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Autophagy is required for gamete differentiation in the moss Physcomitrella patens
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ABSTRACT
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient
depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses
(through the induction or repression of programmed cell death, PCD) as well as to promotion of
developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less
is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the
autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its
subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging
land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated
autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg,
pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found
that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of
the flagellated motile sperm and hence for sperm fertility. The similarities between the need of
macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an
ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete
differentiation.
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Introduction

Autophagy is an important process driving the self-consump-
tion of cytoplasmic content in lytic compartments. It counter-
acts nutrient starvation by recycling cellular components and
enables adaptation to various biotic and abiotic stresses. Macro-
autophagy, the best-studied form of autophagy, hereafter
referred to as autophagy, is driven by a set of core autophagy-
related genes (ATG) conserved in all eukaryotes.1–3 ATG
proteins orchestrate the biogenesis of autophagosomes, spheri-
cal double-membrane structures engulfing portions of cyto-
plasmic material, which are delivered to lytic compartments for
degradation.4

In the model plantArabidopsis thaliana, autophagy is activated
by environmental stresses or during certain stages of development.
Linesmutated inATG genes are hypersensitive to abiotic and biotic
stresses and show accelerated senescence even under normal
growth conditions.5–11 Although the majority of Arabidopsis atg
mutants appear to develop normally, some defects related to cell
expansion, life span and PCD have been identified. For instance, it
has been suggested that ATG5-mediated autophagy contributes to
tracheary element formation, a process that is PCD-dependent.12

Autophagy is also required for PCD in embryo-suspensor cells in
the Norway spruce.13 Furthermore, mutations in the Arabidopsis
ATG6 gene result in retarded growth, pollen germination failure
and male sterility.14–16 However, as mutations in any other Arabi-
dopsis ATG genes do not affect male fertility, it is unclear if ATG6
acts in an autophagy-dependent manner during pollen germina-
tion or in processes such as vesicle trafficking or vacuolar sorting.
Finally, autophagic degradation of metabolic components in the
anther tapetum layer, which supplies pollen with nutrients, is
dependent on the ATG7 gene in rice (Oryza sativa/Os).17 Conse-
quently,mutation inOsATG7 results inpollengermination failure.

Interestingly, autophagy is required during reproductive cell
development and maintenance in some animals. Impaired
autophagic flux in the medaka fish results in reduced cyto-
plasmic clearance during sperm specification, causing reduced
fertility success.18 In mice, Atg7 mediates cytoplasmic reduc-
tion and flagella cytoskeleton organization during spermato-
genesis, and germ-cell specific atg7 knockout (KO) also results
in premature ovarian failure in female mice.19–21

Since cytoplasmic reduction is also important during sperm
maturation in early diverging land plants,22,23 we hypothesized
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that the role of autophagy in germ cell differentiation may have
been conserved across kingdoms. The early land plant model
bryophyte Physcomitrella patens (P. patens) initiates its life
cycle with the germination of a gametophytic haploid spore,
which gives rise to filamentous protonema. Protonemal side
branches occasionally develop into gametophores (leafy
shoots), which produce apical male and female reproductive
organs. The male reproductive organ, the antheridium, is com-
posed of a sterile single cell layer, the jacket, surrounding a
mass of spermatogenous cells that give rise to spermatids that
differentiate into sperm (Fig. 1A). The female archegonium is

composed of a neck with an inner canal that ends up in a muci-
lage-filled cavity where the egg resides. In the presence of water,
the mature archegonium opens at its tip and flagellated sperm
released by the antheridium swim through the canal to fertilize
the egg. The resulting diploid zygote eventually develops into a
sporophyte filled with haploid spores.23 It has been recently
reported that protonema of P. patens atg5 KO lines show pre-
mature senescence and hypersensitivity to nutrient starvation,
suggesting that moss ATG proteins have similar functions as
those in Arabidopsis and yeast.24

We thus investigated the role of autophagy in P. patens germ
cell development by using P. patens ATG8 (PpATG8) transla-
tional reporter lines and by comparing the progression of
sperm, egg, and egg cavity development in wild type (WT) and
lines lacking P. patens ATG5 (PpATG5) or ATG7 (PpATG7).
This revealed that autophagy is highly active in germ cells and
that autophagosome formation is needed for fertility, spermatid
cytoplasmic clearance and egg cavity mucilage formation.

Results

Autophagy is induced during gamete maturation in moss

Autophagy-inducing conditions trigger transcription of ATG8-
family genes and the formation of autophagosomes containing
Atg8-family proteins in eukaryotes.25–27 Based on this charac-
teristic, transgenic lines expressing Atg8-family proteins fused
to fluorescent peptides have been broadly used as a tool to
assess the dynamics of autophagosome formation in different
kingdoms, including plants.28 To generate a moss-specific auto-
phagy marker we selected PpATG8e, out of the 6 P. patens
ATG8 orthologs29 based on its high expression during repro-
ductive development (Fig. S1A). PpATG8epro::GFP-PpATG8e
reporter lines were generated in the ecotype Gransden, showing
a continuous production of reproductive organs probably due
to low fertilization success, and in the highly fertile ecotype
Reute,30 allowing sporophytic development to be analyzed.
Correct integration was verified by PCR (Fig. S1B). Three Reute
lines with signal strengths ranging from weak to strong and one
Gransden line with intermediate signal strength, were chosen
for further analysis.

Epifluorescence microscopy revealed consistent cell- and
stage-specific expression of all 4 reporter lines in reproduc-
tive organs. In this and the following sections, we use a pre-
viously described stage specification (see also Fig. 1A).23 GFP
signals in antheridia were restricted to the spermatogenic
cell mass (Fig. 1B). PpATG8e expression synchronously
comes on at stage 4 (when spermatogenous cells divide in all
directions), peaks at stage 6 (when the shift from cell divi-
sions to cell differentiation occurs), and is gradually reduced
to below detection level at around transition from stage 8 to
9 (when spermatids complete their isolation and reshaping
to give slender and crescent-shaped cells, see Fig. 1A for
details). In archegonia, GFP signals are detected in the cen-
tral cell file from stage 6, just before the division of the egg
cell precursor, and onwards (Fig. 1B). Hence, canal cells and
the egg cell precursor, as well as the progenies of the latter,
the egg and the upper basal cell, all show GFP-PpATG8e sig-
nals throughout their development.

Figure 1. Autophagy is an active process during germ cell differentiation in moss.
(A) Schematic representation of exposed reproductive organs in a gametophore
apex at the moment of fertilization (left) and different stages of antheridium and
archegonium development as described previously.23 (B) Representative epifluor-
escence pictures of WT reproductive organs expressing GFP-PpATG8e from the
PpATG8e promoter in a cell- and stage-specific manner. GFP signals are shown in
green, while red is chlorophyll autofluorescence. The red signal marks primarily
the jacket cells in antheridia and the neck or body cells in archegonia. Due to large
organ size, some archegonia images have been mounted from 2 complementary
pictures.
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Ppatg5 lines show early gametophore senescence
and disturbed autophagic flux

To analyze the importance of autophagy in moss reproductive
development, we produced several lines mutated in the 2 single
copy genes PpATG5 and PpATG7 needed for ATG8 lipidation
and hence autophagosome formation (Fig. S2A and Table S1).
Two Gransden (Ppatg5#1, Ppatg5#2) and 3 Reute (Ppatg5#3,
Ppatg5#4, Ppatg5#5) atg5 KO lines were generated, as well as 3
Reute (Ppatg7#1, Ppatg7#2, and Ppatg7#3) atg7 KO lines. All
Ppatg5 and Ppatg7 lines exhibit premature senescence of proto-
nemata (not shown), as previously shown for independent
Ppatg5 KO lines,24 as well as of gametophores (Fig. 2A and
S2B).

ATG8 overexpression is a hallmark of many Arabidopsis
autophagy-deficient mutants,31,32 possibly reflecting a futile
feedback cycle whereby cells try to deal with the starvation
caused by autophagy deficiency by inducing autophagy
machinery components. Therefore, we compared transcript
levels of the PpATG8 genes in the Ppatg5 mutant and WT. This
confirmed that all 5 PpATG8 genes tested show a significant
upregulation in the Ppatg5 lines (Fig. 2B).

Sperm morphology is impaired in Ppatg5 and Ppatg7 lines

Previous studies of other moss species demonstrate that the
mature motile sperm are thin, elongated and coiled with a small
cytoplasmic belly and 2 flagella.33 While sperm of P. patensWT
display this characteristic appearance, sperm of all Ppatg5 and
Ppatg7 mutant lines are irregular, bulky and appear to have a
larger cytoplasmic volume (Fig. 2C and D; Figs. S2C and D).
As 10N-nonyl acridine orange (NAO) stain the whole cyto-
plasm of mature P. patens sperm, instead of marking the inner
mitochondrial membrane as it does in other species,34 we took
advantage of this to compare the cytoplasmic volume of mature
WT, Ppatg5 and Ppatg7 sperm. Confocal images clearly show
that the cytoplasm of WT sperm is extremely reduced at matu-
ration, whereas Ppatg5 and Ppatg7 sperm cells in comparison
retain a large cytoplasmic volume (Fig. 2E and Fig. S2E). DAPI
staining of mature antheridia further revealed that instead of
the highly regular crescent shape of WT sperm nuclei, Ppatg5
and Ppatg7 sperm nuclei show some irregularities, specifically
toward the ends (Fig. 3I, J and Fig. S2D).

Ppatg5 sperm is affected in cytoplasmic reduction, nuclear
condensation and flagella formation

To study the detailed effects of impaired autophagy on sperm
maturation, we compared the ultrastructure of developing WT
and Ppatg5 spermatogenous cells using transmission electron
microscopy (TEM). We analyzed antheridia from stage 5 to 9
and found that the key spermatogenic hallmarks described for
other moss species35–38 are also shared by the P. patens WT.
These include: i) reduction in organelle numbers to one plastid
and 2 mitochondria, one anterior and one posterior (Compare
Figs. S3A to S3B, filled and empty arrowheads), ii) nuclear con-
densation, first seen at early stage 8, allowing us to differentiate
between stages 8a and 8b (Fig. S3B and Fig. 3B, red N letter),
iii) de novo formation of a locomotory machinery composed of

Figure 2. Ppatg5 lines show clear signs of blocked autophagy and morphologically
defective sperm. (A) While 60-d-old gametophore producing WT colonies remain
green and healthy, corresponding colonies of Ppatg5 KO lines have turned yellow-
ish. Scale bar: 1 cm. Ppatg5 gametophore shoots show premature senescence in
the basal leaves and stem-sections. Scale bar: 2 mm. (B) QRT-PCR analysis of the
transcript levels of the different PpATG8 genes in the Ppatg5 lines compared with
WT levels. Data are represented as mean of 3 biological replicates. ��, statistically
significant Student t test P< 0.05 for both ecotypes; � statistically significant Stu-
dent t test P< 0.05 only for one ecotype. (C) Overview of representative antheridia
at late stage of maturation, just before sperm release. (D) Mature sperm released
from Ppatg5 antheridia appear malformed. (E) Mature sperm cells stained with
DAPI and NAO. TL: Transmitted light. (C and D) are differential interference con-
trast micrographs, scale bar: 20 mm, (E) is confocal image, scale bar: 2 mm.
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a band of parallel microtubule filaments (spline), the anterior
part of which overlays a multilayered structure in which the 2
flagella are anchored via their basal bodies (Fig. 3A to C, black
arrows, black and white arrowheads). As the spline elongates
pressed to the plasma membrane (PM), it adopts a coiled shape

dictated by the spherical spermatid (Fig. 3M, see WT).39 Other
hallmarks include a drastic and continuous reduction of cyto-
plasm volume, which eventually fits the PM tightly around the
spline and its aligned organelles, thereby sculpting the mature
sperm (Fig. 3A to C).

Figure 3. Reduction of cytoplasm, organelle morphology, nuclei condensation and flagella structure are affected in Ppatg5 sperm. (A to H) TEM micrographs of represen-
tative WT and Ppatg5 spermatids at successive developmental stages and at similar plane sections. (G) Details of nuclei, flagella and anterior mitochondrion in WT and
(H) Higher magnification of the boxed area in (F). (I and J) Maximum projection images from confocal microscopy of DAPI-stained sperm nuclei of WT and Ppatg5 respec-
tively. Scale bar: 5 mm. (K) Quantification of the number of mitochondria and chloroplasts sections per mm2 of cytoplasm, error bar represents the SD for n D 10, statisti-
cally significant Student t test, � P< 0.001. Quantification of the area of independent mitochondria or chloroplast sections (mm2), error bar represents the SD for n D 21,
statistically significant Student t test, � P< 0,001. Quantification of total mm2 of mitochondria C chloroplasts per mm2 of cytoplasm, error bar represents the SD for n D
10, Student t test showed no significant differences. All quantifications were made in spermatids of stage 8a antheridia. (L) Quantification of the cytoplasmic area per
spermatid section at stages 8a and 9 of WT and Ppatg5. The area difference is most striking at stage 9. Error bar represents the SD for n D 10. Statistically significant Stu-
dent t test, � P< 0.001. Measurements in (K and L) were performed with ImageJ. (M) Schematic representation of a mature sperm in WT and Ppatg5. The red squares
show the plane of sections in micrographs (C), (F and G). V, vacuole; N, nucleus; cw, cell wall; St, starch granule; filled red arrowhead, mitochondrion; empty red arrow-
head, plastid; white arrowheads, cross-section of flagella; red arrow, empty vesicle; black arrowhead, spline.
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Although we could not detect any major disturbance in
spermatids of stage 5 Ppatg5 antheridia (Figs. S3A and S3C),
the deviations are striking from stage 7, when sperm differ-
entiation has initiated, to stage 9, when mature sperm are
formed. At WT stage 7 the plastid number is already reduced
to one, and the number of mitochondria is reduced, but has
not yet reached the final number of 2 (Fig. 3A, filled and
empty red arrowheads). TEM of Ppatg5 stage 7 spermatids
show multiple plastid and mitochondria sections per cell,
and the number of these sections per cytoplasmic area is
higher compared with WT even at maturity (Fig. 3D to F,
filled and empty red arrowheads, and 3K), pointing toward a
defect in organelle dynamics. The area of these individual
organelle sections is smaller in the mutant, but not the total
organelle area per cell (Fig. 3K). This suggests that the
organelle number and size could be affected in the KO back-
ground. Another likely alternative is that the number is not
affected and that several organelle sections together represent
one pleiomorphic organelle, a phenomenon described before
in autophagy mutants.40 In addition, even if nuclear conden-
sation in both WT and Ppatg5 spermatids initiates at stage
8a (Figs. S3B and S3D) and continues progressively (Fig. 3A
to F, red letter N), the final nuclear morphology of Ppatg5
sperm is more irregular compared with the WT (Fig. 3G and
H, letter N). The flagella are also affected and show disturbed
microtubule arrangement and impaired fitting of the PM
(Fig. 3G and H, white arrowheads). Finally, the reduction in
cytoplasm is not as efficient in Ppatg5 (Fig. 3L), which can
be the cause of the less slender sperm and the impaired fit-
ting of the PM around the flagella, potentially affecting fla-
gella function (Fig. 3G and H, white arrowheads). All these
abnormalities contribute to the formation of an aberrant-
shaped sperm schematically represented in Fig. 3M.

Ppatg5 shows altered electron density of the extracellular
mucilage produced by the egg and canal cells

We next used TEM to compare WT and Ppatg5 archegonia and
detected clear differences in the extracellular mucilage sur-
rounding the egg and canal cells. Stage 8 WT egg and canal cells
contain a large number of small vesicles (»90 nm) with highly
electron-dense material often localized close to the PM, or fus-
ing to it (Fig. 4A and B, empty arrowheads). Furthermore, the
mucilage, observed as an electron-dense fibrillar network, fills
the egg cavity and the canal (Fig. 4A and B, red C letter), sug-
gesting that both egg and canal cells are responsible for muci-
lage production. In contrast, the mucilage in Ppatg5 is
significantly less electron-dense (Fig. 4A, red C letter and 4D)
compared with WT, and the Ppatg5 egg and canal cell
PM-associated vesicles are much fewer and often appear less
electron dense (Fig. 4A, empty and filled arrowheads, and 4C).
This suggests that PpATG5 is important for extracellular muci-
lage formation. In addition, nonfused double-membrane struc-
tures were identified in the Ppatg5 egg cells, but not in WT
(Fig. 4A, filled arrowheads). As a control for the electron-den-
sity measurements we compared the electron density of the
WT and Ppatg5 egg cell cytoplasm, which appeared very similar
(Fig. S4).

Abnormal Ppatg5 sperm is infertile whereas Ppatg5 eggs
are able to develop into a functional sporophyte upon
fertilization

To assess whether ATG5 affects fertility we self- and cross-fer-
tilized lines in the highly fertile Reute background. While self-
fertilization was successful in 99% of the WT gametophores,
not a single sporophyte developed in the 100 gametophores

Figure 4. Density of the canal and egg cell produced matrix is altered in Ppatg5. (A and B) TEM micrographs of the edge of the egg (A) and canal cell (B) of stage 8 arche-
gonia in WT compared with Ppatg5. Empty arrowheads mark vesicles with electron-dense material, filled arrowheads mark nonfused autophagosomes. Red inlets in draw-
ings indicate the areas shown in the TEM micrographs in the egg. E, egg; C, cavity; cc, canal cell; cw, cell wall. (C) Number of electron-dense vesicles per mm2 of cytoplasm
in egg sections of Ppatg5 and WT stage 8 archegonia. (D) Histogram of mucilage electron-density in egg cavity of Ppatg5 and WT stage 8 archegonia. Data presented are
the mean of 2 independent measurements. Measurements were performed with ImageJ.
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analyzed in each of the 3 KO lines (Fig. 5A). However, all 3
Ppatg5 lines were capable of initiating sporophyte formation
at a low frequency after successful cross-fertilization with WT
sperm, exemplified by Ppatg5#3 in Fig. 5A. This result clearly
demonstrates that PpATG5 is crucial for sperm fertility,
whereas its role in female fertility is not essential. The devel-
opment of the heterozygous Ppatg5 and PpATG5 sporophytes
was delayed at least 2 wk compared with WT, and many
arrested before maturation (Fig. 5B). This arrest may be due
to the involvement of PpATG5 in sporophyte development, or
to secondary effects caused by premature gametophore
senescence.

To test whether ATG5 is essential for spore viability, we ger-
minated haploid spores from the heterozygous sporophytes.
Two colony types were produced; green, resembling WT and
yellow, resembling the Ppatg5 early senescent genotype
(Fig. 5C). Upon transfer to geneticin-supplemented medium,
to which only the Ppatg5 genotype is resistant, only yellow col-
onies continued to grow and RT-PCR confirmed their Ppatg5
genotype (Fig. 5D). Thus, PpATG5 is not essential for spore
viability or germination.

The occurrence and nature of autophagy-related
structures depend on PpATG5

We next mapped the occurrence of presumptive autophagy-
related structures during gametogenesis in WT and Ppatg5.
TEM of stage 8 WT spermatids and egg cells revealed vesicles
(diameter of around 0.6 mm in both spermatids and egg cells)
delimited by a single membrane and with degrading material
inside (Fig. 6A and C, asterisks). These vesicles are found in
close proximity to each other and it cannot be ruled out that
they are part of the same superstructures. In contrast to WT
the vesicles detected in Ppatg5 egg and spermatids appear
mostly empty (Fig. 6B and D, asterisks). In the egg cell they
appear to engulf each other or small parts of the cytoplasm
(Fig. 6D), whereas in spermatids vesicles gather in a collar-like
structure around a portion of cytoplasm usually filled with
organelles (Fig. 6B, filled and empty arrowheads). These sper-
matid vesicles progressively grow and fuse to sequester a large
cytoplasmic portion (Figs. S5A and S5B).

We next used confocal imaging to analyze the subcellular
localization of GFP-PpATG8e in PpATG8epro::GFP-PpATG8e
lines in WT and Ppatg5 backgrounds. In WT, GFP-labeled dots
(around 0.6 mm) and in some cases ring-like structures, were
seen in both spermatids and egg (Fig. 6E, K, F, L, I and O). In
stage 8 spermatids, when most of the cytoplasmic reduction
occurs, GFP-labeled structures were more abundant and, apart
from dots, irregular and larger structures (up to 2 mm long;
Fig. 6F and L) could be observed. We hypothesize that these
irregular structures are the vesicles observed by TEM in late
spermatids and that they are actually clusters or branches of
the same superstructure (Fig. 6A).

Compared to WT, GFP-PpATG8e-labeled structures in
Ppatg5 are fewer (often only 1 or 2 per cell) but significantly
larger and they grow as development progresses (Fig. 6G, M,
H, N, J, P; Figs. S5C and S5D). These structures appear globu-
lar and in no case could the irregular structures seen in the
WT spermatids be observed. Compared to WT, fewer and

Figure 5. Sperm of Ppatg5 lines are infertile whereas the Ppatg5 egg upon fertili-
zation, can develop into a functional sporophyte that produces viable spores. (A)
differential interference contrast micrographs of representative gametophore api-
ces 40 d after induction of reproductive development. Self-fertilization of Ppatg5
lines always fails. The red mark highlights the difference in size between a nonfer-
tilized archegonium and a young sporophyte from a successful fertilization. Sporo-
phyte maturation after successful female Ppatg5 x male WT crosses progresses
much slower than after self-fertilization of WT. Scale bar: 200 mm (B) Sporophyte
development comparison when WT is fully mature and has already burst. Scale
bar: 1 mm. (C) Germinated spores in the presence or absence of selection marker
(geneticin), which selects for genotypes carrying the Ppatg5 KO construct. (D) RT-
PCR confirmation of colony genotype using primers p5 and p6. For principal posi-
tions of annealing sites and sequence of primers, see Figure S2A and Table S1.
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larger RFP-ATG8 structures were also detected in several
Dictyostelium atg KO mutants and these were colocalized
with ubiquitin, suggesting that they represent protein aggre-
gates.41,42 In the Arabidopsis atg4a atg4b double-mutant,
globular GFP-ATG8 accumulations are soluble and were also
suggested to be protein aggregates.27 The most plausible inter-
pretation is thus, that the GFP-PpATG8e fusion protein in
Ppatg5 forms aggregates increasing in size over time. Thus,
the reporter data support the autophagy deficiency of the
Ppatg5 mutant.

Discussion

Isoforms of the highly conserved Atg8 family of proteins have
been characterized, and their cellular dynamics studied through
the generation of translational reporter lines in different plant
species.13,27,29,43,44 Here we showed that the P. patens ATG8e
and ATG8d isoforms are highly expressed in moss reproductive
organs, and that they accumulate in developing germ cells, sug-
gesting that autophagy is induced during sperm and egg
development.

Indeed, reduced autophagy through KO of ATG5 or ATG7
severely affects the extreme shape modifications normally occur-
ring in the P. patens male germ line during their differentiation,
leading to male infertility. The incomplete reduction of cyto-
plasmic content in the atg5 mutant impairs the acquisition of
the slender shape and proper flagella development resulting in

restrained sperm movement. Here we provide evidence for a
direct link between autophagy and cell reshaping during plant
cell differentiation and our results provide a proof of concept for
the requirement of autophagy in plant cell differentiation inde-
pendent of PCD, just as described before for animal cells.45,46

Although autophagy has previously been reported to be
upregulated in root cells entering the differentiation phase, the
effects of blocked autophagy was limited to changes in vacuolar
volume.47,48

The maturing egg germ cell does not undergo dramatic
shape remodelling, although it is a site of active autophagy. Pre-
vious reports from other moss species show that the formation
of the extracellular mucilage correlates with 2 observations: i)
the disappearance of egg plastid starch, which may be con-
verted into mucilage during egg maturation and ii) the presence
of vesicles discharging their content to the cavity.49,50 The find-
ing that mucilage accumulation is reduced in atg5 mutant egg
cells suggests that PpATG5-mediated processes could be
involved in mucilage formation. As autophagy is known to con-
tribute to leaf starch degradation51 it is not unlikely that egg
plastid starch degradation is an ATG5-dependent process that
provides the building blocks important for the mucilage
production in the egg and canal cells. Hypothetically, PpATG5-
mediated processes could also be involved in mucilage secre-
tion. In animals and yeast it has been suggested that a subset of
autophagosomes escape degradation and instead fuse with mul-
tivesicular bodies to form amphisomes which subsequently fuse

Figure 6. Autophagy-related structures and Atg8 family-associated structures can be observed in the Ppatg5 lines. (A to D) TEM micrographs of WT and Ppatg5 stage 8
spermatids and egg cells revealing details of autophagic related structures. N, nucleus; filled red arrowhead, mitochondrion; empty red arrowhead, plastid; asterisks, auto-
phagy-related structures; black arrows, microautophagy events. (E to J) Single confocal plane images of WT and Ppatg5 spermatids (E to H) or single egg cells at stage 8
(I and J) expressing GFP-PpATG8e. (E and G) are spermatogenous cells at stage 5, (F and H) are spermatids at stage 8. Nuclei are stained with DAPI. Scale bar: 5 mm.
(K to P) 3D reconstructions of confocal images from z-stacks including the images shown in (E to J). Reconstructions were performed with the Zen black software from
Carl-Zeiss. Scale bar: 5 mm
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with the PM to secrete their content.52,53 It has recently been
shown that mice lacking Atg5 in the intestinal epithelium suffer
from diminished mucus secretion.54 In addition, endothelial
secretion in mice is related to autophagosomes and dependent
on functional Atg5 and Atg7.55 Thus, our data could be a start-
ing point to evolutionary studies of a putatively conserved role
of ATG proteins in secretion.

Based on our results and recent publications on the specific
importance of autophagy in cytoplasmic reduction and mor-
phogenesis in animal sperm and in the differentiation of female
reproductive organs,18–21 we affirm that autophagy is a com-
mon player in plant and animal germ cell development. The
similarity between observed sperm defects in a germ cell-spe-
cific atg7 KO mouse21 and in our moss atg5 and atg7 KO
mutants is striking. First, both mouse and moss mutant sperm
suffer from impaired autophagy and cytoplasmic clearance. In
addition, some mutant sperm flagella of both species display a
loss of proper microtubule structure, which was suggested to
result from reduced autophagosomal-mediated degradation of
a repressor of flagella formation in mice.21 In both moss and
mouse mutant-sperm, nuclear packaging is also defective,
which also may be attributed to reduced clearance of factors
that repress this process. All these defects result in the loss of
sperm motility and fertility and suggest that autophagy could
have an ancestral function not only as a protector against nutri-
ent stress, but also in gamete differentiation. This is intriguing,
as it has been suggested that sexes and differently sized gametes
(anisogamy) have evolved independently in the 2 kingdoms.56

The most prevalent autophagy-related structure detected in
WT spermatids and egg cells resemble small vesicles delimited
by a single-membrane with degrading material inside rather
than canonical autophagosomes. These vesicles may represent
one of 2 types of lytic way stations described previously: i)
“autophagic vacuoles,” formed through the progressive matura-
tion of autophagosomes into lytic compartments57 or ii) “auto-
lysosome-like vesicles,” which are formed by the fusion of
autophagosomes with small pre-existing lytic vesicles.46,58–62

We hypothesize that the empty vesicles identified in the atg5
germ cells are pre-existing lytic vesicles that, without the pres-
ence of autophagosomes, largely remain without cytoplasmic
material. This suggests that the vesicles identified in WT germ
cells should be regarded as autolysosome-like vesicles.

Despite the fact that we show that autophagy is needed for
proper cytoplasmic reduction during spermatogenesis, it
should also be emphasized that autophagy-deficient Ppatg5
spermatids undergo a limited reduction of cytoplasmic mate-
rial. This suggests that there are additional mechanisms to
reduce the cytoplasm that are independent of PpATG5 and the
canonical macroautophagy pathway. While future work may
reveal the details of such mechanisms, we suggest that 2 ultra-
structural observations made in the Ppatg5 mutant could serve
as a starting point for such studies. First, microautophagy
mediated by lytic vesicles could be a contributing factor since it
appears active in mutant egg cells and is believed to be indepen-
dent of ATG5 activity in both animals and plants.63,64 Second,
lytic vesicles in mutant spermatids might cluster and fuse to
trap cytoplasmic portions destined for degradation and/or
secretion. This is in analogy with an alternative autophagic
pathway described previously in which small tubules

containing hydrolases form in the cytoplasm in a collar-like
structure that eventually merges to sequester the part of the
cytoplasm that remains in the middle and that, in a final step,
is degraded.65 The fact that these 2 phenomena were observed
only in the Ppatg5 mutant is intriguing. It could indicate that
they are slow processes detectable only in cells with an
increased half-life of the lytic vesicles involved due to reduced
macroautophagic flux. Alternatively, they may represent
backup mechanisms induced only when canonical macroau-
tophagy becomes a limiting factor.

Our data clearly indicate that the moss reproductive organs
constitute a very suitable system for future in-depth studies of
developmentally controlled autophagy in plants. In addition, as
neither autophagosomes nor ATG proteins have previously
been implicated in unconventional secretion in plants, our
work indicates this is an area that should be given more atten-
tion. Our data also add further fuel to the interesting debate on
the evolution of gametes and anisogamy in the animal and
plant kingdoms.

Materials and Methods

Plant material and growth conditions

The P. patens subspecies patens WT strains Gransden and
Reute were used in this study. Gransden 2014 is the back-
ground of lines GFP-PpATG8e-4, Ppatg5–1 and Ppatg5–2,
while Reute 201430 is the background of lines GFP-PpATG8e-1,
GFP-PpATG8e-2 and GFP-PpATG8e-3, Ppatg5–3, Ppatg5–4,
Ppatg5–5 and all the Ppatg7 lines. Protonemal tissue was sub-
cultivated on cellophane-covered plates containing routine
basal medium (BCD)66 supplemented with 5 mM ammonium
tartrate (Sigma Aldrich, A2956) and 0.8% agar (Sigma Aldrich,
A1296) and grown at 25�C under constant white light from
fluorescent tubes (FL40SS W/37; Toshiba) at 30 mmol m¡2 s¡1

in a Sanyo MLR-350 light chamber with side irradiation. For
induction of reproductive organs, small pieces of protonemal
tissue were shaped into 3 mm balls and inoculated on solid
BCD medium in 25-mm-deep petri dishes (Phoenix Biomedi-
cal, 002). After growth under the above conditions for 5 wk,
plates with gametophores already formed were transferred
to gametangia-inducing conditions, 15�C and 8 h of light
(30 mmol m¡2 s¡1) per day.

Gametophores were harvested between 19 and 25 d after
induction of reproductive organs formation. For light micros-
copy, DAPI staining and TEM, leaves of the gametophores
were detached under a dissecting microscope (Leica MZ16,
Leica Biosystems, Heidelberg, Germany) to expose the repro-
ductive organs.

Generation of PpATG8epro::GFP-PpATG8e reporter lines

First, the PpATG8e coding sequence was PCR amplified using
the primers PpATG849_F_AscI and PpATG849_R_NotI
(Table S1) and P. patens cDNA as the template. The resulting
394-base pair (bp) fragment was cloned by sticky end ligation
in frame with the GFP coding sequence in the vector pTM13
after both the insert and vector had been cut with AscI and
NotI (Thermo Fisher Scientific, FD1894 and FD0596). The
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pTM13 vector contains homology stretches for targeted inte-
gration into the neutral Pp108’ locus67 that flank the aforemen-
tioned GFP coding sequence and a hygromycin-resistance
cassette driven by a 35S promoter. After this, the PpATG8e pro-
moter was PCR-amplified using the primers PpATG849-
pro_F_SbfI and PpATG849pro_R_ BamHI (Table S1) and
gDNA as the template. The resulting 1546 bp fragment was
cloned by sticky-end ligation upstream of the GFP coding
sequence in the previous product after both insert and vector
had been cut with SbfI and BamHI (Thermo Fisher Scientific,
FD1194 and FD0055). The resulting plasmid pCSK1 was line-
arized with SfiI (Thermo fisher, FD1824) before transforma-
tion68 into Reute WT, Gransden WT, Ppatg5–1 (Gransden
background) and Ppatg5–3 (Reute background). Transformants
were selected on 50 mg/ml hygromycin (Duchefa, H0192). List
of primers used for confirmation of correct integration in stable
lines can be found in Table S1 and location of the primers in
the construct is shown in Figure S1B.

PpATG5 and PpATG7 gene disruption

PCR amplification of the 5’ and 3’flanking regions (1253 bp and
1260 bp respectively) of the PpATG5 gene (Table S2) using
USER compatible primers pairs p21/p22 and p23/p24, respec-
tively, (Table S1) rendered 2 PCR products, which were com-
bined in a single, 4 fragment USER cloning step into pMBLU
cut with the 2 restriction enzymes PacI and AsiSI (Thermo fisher
Scientific, FD2204 and FD2094) and nicked with Nt.BbvCI.69

PCR amplification of 50 and 30 flanking regions (941 bp and
932 bp, respectively) of the PpATG7 gene was performed using
primers p17/p18 and p19/p20 shown in Table S1. Fragments
were digested with BamHI/XhoI and SpeI/NsiI respectively
(Thermo Fisher Scientific, FD0055, FD0694, FD1254 and
FD0734), and cloned by sequential sticky end ligation into the
pMT164 plasmid.66 In both KO constructs, flanking regions
were cloned upstream and downstream of the nptII gene driven
by a 35S promoter (for geneticin resistance). Flanking regions
ensure specific targeting of the PpATG5 and PpATG7 genes and
their exchange for the nptII gene in the genome by homologous
recombination. Overviews of PpATG5, PpATG7 and the result-
ing knockout constructs are depicted in Figure S2A. Constructs
were linearized with SacI and BamHI/NsiI respectively before
transformation into Reute WT and Gransden WT. Transforma-
tion was made as described previously.68 Stable Ppatg5 KO trans-
formants were obtained in both the Gransden and Reute
background and Ppatg7 KO in the Reute background. Trans-
formants were selected on MM plates supplemented with geneti-
cin (Thermo Fisher Scientific, 11811023) at a concentration of
50 mg/ml. List of primers used for confirmation of correct inte-
gration in stable lines can be found in Table S1 and annealing
sites of the primers in the construct are shown in Figure S2A.

Quantitative real-time PCR

Based on sequence similarity to their Arabidopsis counterparts,
5 ATG8 genes were identified in the P. patens genome and
selected for expression studies. To distinguish between different
isoforms, primers annealing to less conserved regions were
designed, such as parts of 5�UTR or 3�UTR depending on the

gene. Primer3 software (primer3.ut.ee) was used for primer
design (Table S1). Sizes of the PCR products varied between
85 bp and 154 bp. For analysis of PpATG8 expression in repro-
ductive organs, 3 types of samples were harvested in the Grans-
den WT line: 80 tips of reproductive shoots carrying both
archegonia and antheridia, »1000 isolated archegonia and 45
antheridia bundles (»8 antheridia per bundle). Each type of
sample was harvested in a microcentrifuge tube and flash fro-
zen in liquid nitrogen. Tissue was grounded with a pestle in liq-
uid nitrogen. RNA was isolated from the whole resulting
ground tissue using the picoPure RNA kit (Thermo Fisher Sci-
entific, KIT0204) according to the manufacturer’s protocol and
RNA concentration was measured with a nanodrop instrument
(Thermo Fisher Scientific, Gothenburg, Sweden). For the analy-
sis of gene expression in the Ppatg5 lines compared with WT
lines (both the Gransden and Reute background), 3 indepen-
dent protonema colonies were harvested separately in micro-
centrifuge tubes, as independent biological replicates. Tissue
was flash frozen in liquid nitrogen and grounded with a pestle.
RNA was extracted with the RNeasy plant mini kit (Qiagen,
74903) according to the manufacturer’s protocol and RNA con-
centration was measured with a nanodrop (Thermo Fisher Sci-
entific). On column DNAse treatment was performed in all
samples (Qiagen, 79254). 250 ng of RNA was used for cDNA
synthesis using the Superscript III reverse transcript kit
(Thermo Fisher Scientific, 18080051) following manufacturer’s
instructions and 1/80th of each reverse-transcription reaction
was used for quantitative real-time PCR (QRT-PCR) analysis.
Maxima SYBR green fluorescein QRT-PCR master mix
(Thermo Fisher Scientific, K0241) was used for QRT-PCR.
Reactions were run on an iQ5 Real-Time PCR system (Bio-
Rad, Sundbyberg, Sweden) with the following protocol: 95�C,
10 min, 40 cycles of 95�C, 15 sec and 60�, 1 min, 95�C, 1 min.
iCycler iQ Optical System Software Version 3.1 and ΔΔCT was
used to quantify fold expression of Ppatg8 in KO lines relative
to WT. Three genes, previously shown to be stably expressed in
P. patens,70 were tested as reference genes: actin, adenine phos-
phoribosyl transferase (Ade-PRT) and serine threonine protein
phosphatase 2a regulatory subunit (ST-P2a). Analysis applying
NormFinder71 showed Ade-PRT and actin as the pair with the
most stable expression (smallest stability value, SV) in our sam-
ples, so normalization was done against them (actin SV: 0,017,
Ade-PRT SV: 0,016, ST-P2a: 0,023; combined SV Actin-Ade-
PRT: 0,009). For analysis of PpATG8 gene expression in repro-
ductive organs, ΔCt was performed using actin as a reference.

Light microscopy

A Leica DMI4000B microscope (Leica Biosystems, Heidelberg,
Germany) with differential interference contrast (DIC, Nomar-
ski) optics was used for reproductive organ observations. Pho-
tographs were taken with a Leica DFC360FX camera (Leica
Biosystems, Heidelberg, Germany) and the LAS AF (Leica
Microsystems) software.

Sample staining and confocal microscopy

Samples were fixed in 4% paraformaldehyde (Sigma Aldrich,
158127) and 50 mM sodium cacodylate (Sigma Aldrich,
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C0250) under vacuum for 2 £ 15 min on ice followed by over-
night incubation at 4�C. Three washes with phosphate-buffered
saline were performed. For visualization of sperm cytoplasmic
content, samples were mounted in 10 ml phosphate-buffered
saline (1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 18 mM
KH2PO4, pH 7.4) supplemented with 1 mg/ml 40,6-diamidino-
2-phenylindole (DAPI; Sigma Aldrich, D9542) and 100 mM
nonyl-acridine orange (NAO; Themo Fisher Scientific, A1372)
on a glass slide and scanned after 30 min. For stage specifica-
tion of GFP-ATG8 expressing cells, fixed samples were stained
with DAPI overnight and washed 3 times in phosphate buffer,
then they were mounted in a drop of Vectashield mounting
medium for fluorescence detection (Vector Laboratories,
H1000). Samples were scanned making z-stack scanning using
a Zeiss 780 confocal microscope (Carl-Zeiss AB, Sweden), with
excitation laser of 488 nm and 405 nm and emission filters of
499 to 561 nm and 410 to 492 nm, for NAO or GFP and DAPI,
respectively. Maximum projection and 3D reconstruction was
made with ZEN Black software from Carl-Zeiss.

Transmission electron microscopy

For TEM, 8 different WT shoots and 4 shoots per KO line in
the Gransden background (8 in total) were analyzed. Samples
were fixed with 2.5% glutaraldehyde (Merck, 104239) and
50 mM sodium cacodylate buffer (pH 7.4) under vacuum for
2 £ 15 min at 4�C, then left in fixative for at least 24 h. Fixed
samples were washed with buffer for 10 min and then post-
fixed in buffered 1% OsO4 (Sigma Aldrich, 419494) for 60 min.
After washing them in buffer, samples were dehydrated
through an ethanol series (Solveco, 10018; 70%, 95% each step
30 min; 100% for 60 min and 100% for 30 min) and incubated
in propylene oxide (TAAB, P021) for 10 min and in a solution
of Spurr epoxy resin (Sigma Aldrich, EM0300) and propylene
oxide (1:1) in a desiccator for 1 h; the Spurr epoxy resin was
prepared with the following recipe; 4.1 g 3,4-Epoxycyclohexyl-
methyl-3’,4’-epoxycyclohexane carboxylate (ERL4221), 1.2 g
diglycil ether of polypropylene glycol (D.E.R. 736), 5.9 g non-
enyl succinic anhydride (NSA) and 0.1 g dimethylaminoetha-
nol (DMAE). Samples were incubated in pure Spurr epoxy
resin overnight and polymerization was performed at 60�C for
48 h. Ultrathin sections (50 to 70 nm) were obtained and were
stained with uranyl acetate (Sigma Aldrich Aldrich, 73943) and
lead citrate (Acros Organics, 1830) for 20 min each. Sections
were examined with a Technai G2 (FEI, Trondheim, Norway)
transmission electron microscope.

Fertility studies

For self-fertilization experiments, gametophore colonies were
fully covered with water for 2 min on d 20 after transition to
reproductive organ induction conditions. After that time,
excess of water was removed with a pipette. For cross-fertiliza-
tion experiments, half a colony of WT (Reute) was located
together with half a colony of each of the different Reute KO
lines (Ppatg5–3, Ppatg5–4 and Ppatg5–5) in a petri dish (one
combination per petri dish) and covered with water on d 20
after reproductive organ induction. To enhance cross-fertiliza-
tion, the water was not removed from the plate until the next

day. The presence of sporophytes in the gametophores was ana-
lyzed 40 d after induction of reproductive organs.

For spore analysis, sporophytes were harvested at the stage
of full maturation. We considered that this stage was reached
when the structure had brown color and totally round shape.
Mature sporophytes were then excised, incubated for 4 min in
70% ethanol and rinsed 3 times with sterile water at room tem-
perature to surface sterilize. Sporophytes were kept at 4�C for
at least 2 wk and then spores were released by crushing the spo-
rophyte capsule with a pipette tip. The spores were planted on
plates with BCD medium supplemented with 5 mM ammo-
nium tartrate, covered by cellophane and eventually transferred
to 50 mg/ml geneticin supplemented plates once germination
happened.

Statistical analysis

Microsoft Excel was used to calculate means and standard devi-
ations for all data presented. Microsoft Excel was also used to
perform a Student t test of data presented in Fig. 2B, Fig. 3K, L
and S5D. The software R was used to make a Dunn�s test based
on Kruskal-Wallis with a Bonferroni adjustment for data pre-
sented in Fig. S5C.

Abbreviations

Ade-PRT adenine phosphoribosyl transferase
ATG autophagy related
BCD routine basal medium for moss
bp base pair
DAPI 40,6-diamidino-2-phenylindole
Gd Gransden
GFP green fluorescent protein
KO knockout
P. patens Physcomitrella patens, Physcomytrella patens
PCD programmed cell death
PCR polymerase chain reaction
PM plasma membrane
QRT-PCR quantitative real-time PCR
NAO 10N-nonyl-acridine orange
Rt Reute
ST-P2a serine threonine protein phosphatase 2a regulatory

subunit
SV stability value
TEM transmission electron microscopy
WT wild type
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