genetic diver-
sity of the primary tumor and the high number of disseminated 
tumor cells in the venous blood of carcinomas, this approach did 
not focus on cells obtainable by liquid biopsy, but used the liver 
as filter for those cells, which are able to form liver metastases. 
Consequently, the entire period of the metastatic colonization of 
the liver was investigated. It was hoped that the changes in gene 
expression detected in re-isolated tumor cells would be helpful in 
understanding the mechanism of action of liver colonization by 
CRC cells, as well as for finding a specific therapy.

PRePARATiON AND iNJeCTiON OF CC531 
CeLLS

Six- to eight-week-old male WAG/Rij rats with a body weight 
of 160–180  g were purchased from Charles River, Sulzfeld, 
Germany. The rats were kept and anesthetized as previously 
described (38, 47, 55). All animal experiments were approved 
by the responsible governmental animal ethics committee 
(Regierungspraesidium Karlsruhe, Germany). Logarithmically 
growing CC531 cells were prepared at a concentration of 
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FiGURe 2 | Schematic illustration of the tumor cells’ isolation experiment. The CC531 rat CRC cells are injected into the rat liver and re-isolated after different time 
periods (3, 6, 9, 14, and 21 days). Cells isolated after 21 days were cultured for further 14 and 22 days in vitro. Proteins and mRNA were isolated from all cells for 
Western blot, as well as PCR and microarray, respectively.

FiGURe 1 | Schematic illustration of the injection site. The CC531 rat CRC 
cells were inoculated into the mesenteric vein to form liver metastasis.
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4–8 × 106 cells/500 μl depending on the experiment. After opening  
the abdomen, the cecum with its adjacent mesenteric vein was 
appropriately placed to allow the insertion of a 30G needle (BD, 
Heidelberg, Germany). Four hundred microliters of CC531 cell 
suspension was injected at a distance of ~1–1.5  cm from the 
cecum. The needle was gently inserted into the vein and the 
inoculation was administered slowly and lasted for 2–3 min, in 
order to achieve a good distribution of the cells in all liver lobes 
(Figures 1 and 2).

Re-iSOLATiON OF HePATOCYTeS, 
KUPFFeR CeLLS, AND TUMOR CeLLS 
FROM THe RAT LiveR

Ten rats (2 for each time point; i.e., 3, 6, 9, 14, and 21  days 
after tumor cell inoculation) were sacrificed and used for the 
experiment described below. It is also worth noting that all 
animals survived the experiment. An incision was made into 

the abdominal wall and the intestines were placed out of the 
abdominal cavity to locate the portal vein (Figure 1). The liver 
was washed and connection tissues were digested as described 
previously (47, 52, 53, 56). Subsequently, the liver was excised 
from the rat and placed into a sterile Petri dish. The liver was 
then treated with an appropriate enzyme cocktail (pronase and 
collagenase Type IV) and the resulting cell suspension of liver 
and tumor cells was transferred into tubes and layered carefully 
onto a Ficoll gradient medium. After centrifugation (15  min 
at 500  ×  g), hepatocytes, Kupffer cells, and tumor cells were 
obtained from the different layers of the interface (Figure  2). 
For better detection and to gain a high purity of isolated tumor 
cells, tumor cells were beforehand stably transfected with red 
fluorescence protein (RFP; Figure 3) and luciferase (Figure 4).

GeNe eXPReSSiON PROFiLe OF THe 
Re-iSOLATeD CeLLS

From the genes analyzed by microarray, some genes, which were 
≥2-fold up- or downregulated when compared to control cells, 
were chosen for subsequent analysis in vitro and in human CRC 
specimens.

Claudins
The aim of this experiment was to determine changes in the 
expression profile of the CRC cells during their colonization of 
the rat liver in order to determine a specific, time-dependent 
modification of metastasis-relevant genes and processes for fur-
ther studies. The mRNA of the re-isolated cells was used in cDNA 
microarrays to analyze the mRNA expression profiles of these 
cells during their growth in the rat liver. During liver coloniza-
tion, claudins 1 and 4 showed two-phase changes in their expres-
sion, in correlation with their presumed function during liver 
colonization. Initially, a significant reduction in the expression 
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TAbLe 1 | Comparative expression of some genes, including adhesion 
molecules, insulin-like growth factor-binding proteins (IGFBPs), and chemokines.

Gene family/genes Gene expression Reference

Adhesion molecules

Cldn1 Downregulated in early metastasis (47)
Cldn4 Downregulated in early metastasis (47)
E-cadherin Downregulated in epithelial–

mesenchymal transition (EMT)
(57–60)

iGFbPs
Igfbp3 Upregulated in early metastasis (52)
Igfbp7 Upregulated in early metastasis (52)

Chemokines
Ccr1 Upregulated in early metastasis (61)
Ccrl2 Upregulated in early metastasis (61)

FiGURe 4 | Light emission based on luciferase activity of CC531RFP-LUC rat CRC cells, 5 × 105 CC531RFP-LUC cells were injected into the rat liver. Aspect after luciferin 
injection of tumor bearing animals. (A) 14 days following transplantation of CC531RFP-LUC cells. (b) 21 days following transplantation of CC531RFP-LUC cells.  
(C) 28 days following transplantation of CC531RFP-LUC cells.

FiGURe 3 | CC531 rat CRC cells re-isolated from rat liver after 6 days of tumor cells’ inoculation. (A,b) Microscopic photographs of CC531 cells after 5 and 30 h of 
their re-isolation from rat liver. Magnification ×200, the bars indicate a distance of 20 µm.
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of claudins (here: claudin 1 and claudin 4) was observed, which 
were up to eightfold reduced compared to the control (Table 1). 
To analyze whether this reduced expression is primarily due to 
contact with the new environment, a coculture of the tumor cells 
with isolated rat hepatocytes and Kupffer cells was carried out. 
However, no change in the expression of the affected claudins 
was observed. However, the expression of claudin 4 was increased 
when the shear and friction forces in the blood circulation were 
simulated experimentally. A reduction in the mRNA expression 
of claudins1 and 4 by siRNA caused a significantly increased 
migration and at the same time reduced the colony formation 
capacity of the tumor cells (P < 0.05), but had no effect on their 
proliferative capacity (47).

An investigation of human CRC samples showed increased 
expression of claudins 1 and 4 by immunohistochemistry in 
stages I–III carcinomas, but at stage IV and in liver metastases, 
claudin expression was significantly reduced (P < 0.05). In addi-
tion, it was shown that an increased claudin 4 expression was 
correlated with a significantly reduced overall survival (log rank 
test, P = 0.018) (47).

The insulin-Like Growth Factor-binding 
Proteins (iGFbPs) 3 and 7 Are Associated 
with Liver Metastasis of Colorectal Cancer
In a follow-up experiment, the family of IGFBPs was investigated 
more closely. Some members of this family also showed a highly 
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significant change in their expression in the micro-array exami-
nation after re-isolation of CC531 rat CRC cells from rat liver. 
In contrast to the expression of the claudins, the expression of 
IGFBPs was initially significantly increased and normalized later, 
with the progressive infiltration of the liver by the tumor cells. 
IGFBP3 and 7, which represent the main group of IGFBPs and the 
side group of the related proteins, were selected from the group 
as a whole. A knockdown of both proteins resulted in reduced 
proliferation, colony formation, and migration (the latter only 
IGFBP3) of the CC531 cells.

In human tumor samples, expression of both genes was higher 
in UICC stages II and III than in stages I and IV. In addition, 
IGFBP3 was negatively correlated to the age of the affected patients 
in these samples and positively correlated with the expression of 
IGFBP7 (52).

Role of Chemokines and Their Receptors 
in CRC Progression
The chemokines C-C chemokine receptor type 1 (CCR1) and 
C-C motif receptor-like 2 (CCRL2) are associated with colorectal 
cancer liver metastasis: The expression modulation of CCR1 
and chemokine CCRL2 were investigated in the same rat liver 
metastasis model. In addition, their expression in rat and human 
CRC samples was also analyzed. In this experiment, we studied 
the effects of their knockdown on cellular properties in a panel 
of colorectal cancer cell lines. One rat and five human colorectal 
cancer cell lines were used for this purpose.

All cell lines were screened for mRNA expression of CCR1 
and CCRL2 by reverse transcription polymerase chain reaction 
(RT-PCR). Cell lines with detectable expression were further 
investigated. Specifically, the cells’ proliferation, scratch closure, 
and colony formation was determined, respectively. Knockdown 
of the two genes resulted in modest but significant inhibition of 
proliferation (P <  0.05), scratch closure, and colony formation 
(P < 0.05).

The re-isolation of CC531 rat colorectal cells from rat livers 
after defined periods, followed by mRNA isolation, showed a 
clear modulation in the expression profile of these genes during 
the colonization process. In particular CCRL2 and CCR1 were 
upregulated 27 and 4 times, respectively, when compared with 
the control cells.

Finally, specimens from 50 patients with CRC were examined 
by quantitative RT-PCR for CCR1 and CCRL2 expression levels. 
All human CRC samples were positive for CCR1 and CCRL2 and 
showed a significant pairwise correlation (P < 0.0004), but there 
was no correlation with tumor stage or age of patients (61).

The chemokine receptor CCR5 was found to be increased in 
CC531 cells in a way similar to CCR1 and CCRL2. To investigate 
its importance, CCR5 (CD195) was blocked with the CCR5 recep-
tor antagonist maraviroc in human colorectal carcinoma cells 
(SW480 and SW620). Subsequently, the effect of this blockade on 
the cell properties and the associated signal paths were examined. 
The blockade with maraviroc caused a significant proliferation 
inhibition and a marked arrest of the cells in phase G1 of the 
cell cycle. In addition, maraviroc caused a significant increase in 
apoptosis induction at the morphological level. Concomitantly, 

a significant modulation of several apoptosis-relevant genes was 
observed at the mRNA level and activation (posttranslational 
modification) of the caspases was observed at the protein level. 
The observations were depicted in a signaling pathway of CCR5, 
which summarizes the cytotoxic and apoptotic effects of maravi-
roc in colorectal carcinoma cells (62).

The Regulation of Osteopontin and 
Functionally Associated Genes in the 
CC531 Model In Vitro and In Vivo
The expression of the matrix protein osteopontin, as well as that 
of osteopontin associated genes BSP II, Runx2, Hoxc8, MMP-7, 
and MMP-9 was also studied in CC531 cells during the coloniza-
tion process and in vitro.

OPN, Runx2, and MMP-7 showed increased expression in 
the advanced stage of liver metastasis but subsequently showed 
reduced expression after the isolated tumor cells had been further 
cultured in  vitro. In addition, an inverse regulation of Hoxc8, 
OPN, and Runx2 was observed. The cocultivation of the tumor 
cells with hepatocytes did not cause increased expression of OPN 
and RUNX2, whereas the addition of TGF-β1 induced overex-
pression of OPN and Runx2 in tumor cells but not in cocultured 
hepatocytes (52, 63).

DiSCUSSiON

The pathophysiologic consequences of gastrointestinal cancers’ 
metastases are a major cause of their mortality (2, 64, 65). After 
a large number of studies, tumors are genetically derived from 
heterogeneous cell aggregates (3, 66–68). Despite this genetic 
heterogeneity, individual disseminated tumor cells often follow 
the same pattern of metastasis formation. They grow initially in 
the liver, but not, or only in the further course, in other organs 
(10, 69, 70).

In addition, only a small fraction of the disseminated tumor 
cells succeed in forming metastases. In line with this, it must 
be borne in mind that disseminated tumor cells are not true 
metastases, but represent only tumor cells with a necessary but 
not sufficient precondition to metastasize. From their enormous 
number and high genetic heterogeneity/diversity, the real metas-
tases are recruited (71).

One of the questions that have remained unanswered so 
far is what genetic characteristics these individual metastasis-
producing cells have and how it is possible to identify them in the 
face of the enormous genetic diversity of the primary tumor and 
the large number of cells that separate from it? Morphological 
and genetic examinations of established metastases generally do 
not provide any clue since morphological aspects and genetic 
signatures differ only slightly in terms of mutations in tumor 
suppressor and oncogenes from the primary tumor (3).

Rather, identification of modulated gene expression, even if 
present for a short time only, would possibly allow inhibiting the 
metastasis process by means of targeted manipulations.

Therefore, the aim of this work was to analyze the literature 
regarding expression profiles of tumor cells during the entire 
period of metastatic colonization of the liver, in order to 
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manipulate them in a targeted manner. For the main part of 
this review, a CRC tumor model was considered, which mimics 
the metastasis process. This model is based on CC531 rat -CRC 
cells, which were injected via the mesenteric vein into the liver of 
WAG/Rij rats and then re-isolated after various times (55). For an 
analysis of the genetic profile, a pure cell population is essential. 
In order to ensure this, two enrichment methods were used, i.e., a 
Ficoll gradient followed by FACS, which was based on the CC531 
cells’ labeling with the marker protein RFP.

The mRNA expression profile of these cells was investigated 
during the entire liver-colonization process. Interestingly, genes 
were activated or deactivated at the beginning of the coloniza-
tion process, and this alteration was related to the process 
progression.

With regard to the type of modulation, claudins and E-cadherin 
were found to be decreased, whereas the insulin-like growth factor 
binding proteins and chemokines showed increased expression. 
Notably, these modulations normalized later again.

For the claudins and E-cadherin, their diminished expression 
is an indication of the so-called epithelial–mesenchymal transi-
tion (EMT). This is in accord with the EMT theory, which states 
that in metastasizing tumor cells a phenotype change must first 
take place. These cells lose their adhesion properties and gain the 

ability to migrate. The loss of cell adhesion is caused, inter alia, by 
reduced expression of adhesion molecules such as claudines and 
E-cadherin (57–60).

During the colonization process, IGFBPs and chemokines 
showed a contrasting expression pattern (see Table 1).

CONCLUSiON

This review focusses on animal models, which identified genes 
that are modulated in their expression during liver colonization 
by CRC cells. The number of these genes is comparatively large 
and only a part of it has been identified so far. Nevertheless, the 
chosen method is efficient as is shown by the results on claudins, 
E-cadherin, insulin-like growth factor-related proteins, and 
chemokines, which show distinct modulation of expression dur-
ing liver colonization. Such findings may contribute to exploiting 
the potential of these genes as suitable markers for early diagnosis 
or as targets of an effective therapy of liver metastasis.
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