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ABSTRACT
Observational studies aiming to estimate causal effects 
often rely on conceptual frameworks that are unfamiliar 
to many researchers and practitioners. We provide a clear, 
structured overview of key concepts and terms, intended 
as a starting point for readers unfamiliar with the causal 
inference literature. First, we introduce theoretical 
frameworks underlying causal effect estimation methods: 
the counterfactual theory of causation, the potential 
outcomes framework, structural equations and directed 
acyclic graphs. Second, we define the most common 
causal effect estimands, and the issues of effect measure 
modification, interaction and mediation (direct and 
indirect effects). Third, we define the assumptions 
required to estimate causal effects: exchangeability, 
positivity, consistency and non- interference. Fourth, we 
define and explain biases that arise when attempting to 
estimate causal effects, including confounding, collider 
bias, selection bias and measurement bias. Finally, we 
describe common methods and study designs for causal 
effect estimation, including covariate adjustment, G- 
methods and natural experiment methods.

INTRODUCTION
There are three core tasks of epidemiology—to 
describe health states, predict outcomes and identify 
causes.1 2 Methodological developments to estimate 
causal effects using observational data have drawn 
on diverse disciplines, including epidemiology, 
statistics, econometrics and computer science, with 
varied terminology used.3–5 Previous glossaries in 
this series6 7 have dealt with the process of assessing 
causality across a body of evidence, which has long 
been an essential part of epidemiological research.8 
However, past glossaries have not covered many 
concepts underlying more recent methods for 
causal effect estimation based on counterfactual 
theory and the potential outcomes framework. 
Understanding these concepts is important for those 
engaging with and conducting epidemiological 
and public health research. Although we focus on 
observational study designs, the same principles and 
issues are also applicable to ‘non- ideal’ randomised 
controlled trials (RCTs), for example with attrition 
or imperfect adherence, when estimating anything 
other than an intention- to- treat effect.

KEY CONCEPTS AND FRAMEWORKS
Counterfactual theory of causation
A counterfactual is a ‘what- if ’ statement that 
describes what would have been the case under 
different circumstances than those observed—hence 

‘counter to the facts’. According to a counterfactual 
theory of causation, causal claims (using words like 
‘cause’ or ‘prevent’) can be expressed in counterfac-
tuals. For example, ‘Bringing an umbrella prevented 
me from getting wet’ could be rephrased either as 
‘If I had not brought an umbrella, I would have 
got wet’ (using a deterministic interpretation of 
causation, where not bringing an umbrella always 
leads to getting wet) or ‘If I had not brought an 
umbrella, I would have been more likely to get wet’ 
(using a probabilistic interpretation of causation, 
where not bringing an umbrella leads to a higher 
likelihood of getting wet).9 The second, probabi-
listic interpretation is the most relevant and widely 
used in epidemiology.

Potential outcomes
The potential outcomes framework (Rubin or 
Neyman- Rubin causal model) uses mathematical 
notation to describe counterfactual outcomes and 
can be used to describe the causal effect of an expo-
sure on an outcome in statistical terms.10 The terms 
exposure and outcome refer to the central variables 
of interest where the exposure is thought to have a 
causal effect on the outcome, which the study seeks 
to estimate. The exposure may be a treatment, 
intervention or some other variable that could have 
taken one of several counterfactual values. In this 
glossary, an exposure is denoted by ‘A’ (lower case 
‘a’ for a particular exposure value) and an outcome 
by ‘Y’.

If we label an individual’s exposure status as 1 or 
0, then Ya=1  denotes the potential outcome if they 
had been exposed, and Ya=0  denotes the potential 
outcome if they had been unexposed—this is one 
of several forms of notation commonly used in the 
literature, and others are shown in online supple-
mental table 1. Potential outcomes refer to all 
possible outcomes that an individual could experi-
ence—both those which are observed (factual) and 
those which are not (counterfactual). Given a binary 
exposure and a binary outcome, the possible combi-
nations of actual and counterfactual outcomes give 
rise to four causal types11:

 ► ‘Doomed’: would have experienced the 
outcome regardless of exposure.

 ► ‘Causative’: would have experienced the 
outcome if exposed, otherwise not.

 ► ‘Preventative’: would have experienced the 
outcome if unexposed, otherwise not.

 ► ‘Immune’: would not have experienced the 
outcome regardless of exposure status.

http://orcid.org/0000-0002-2863-4983
http://orcid.org/0000-0002-7653-5832
http://orcid.org/0000-0002-3811-8165
http://orcid.org/0000-0003-0085-5263
http://orcid.org/0000-0001-6593-9092
http://dx.doi.org/10.1136/jech-2022-219267
http://dx.doi.org/10.1136/jech-2022-219267
http://dx.doi.org/10.1136/jech-2022-219267
http://crossmark.crossref.org/dialog/?doi=10.1136/jech-2022-219267&domain=pdf&date_stamp=2022-09-26
https://dx.doi.org/10.1136/jech-2022-219267
https://dx.doi.org/10.1136/jech-2022-219267


961Igelström E, et al. J Epidemiol Community Health 2022;76:960–966. doi:10.1136/jech-2022-219267

Glossary

The counterfactual outcomes of a specific individual can never 
be known, since we can never observe the same individual both 
exposed and unexposed under the same circumstances (eg, both 
taking and not taking an umbrella on the same occasion). Instead, 
we estimate outcomes of groups of people in probabilistic terms, 
such as the expected value (mean) of a continuous outcome:

 E
(
Y
)
  

or the probability of a binary outcome:

 P
(
Y = 1

)
  

A conditional expectation such as  E
(
Y|C = 1

)
  denotes the 

expected value of Y, given that another variable C is 1. More 
generally, an expression such as  E

(
Y|C

)
  can be read as ‘the 

expected value of Y conditional on C’ (ie, ‘holding C constant’ 
or ‘within levels of C’). Conditioning on a variable is analogous 
to controlling for, adjusting for or stratifying by it (although in 
practice, different methods of conditioning may have different 
effects on the results and their interpretation).

Causal diagrams (directed acyclic graphs)
Causal relationships between variables of interest can be described 
using causal diagrams (figure 1).3 12 Each node represents a vari-
able at a specific point in time, and an arrow (sometimes ‘edge’ 
or ‘arc’) from A to B indicates that A has a causal effect on B; 
that is, if A had been different, then the expected value or prob-
ability of B would have been different. A box drawn around a 
variable indicates that the study design or analysis conditions on 
that variable. Directed acyclic graphs (DAGs) are causal diagrams 
where no instantaneous cyclical relationships exist. Causal 
DAGs (henceforth DAGs) can also be used to represent cyclical 
processes or feedback loops, using multiple nodes to represent 
the same variable at different points in time, and this allows 
cyclical processes or feedback loops to be modelled explicitly 
(see figure 1).

DAGs represent theories about causal mechanisms underlying 
a specific research question. The same research question could 
be represented by multiple DAGs, depending on the assumptions 
made by the researchers. Relationships between variables in a 
DAG can also be described using structural equations, so called 
because they describe causal relationships rather than observed 
associations (figure 1).13 A set of structural equations can some-
times be rewritten as a single reduced form equation.

DEFINING CAUSAL EFFECTS
The size of a causal effect is the difference in the potential 
outcomes for a particular population given different counterfac-
tual scenarios (eg, one where everyone is exposed vs one where 
everyone is unexposed). As with potential outcomes, causal 
effects cannot be observed at an individual level, so we rely 
instead on estimating average effects in groups of people. The 
outcome may be the mean of a continuous variable or the risk of 
a binary outcome. The scale of an effect measure can be either 
additive or multiplicative (table 1). For the remainder of this 
glossary, examples will be given in terms of a binary exposure 
and a continuous outcome on an additive scale, but the princi-
ples apply more generally.

Several causal treatment effects can be distinguished, 
depending on how the exposure is defined and what population 
is considered (table 2). It is crucial to specify which treatment 
effect a given study is seeking to estimate (its causal estimand), 
since these can differ substantially in terms of effect size, risk 
of bias and interpretation.14 Deciding which treatment effect is 
most relevant to the research question and target population is 

often not straightforward.4 5 One way to help clarify what causal 
effect a study is estimating is to specify a target trial, that is, a 
hypothetical RCT that the study is attempting to emulate.15 16

Effect measure modification
The size of an effect may differ across levels of another variable 
(eg, gender or age); this is called effect measure modification 
(EMM), and such a variable is an effect modifier (or moder-
ator).17 18 The presence and extent of EMM mathematically 
depends on the choice of an additive or multiplicative scale 
linking exposure and outcome; EMM may be present on either 
one of these scales or both (figure 2). If both the exposure and 
effect modifier are causes of the outcome, then EMM will always 
be present on at least one scale.

Interaction denotes that the joint effect of two exposures is 
different from the sum of the individual effects of each exposure. 
Like EMM, the presence and extent of interaction depends on 
the choice of an additive or multiplicative scale and does not 
necessarily have a meaningful causal interpretation. ‘Interaction’ 
is sometimes used interchangeably with EMM, but it is helpful 
to think of these as different concepts. Interaction focuses on the 
joint causal effect of two exposures (eg, the combined effect of 
smoking and asbestos exposure on lung cancer),17 19 while EMM 
focuses on the effect of one exposure whose effect differs across 
levels of another variable (eg, the effect of asbestos exposure on 
lung cancer in smokers vs non- smokers); with EMM, the causal 
effect of the effect modifier itself is not of interest.

Mediation
A mediator is a variable on the causal pathway between an expo-
sure A and an outcome Y, that is, where A causes the mediator 
and the mediator in turn causes Y.17 Mediation analysis aims to 
quantify how much of the total effect of A on Y is explained 
by a particular mediator (the indirect effect), and how much is 
not (the direct effect).20 21 The controlled direct effect (CDE) 
is the effect of the exposure conditional on the mediator, that 
is, after eliminating any variation in the value of the mediator. 
Assuming no interaction between exposure and mediator, and 
no confounding between mediator and outcome, the indirect 
effect can be obtained by subtracting the CDE from the total 
effect.20

When interaction is present between exposure and mediator, 
the CDE will take on different values for different levels of the 
mediator, and the effect obtained by subtracting the CDE from 
the total effect no longer has a meaningful causal interpreta-
tion.20 To address this problem, alternative definitions of causal 
direct and indirect effects have been proposed (see table 3), such 
that their sum adds up to the total effect even in the presence of 
interactions, generally by allowing one or more of these effects 
to include the interaction effect.20 22 23 These effect estimands 
can be defined theoretically in counterfactual terms, but can only 
be estimated given additional assumptions that are difficult to 
verify and may lack applicability for estimating policy- relevant 
mediation quantities (eg, how much the effect of A on Y could 
be reduced by intervening on the mediator).24

IDENTIFYING CAUSAL EFFECTS
Identifying assumptions
Causal effects are impossible to measure directly, since they 
involve comparing unobserved counterfactual outcomes that 
would have happened under different circumstances. A causal 
effect is identifiable if it can be estimated using observable data, 
given certain assumptions about the data and the underlying 
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causal relationships. Such identifying assumptions typically 
cannot be fully tested statistically but have to be justified based on 
theory and/or existing evidence about the real- world processes 
under study.

The exchangeability (or ‘no confounding’) assumption requires 
that individuals who were exposed and unexposed have the 
same potential outcomes on average.25 This allows the observed 
outcomes in an unexposed group to be used as a proxy for the 
counterfactual (unobservable) outcomes in an exposed group. 
RCTs strive to achieve exchangeability by randomly assigning 
the exposure, while observational studies often rely on achieving 

conditional exchangeability (or ‘no unmeasured confounding’), 
which means that exchangeability holds after conditioning on 
some set of variables.

The positivity assumption requires that every value of exposure 
was possible (ie, had a non- zero probability) for each individual 
at the time that exposure was assigned.26 When conditioning 
on other variables, positivity needs to hold for each combina-
tion of covariates. This means that for every combination of 
covariates, it is possible to be either exposed or unexposed. The 
combination of covariates where this assumption holds can be 
called the ‘region of common support’. If some combinations 

Figure 1 Causal diagrams and equivalent structural equations for common causal phenomena. 1Note that conditioning on the variable C is only 
represented in the causal diagram, not in the structural equations. A: exposure; C: confounder or collider; M: mediator; U: unmeasured confounder; Y: 
outcome; Z: instrumental variable.
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are impossible (eg, if a treatment is never prescribed when a 
particular contraindication is present), this is considered a struc-
tural positivity violation. The term random positivity violation 
is used when a combination is possible, but missing from the 
study sample by chance. The term ‘positivity’ may refer to both 
of these or only to structural positivity; the latter is usually more 
relevant in theoretical causal inference literature.

The consistency assumption (unrelated to Bradford Hill’s 
‘consistency’ criterion8) requires that the exposure is sufficiently 
well defined, so that each individual has one potential outcome 
for each level of the exposure.27 28 This assumption (sometimes 
called ‘treatment- variation irrelevance’) is violated if there are 
multiple different versions of the exposure (eg, dosages of a 
drug or reasons for becoming unemployed) with different causal 
effects. In this case, the estimated effect will be an average of 
these different causal effects. In practice, perfect consistency 
is often impossible to achieve, and the crucial question is then 
whether these differences are small enough for the averaged esti-
mate to be meaningful.

The non- interference assumption requires that an individual’s 
potential outcomes (and hence the causal effect of the exposure 

for that individual) does not depend on the exposure status of 
anyone else.10 29 This assumption can be violated by ‘spillover 
effects’ of some exposures (eg, vaccination), where an indi-
vidual’s outcomes are affected by the exposure status of those 
around them. The consistency and non- interference assumptions 
together are sometimes known as the stable unit treatment value 
assumption.

Threats to causal identification
Confounding bias
Confounding bias can arise when exposure and outcome share 
an uncontrolled common cause. In a DAG, confounding arises 
when variables are connected by a back- door path, that is, a path 
between A and Y that remains even if all arrows pointing away 
from A are removed. A back- door path can be blocked by condi-
tioning on one or more variables along the path (unless they are 
colliders; see below). Conditioning on every confounding vari-
able on the path is theoretically not necessary as long as the path 
as a whole is blocked, although mismeasurement of confounding 
variables may warrant adjustment for multiple variables. In other 
disciplines, confounding bias is referred to as omitted variable 
bias, endogeneity and selection into treatment.

Observed confounders refer to confounders for which 
measures are available in the study data. Residual confounding 
is any confounding bias that remains after conditioning on 
observed confounders, either due to variables not observed in 
the data (unmeasured or unobserved confounding) or inadequate 
measurement or modelling of observed confounders.

In longitudinal studies, it is common to distinguish between 
time- varying and time- invariant confounding variables; the 
former may change value over time for a single individual, and 
the latter are fixed (or change only in a completely deterministic 
way, eg, age).30

Collider bias and selection bias
When two variables both cause a third variable, that third vari-
able is a collider (ie, where two arrows ‘collide’ into a third vari-
able on a DAG).31 Unlike a confounder, which can cause bias if 
it is not conditioned on, a collider can cause bias if it is condi-
tioned on, by opening up a back- door path between the variables 
entering into it (see figure 1, ‘Collider bias’).

Traditionally in descriptive epidemiology, selection bias refers 
to systematic errors in the process of selecting a representative 
study sample and has often been thought to primarily affect 
generalisability of estimates. In causal inference, selection bias 
more specifically refers to a type of collider bias that occurs 
when an individual’s presence in the study sample is affected by 
the exposure and outcome (or variables correlated with these). 
Since only individuals present in the sample can be included, the 
study effectively conditions on a collider.32

Table 1 Potential outcome notation for additive and multiplicative causal effect measures for continuous and binary outcomes

Type of outcome Scale Potential outcome notation Effect measure Example interpretation

Continuous Additive

 
E
(
Ya=1 − Ya=0

)
 

Causal mean 
difference

‘An average increase in systolic blood pressure by 10 mm Hg’

Multiplicative

 

E
(
Ya=1

)

E
(
Ya=0

)
 

Causal mean ratio ‘An average increase in systolic blood pressure by a factor of 1.1’ or ‘by 10%’

Binary Additive

 
P
(
Ya=1 = 1

)
− P

(
Ya=0 = 1

)
 

Causal risk 
difference

‘An average increase in the risk of stroke by 5 percentage points’

Multiplicative

 

P
(
Ya=1=1

)

P
(
Ya=0=1

)
 

Causal risk ratio ‘An average increase in the risk of stroke by a factor of 1.5’

Table 2 Definitions of different types of treatment effect

Effect Potential outcome notation Description

Average treatment 
effect (ATE)  

E
(
Ya=1 − Ya=0

)
 

The difference between 
the average outcome 
when everyone is 
exposed, and the 
average outcome when 
nobody is.

Average treatment 
effect in the treated 
(ATT)

 
E
(
Ya=1 − Ya=0|A = 1

)
 

The ATE in the 
subpopulation of 
individuals who were 
actually exposed.

Average treatment 
effect in the 
untreated (ATU/ATUT)

 
E
(
Ya=1 − Ya=0|A = 0

)
 

The ATE in the 
subpopulation of 
individuals who were 
actually unexposed.

Intention- to- treat 
effect (ITT)  

E
(
Yz=1 − Yz=0

)
 

Average effect of being 
assigned to (but not 
necessarily receiving) 
the exposure.

Complier average 
causal effect (CACE) 
or local average 
treatment effect 
(LATE)

 
E

(
Ya=1 − Ya=0|

Az=0 = 0,

Az=1 = 1

)

 

The ATE among the 
‘compliers’, that is, 
the subpopulation 
whose exposure status 
was affected by the 
assignment mechanism.

A denotes actual exposure status (a=1 for exposed, a=0 for unexposed). Z denotes 
assignment to the exposure, which may or may not have been adhered to (z=1 for 
assignment to the exposure, z=0 for assignment away from the exposure).
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Specific types of collider bias such as ‘Berkson’s bias’, where 
samples restricted to hospitalised patients can create spurious 
negative associations between risk factors that are unrelated 
in the general population, have been recognised for decades.33 
However, appreciation of the effects of collider bias in general is 
becoming increasingly important for causal inference.34

Measurement bias
Measurement bias (or measurement error) refers to biases that 
arise because measurements of a variable differ from the (unob-
served) true value. Differential measurement error arises when 
the measurement error varies in size depending on another vari-
able and can be represented in a DAG by showing the true (unob-
served) value and the measured value as distinct variables.35

METHODS FOR ESTIMATING CAUSAL EFFECTS
Conventional approaches to confounder adjustment
Causal effect estimation refers to quantifying the size of an effect 
based on available data. The most common causal effect estima-
tion methods in epidemiology typically focus on reducing the 
impact of confounding by conditioning on some set of common 
causes of the exposure and outcome. In its simplest form, this 
can be done by restricting the study sample to one level of the 
confounding variable (eg, only women), stratifying (analysing 
each gender separately) or matching (selecting the sample so 

that the exposed and unexposed groups have the same gender 
balance). Other methods for confounder adjustment include 
multivariable regression (including confounders as covari-
ates) and inverse probability of treatment (or propensity score) 
weighting.

Intermediate confounding and G-methods
Intermediate confounding arises when a confounder is affected by 
prior exposure status.30 Conventional methods for confounder 
adjustment, which hold confounders at a fixed level, are inade-
quate for handling intermediate confounding for two reasons. 
First, conditioning on an intermediate confounder blocks part of 
the effect of prior exposure. Second, conditioning on an inter-
mediate confounder can introduce collider bias, opening addi-
tional back- door paths between exposure and outcome.

G- methods are a family of methods that address intermediate 
confounding by taking the observed distribution of interme-
diate confounders (in the population as well as over time) into 
account, instead of holding them constant30 36; in other words, 
they estimate marginal effects rather than conditional effects. 
The following three are G- methods.

G- computation (or the parametric G- formula) uses a statistical 
model (eg, a regression model) to predict the potential outcomes 
(with and without exposure) for each individual observa-
tion.37 38 This makes it possible to calculate treatment effects in 

Figure 2 Illustration of effect measure modification by age of the risk of an unspecified outcome, when measured using an additive scale (left), a 
multiplicative scale (middle) and both additive and multiplicative scales (right). RD: risk difference. RR: risk ratio.

Table 3 Different types of direct and indirect effects defined using potential outcome notation

Effect Potential outcome notation Description

Controlled direct effect

 
E
(
Ya=1 − Ya=0|M = m

)
 

Effect of changing the exposure, with the mediator fixed at a specific level (m).

Natural direct effect22

Pure direct effect37

 
E
(
Ya=1,M

a=0
− Ya=0,M

a=0
)

 

Effect of changing the exposure, with the mediator fixed at whatever (counterfactual) value it would 
have if the exposure were absent.*

Natural indirect effect22

Total indirect effect37

 
E
(
Ya=1,M

a=1
− Ya=1,M

a=0
)

 

Effect of changing the mediator between the values it would have with and without the exposure, 
with the exposure status fixed at exposed.*

Pure indirect effect37

 
E
(
Ya=0,M

a=1
− Ya=0,M

a=0
)

 

Effect of changing the mediator between the values it would have with and without the exposure, 
with the exposure status fixed at unexposed.*

Total direct effect37

 
E
(
Ya=1,M

a=1
− Ya=0,M

a=1
)

 

Effect of changing the exposure, with the mediator fixed at whatever (counterfactual) value it would 
have if the exposure were present.*24

*Requires ‘cross- world’ independence assumption. See Ref. 24.
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a straightforward way, but relies on the statistical model being 
correctly specified. Marginal structural models aim to make 
the exposed and unexposed groups exchangeable in terms of 
confounders by weighting each observation (commonly using 
inverse probability of treatment weighting) so that the distribu-
tion of confounders is similar in both groups. An ATE can then 
be calculated by a simple comparison or unadjusted regression 
model.39 40 G- estimation (using structural nested mean models) 
predicts the counterfactual outcome at each time point given no 
exposure from that point onwards, conditional on prior values 
of the exposure and confounders.

Addressing unobserved confounding
The above methods rely on an assumption of no unmeasured 
confounding (ie, conditional exchangeability), which is often not 
plausible in observational study designs. The following methods 
attempt to address unmeasured confounding, subject to certain 
unprovable assumptions, by exploiting some assignment mech-
anism (akin to randomisation in an RCT) that determines expo-
sure status but is thought to be unrelated to any unobserved 
confounders.

Instrumental variables (IV)
An IV or instrument is a variable that causes some variation in 
the exposure and is unrelated to the outcome except through 
the exposure (see figure 1, ‘Instrumental variable’).41 42 For 
example, if a treatment is only performed at certain hospitals, a 
patient’s distance from such a hospital may affect the probability 
that they receive this treatment; this distance may then be used 
as an instrument.43 Mendelian randomisation uses IV analysis 
with genetic variants as instruments.44 45 IV analysis estimates 
a local average treatment effect (LATE) among ‘compliers’, that 
is, individuals whose exposure status is affected by the instru-
ment (table 2). This group cannot be precisely identified, and the 
LATE may therefore sometimes be of limited practical or policy 
relevance.46

Regression discontinuity (RD)
RD methods can be used when exposure status is (wholly or 
partly) determined by some continuous variable (termed forcing 
variable) exceeding some arbitrary threshold.47 48 If the relation-
ship between the forcing variable and the outcome is otherwise 
continuous, any discontinuity or jump in the relationship can be 
attributed to the exposure. RD estimates a LATE among the indi-
viduals who fall just above or just below the threshold. As with 
IV analysis, bias can occur if the forcing variable is connected 
to the outcome through a back- door path or any other pathway 
besides the exposure.

Interrupted time series (ITS)
ITS studies compare the trend over time in a population- level 
outcome before and after an exposure is introduced.49 Assuming 
that the trend would have been unchanged if the intervention 
was not introduced, a change in trend at the point of introduc-
tion (in terms of level and/or slope) can be attributed to the 
exposure. ITS can be regarded as a special case of IV or RD, 
with time being the instrument or forcing variable. ITS addresses 
time- invariant confounding but can be biased if other events that 
influence the outcome happen at the same time as the exposure.

Difference in differences (DiD)
DiD studies measure the change in a population- level outcome 
before and after an intervention is introduced, compared with 

a comparison group where the intervention is never intro-
duced.50 This is similar to RD and ITS, but attempts to control 
for changing time trends, by using a comparison group to repre-
sent the counterfactual outcome trend in the exposed. DiD also 
addresses time- invariant confounding but requires assuming 
that there would have been no difference in trend between the 
groups in the absence of the intervention (the ‘parallel trends’ 
assumption).

CONCLUDING COMMENTS
There is no perfect method for estimating a causal effect in 
observational data. All methods rely on identifying assumptions, 
which can sometimes but not always be tested. The practical task 
is to clearly specify the research question in terms of a causal 
effect estimand, to choose methods appropriate for this esti-
mand and to carefully interrogate the influence of biases using 
sensitivity and quantitative bias analysis.

The concepts, methods and formalised principles of causal 
inference described here are increasingly part of the scientific 
mainstream. Since questions of causality and causal relation-
ships are fundamental to scientific inquiry, we see this as a 
welcome shift. However, much of the literature on causal infer-
ence methods is highly technical and requires familiarity with 
concepts from a range of disciplines. Further translational work 
and resources are needed to make these methods more accessible 
to and understood by a generalist public health audience.
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