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Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity
measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined
in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the
possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between
ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other
genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome
pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-
Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the
supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low
ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with
Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment
similarities combined with the advances in big data supervised classification.

1. Introduction

Orthologs are defined as genes in different species that
descend by speciation from the same gene in the last common
ancestor [1]. Their probable functional equivalence has made
them important for genome annotation, phylogenies, and
comparative genomics analyses. Ortholog detection (OD)
algorithms should distinguish orthologous genes from other
types of homologs such as paralogs evolving from a common
ancestor through a duplication event. A great deal of unsu-
pervised graph-based [2–8], tree-based [9–13], and hybrid
approaches [14, 15] have been developed to identify orthologs

resulting in corresponding repositories for precomputed
orthology relationships.

Focusing on the graph-based approach, orthogroups are
generally built from the comparison of genome pairs by
using BLAST searches [16] and then the application of some
“nearest neighbor” heuristics such as Best BLAST Hit (Bet)
[2], Bidirectional Best Hit (BBH) [17], Reciprocal Best Hits
(RBH) [18], Reciprocal Smallest Distance (RSD) [19], or Best
Unambiguous Subset (BUS) [20] to find potential pairwise
orthology relationships. Subsequently, algorithms can return
pairwise relationships, if they perform pairwise ortholog
detection (POD) such as RBH [18] and RSD themselves [19],
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andComprehensive, Automated Project for the Identification
of Orthologs from Complete Genome Data (OMA) Pairwise
[21], or they can apply clustering to predict orthogroups from
the score of the alignment process.

WhenOD is based only on sequence similarity, it has been
limited by evolutionary processes such as recent paralogy
events, horizontal gene transfers, gene fusions and fissions,
domain recombinations, or different genetic events [22, 23].
In fact, the identification of homologs is a difficult task
in the presence of short sequences, those that evolved in
a convergent way and the ones that share less than 30%
of amino acid identities (twilight zone). Algorithm failures
have been particularly shown in benchmark datasets from
Saccharomycetes yeast species that underwent whole genome
duplications (WGD) and, certainly, present rampant paralogy
and differential gene losses [24].

To tackle these shortcomings for OD, some OD solutions
may integrate the conservedneighborhood (synteny) of genes
in the inference process for related species. Currently, there is
a tendency of merging sequence similarity with synteny [20,
25, 26] genome rearrangements [27, 28], protein interactions
[15], domain architectures [29], and evolutionary distances
[19]. However, so far there is no report that combines
such features in a supervised approach to increase POD
effectiveness.

On the other hand, the integration of different gene or
protein information and the massive increase in complete
proteomes highly increase the dimensionality of the OD
problem and the total number of proteins to be classified. In
a thorough paper from the Quest for Orthologs consortium
[30], the authors emphasize the idea that this increase in pro-
teome data brings out the need to work out not only efficient
but effective OD algorithms. As they mention, the increase
in computational demands in sequence analyses is not easily
met by an increase in computational capacities but rather calls
for new approaches or algorithmic implementations [30]. In
this sense, they summarized some methodological shortcuts
implemented by the existing orthology databases to deal with
the scaling problem.

Considering all these previous remarks about OD, we
propose a new supervised approach for pairwise OD (POD)
that combines several gene pairwise features (alignment-
based and synteny measures with others derived from the
pairwise comparison of the physicochemical properties of
amino acids) to address big data problems [30]. Our big data
supervised POD approach allows scaling to related species
and data imbalancemanagement (low ortholog ratio found in
two or more genomes) for an effective OD.Themethodology
consists of three steps:

(i) The calculation of gene pair features to be combined.
(ii) The building of the classification model using

machine learning algorithms to deal with big data
from a pairwise dataset.

(iii) The classification of related gene pairs.

Since traditional supervised classifiers cannot scale large
datasets, the supervised classification for the POD problem
should be addressed as a big data classification problem

according to [31–33] and big data solutions should be applied
for binary classification in imbalanced data such as the ones
presented in [34] based on MapReduce [35].

Finally, we evaluate the application of several big data
supervised techniques that manage imbalanced datasets [34,
36] such as cost-sensitive Random Forest (RF-BDCS), Ran-
dom Oversampling with Random Forest (ROS + RF-BD),
and the Apache Spark Support Vector Machines (SVM-BD)
[36] combined with MapReduce ROS (ROS + SVM-BD).
The effectiveness of the supervised approach is compared
to the well-known unsupervised RBH, RSD, and OMA
algorithms following an evaluation scheme that takes data
imbalance into account. All the algorithms were evaluated on
benchmark datasets derived from the following yeast genome
pairs: S. cerevisiae and K. lactis, S. cerevisiae and C. glabrata
[24], and S. cerevisiae and S. pombe [37].The S. cerevisiae and
C. glabrata pair is particularly complex for OD since both
species had undergone WGD. We found that our supervised
approach outperformed traditional methods, mainly when
we applied ROS combined with SVM-BD.

2. Materials and Methods

2.1. Gene Pair Features. Starting from two genome represen-
tations being 𝐺
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with 𝑛 and 𝑚 annotated gene sequences or proteins, respec-
tively, we define gene pair features in Table 1 representing
continuous normalized values of the following similarity
measures:

(i) The sequence alignment measure 𝑆
1
averages the

local and global protein alignment scores from the
Smith Waterman [38] and the Needleman-Wunsch
[39] algorithms calculated with a specified scoring
matrix and “gap open” (GOP) and “gap extended”
(GEP) parameters.

(ii) Measure 𝑆
2
is calculated from the length (𝐿) of the

sequences by using the normalized difference for
continuous values [40].

(iii) The similarity measure 𝑆
3
is calculated from the

distance between pairs of sequences in regard to
their membership to locally collinear blocks (LCBs).
These blocks represent truly homologous regions that
can be obtained with the Mauve software [41]. The
LCB[𝑘, 1 ⋅ ⋅ ⋅ 𝑛] matrix represents the total number of
codons in the block 𝑘 for each 𝑛 gene belonging
to genome 𝐺

1
; and LCB[𝑘, 𝑛 ⋅ ⋅ ⋅ 𝑛 + 𝑚] counts for

the membership in genome 𝐺
2
. The total number of

LCBs where one or both of the sequences in the gene
pair (𝑥

𝑖
, 𝑦
𝑗
) contain at least one codon is represented

by 𝑄. The normalized difference is selected for the
comparison of the continuous values in the LCB[𝑘, 𝑝]

matrix.
(iv) Based on the spectral representation of sequences

from the global protein pairwise alignment, the 𝑆
4

measure uses the Linear Predictive Coding [40].
First, each amino acid that lies in a matching region
without “gaps” between two aligned sequences is
replaced by its contact energy [42]. The average
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Table 1: Gene pair features.
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of this physicochemical feature in the predefined
window size 𝑊, called the moving average for each
spectrum, is then calculated. Next, the similarity
measure Corr(𝑀𝑋,𝑀𝑌) between the two spectral
representations in a matching region is calculated
by using the Pearson correlation coefficient and the
corresponding significance level. Finally, the signif-
icant similarities of the 𝑅 regions without “gaps”
are aggregated considering the length len

𝑘
of each

𝑘 region. From our previous studies presented in
[43, 44], we have considered three features for the
physicochemical profile with 𝑊 values of 3, 5, and 7.

2.2. Big Data Supervised Classification Managing Data Imbal-
ance. Given a set 𝐴 = {𝑆

𝑟
(𝑥
𝑖
, 𝑦
𝑗
)} of gene pair features

or attributes as discrete or continuous values of 𝑟 gene
pair similarity measure functions, previously specified, we
represent a POD decision system DS = (𝑈, 𝐴 ∪ {𝑑}), where
𝑈 = {(𝑥
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, 𝑦
𝑗
)}, ∀𝑥

𝑖
∈ 𝐺
1
and ∀𝑦

𝑗
∈ 𝐺
2
, is the universe of the

gene pairs and 𝑑 ∉ 𝐴 is the binary decision attribute obtained
from a curated classification. This decision attribute defines

the extreme data imbalance. Given an underlying function
𝑓 : 𝑆 → {0, 1} defined on the set 𝑆 of gene pair instances, the
learning process produces a set of learning functions Γ = {𝑓 :

𝐿 → {0, 1} | 𝐿 ⊂ 𝑆} that approximate 𝑓 from the train set
𝐿. The goal is to find the best approximation function from Γ

having a fitness function or a classification evaluation metric.
In this case, the evaluation metric should take into account
the low ratio of orthologs to the total number of possible
gene pairs in the test set (𝑆-𝐿). The big data supervised
classification divides 𝑆 into train and test instance to build
a learning model 𝑓 and to classify the instances by means
of a big data supervised algorithm managing the imbalance
between classes.

The proposed big data processing framework is shown
in Table 2. We use the open-source project Hadoop [45]
with its highly scalable and fault-tolerantHadoopDistributed
File System (HDFS). We also utilize the scalable Mahout
data mining and machine learning library [46] with machine
learning algorithms adapted according to the MapReduce
scheme as the MapReduce implementation of the RF algo-
rithm [47]. Finally, we use the Apache Spark framework [36]
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Table 2: Big data framework, applications, and algorithms.

Big data framework Application Algorithms

Hadoop 2.0.0 (Cloudera CDH4.7.1) with the head node
configured as name-node and job-tracker, and the rest as
data-nodes and task-trackers

(i) MapReduce ROS implementation
(ii) A cost-sensitive approach for Random
Forest MapReduce algorithm (RF-BD)
(iii) MapReduce RF implementation
(Mahout library)

RF-BDCS
ROS (100%) + RF-BD
ROS (130%) + RF-BD

Apache Spark 1.0.0 with the head node configured as master and
name-node, and the rest as workers and data-nodes

Apache Spark Support Vector Machines
(MLLib)

ROS (100%) + SVM-BD
ROS (130%) + SVM-BD

Supervised approach

Train set

machine learning
methods

Unsupervised approach 

POD algorithms

Performance quality evaluation 

Test set

Train
test set

Model

Ortholog + nonortholog pairs

Calculation of features for ortholog and 
nonortholog pairs

Prediction of ortholog 
pairs

Annotated genes of related genomes

Train set

Prediction of ortholog 
pairs

+
+

Figure 1: Workflow of the evaluation of supervised versus unsupervised POD algorithms.

interacting with HDFS, when the implementation of SVM-
BD in the scalable MLLib machine learning library [48]
is combined with the MapReduce ROS implementation
[34].

2.3. Evaluation Scheme Considering Data Imbalance. For the
evaluation of POD algorithms, we compare the supervised
solutions and the unsupervised ones represented by the
reference RBH, RSD, and OMA algorithms following the
evaluation scheme in Figure 1. The process separates the
pairs into train and test sets and calculates pairwise sim-
ilarity measures for the pairs of both sets. The sequences
of the test sets should be used to run the unsupervised
reference algorithms. The train set should be used for build-
ing the supervised models to be tested only with the test
set.

The performance quality evaluation involves the calcu-
lation of the following evaluation metrics for imbalanced
datasets.

The geometric mean (𝐺-Mean) [49] is defined as

𝐺-Mean = √sensitivity ∗ specificity, (1)

where sensitivity = TP/(TP + FN) and TNRate = specificity =

TN/(FP + TN) are calculated from true positives (TP), false
negatives (FN), false positives (FP), and true negatives (TN).

The Area Under the ROC Curve (AUC) [50] is computed
obtaining the area of the ROC graphic. Concretely, we
approximate this area using the average of true positive rate

and false positive rate values by means of the following
equation:

AUC =
1 + TPrate − FPrate

2
, (2)

where TPrate = TP/(TP + FN) corresponds to the percentage
of positive instances correctly classified and FPrate = FP/(FP+

TN) corresponds to the percentage of negative instances
misclassified.

We use 𝐺-Mean seeking to maximize the accuracy of
the two classes (orthologs and nonorthologs) by achieving a
good balance between sensitivity and specificity that consider
misclassification costs and AUC to show the classifier perfor-
mance over a range of data distributions [51].

2.4. Experiments for Building and Testing the Supervised
POD Algorithms

2.4.1. Datasets. For the evaluation of POD algorithms in
related yeast genomes, in Experiment 1 we evaluated the
algorithms inside a genome by partitioning at random 75%
of the complete set of pairs for training and 25% for testing,
and in Experiment 2 we built the model from a genome pair
and tested it in two different pairs. Specifically, in Experiment
1 we divided the S. cerevisiae-K. lactis set into 16.986.996
pairs for training and 5.662.332 pairs for testing. The four
datasets (Blosum50, Blosum621, Blosum622, and Pam250) of
each genomepair, summarized inTables 3, 4, and 5, were built
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Table 3: S. cerevisiae-K. lactis datasets.

Datasets #Ex. #Atts. Class
(maj; min)

#Class
(maj; min)

%Class
(maj; min) IR

Blosum50 22.649.328 6 (0; 1) (22.646.914; 2414) (99.989; 0.011) 9381.489
Blosum621 22.649.328 6 (0; 1) (22.646.914; 2414) (99.989; 0.011) 9381.489
Blosum622 22.649.328 6 (0; 1) (22.646.914; 2414) (99.989; 0.011) 9381.489
Pam250 22.649.328 6 (0; 1) (22.646.914; 2414) (99.989; 0.011) 9381.489

Table 4: S. cerevisiae-C. glabrata datasets.

Datasets #Ex. #Atts. Class
(maj; min)

#Class
(maj; min)

%Class
(maj; min) IR

Blosum50 29.887.416 6 (0; 1) (29.884.575, 2841) (99.99; 0.01) 10519.034
Blosum621 29.887.416 6 (0; 1) (29.884.575, 2841) (99.99; 0.01) 10519.034
Blosum622 29.887.416 6 (0; 1) (29.884.575, 2841) (99.99; 0.01) 10519.034
Pam250 29.887.416 6 (0; 1) (29.884.575, 2841) (99.99; 0.01) 10519.034

from combinations of alignment parameter settings shown
in Table 6. On the other hand, in Experiment 2, we built
the classification model from 22.649.328 pairs of S. cerevisiae
and K. lactis genomes and tested it in 29.887.416 pairs of S.
cerevisiae and C. glabrata and 8.095.907 pairs of S. cerevisiae
and S. pombe genomes.

S. cerevisiae-S. pombe dataset contains ortholog pairs
representing 95.18% of the union of the Inparanoid7.0 and
GeneDB classifications described in [37]. On the other hand,
S. cerevisiae-K. lactis and S. cerevisiae-C. glabrata datasets
contain all ortholog pairs in the gold groups reported in [24].
When we built the set of instances with all possible pairs,
we just excluded 89 genes from S. cerevisiae, 37 from C.
glabrata,and 1403 from K. lactis since we did not find their
genome physical location data in the YGOB database [52],
required for the LCB feature calculation.

Tables 3, 4, and 5 summarize the characteristics of the
four datasets including the total number of gene pairs (#Ex.),
the number of attributes (#Atts.), the labels for majority and
minority classes (Class (maj; min)), the number of pairs in
both classes (#Class (maj; min)), the percentage of pairs in
majority and minority classes (%Class (maj; min)), and the
imbalance ratio (IR).

The calculation of gene pair features or attributes (average
of local and global alignment similarity measures, length of
sequences, gene membership to conserved regions (synteny),
and physicochemical profiles within 3, 5, and 7 window sizes)
was specified in the previous section.

2.4.2. Algorithms and Parameter Values. Thesupervised algo-
rithms compared in the experiments and the parameter val-
ues are specified in Table 7. Additionally, Table 8 summarizes
the parameter values and the implementation details for the
unsupervised algorithms.

3. Results and Discussion

In this section, we first analyze the supervised approaches
based on big data technologies, and later we compare the best
supervised solution with the classical unsupervised methods.

3.1. Supervised Classifiers: Analysis of Big Data Based
Approaches. The 𝐺-Mean values of the supervised classifiers
with the best performance in Experiments 1 and 2 are shown
in Table 9 for the Blosum50, Blosum621, Blosum622, and
Pam250 datasets. The best values are in boldface. The 𝐺-
Mean values of the supervised algorithms change only slightly
with the selection of different alignment parameters. The
stability of these classification results may be caused either
by the aggregation of global and local alignment scores in a
single similarity measure or by the appropriate combination
of scoring matrices and gap penalties in relation to the
sequence diversity between the two yeast genomes. The
selection of the four scoring matrices was aimed at finding
homologous protein sequences in a wide range of amino acid
identities between both genomes. For example, Blosum50
and Pam250 scoring matrices are frequently used to detect
proteins sharing less than 50%of amino acid identities [53]. In
addition, the selected gap penalties values are not low enough
to affect the sensitivity of the alignment [53].

The average results of AUC and 𝐺-Mean obtained in
Experiments 1 and 2 for the supervised algorithms with
different parameter values are shown in Table 10.The average
TPRate and TNRate are also depicted in Figure 2. SVM-BD has
been left out from the table due to its very poor performance
in 𝐺-Mean caused by its imbalance between TPRate and
TNRate as shown in Figure 2. Both Table 10 and Figure 2 prove
that big data supervised classifiersmanaging imbalance outdo
their corresponding big data supervised versions.

The ROS preprocessing method for big data makes SVM-
BD useful for POD and improves the performance of RF-
BD even more with a higher value for the resampling size
parameter of 130% [54]. In contrast, both experiments show
that the variation in this parameter value from 100% to 130%
does not significantly influence the performance of the SVM-
BD classifier with different regulation values.

Specifically, RF-BDCS shows the best performance in
S. cerevisiae-C. glabrata and S. cerevisiae-K. lactis when
the classification quality is measured by 𝐺-Mean and AUC
metrics, because it enhances the learning of the minority
class. The criterion used to select the best tree split is
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Table 5: S. cerevisiae-S. pombe datasets.

Datasets #Ex. #Atts. Class
(maj; min)

#Class
(maj; min)

%Class
(maj; min) IR

Blosum50 8.095.907 6 (0; 1) (8.090.950; 4.957) (99.939; 0.061) 1632.227
Blosum621 8.095.907 6 (0; 1) (8.090.950; 4.957) (99.939; 0.061) 1632.227
Blosum622 8.095.907 6 (0; 1) (8.090.950; 4.957) (99.939; 0.061) 1632.227
Pam250 8.095.907 6 (0; 1) (8.090.950; 4.957) (99.939; 0.061) 1632.227

Table 6: Combination of alignment parameter settings on the
datasets.

Dataset Substitution matrix Gap open Gap extended
Blosum50 Blosum50 15 8
Blosum621 Blosum62 8 7
Blosum622 Blosum62 12 6
Pam250 Pam250 10 8

Table 7: Supervised algorithms and parameter values in the exper-
iments.

Algorithm Parameter values

RF-BD1
Number of trees: 100
Random selected attributes per
node: 32
Number of maps: 20

RF-BDCS

Number of trees: 100
Random selected attributes per
node: 3
Number of maps: 20
𝐶(+|−) = IR
𝐶 (−|+) = 1

ROS (100%) + RF-BD RS3 = 100%
ROS (130%) + RF-BD RS = 130%

SVM-BD

Regulation parameter:
1.0, 0.5, and 0.0
Number of iterations:
100 (by default)
StepSize: 1.0 (by default)
miniBatchFraction: 1.0 (percent of
the dataset evaluated in each
iteration 100%)

ROS (100%) + SVM-BD RS = 100%
ROS (130%) + SVM-BD RS = 130%
1BD: big data.
2 int(log

2
𝑁 + 1), where𝑁 is the number of attributes of the dataset.

3RS: resampling size.

based on the weighting of the instances according to their
misclassification costs, and such costs are also considered
to calculate the class associated with a leaf [34]. This cost
treatment does not explicitly change the sample distribution
and avoids the possible overtraining that it is present in the
ROS solutions due to replicated cases.The election of the cost
values (𝐶(+ | −)= IR and 𝐶(− | +) = 1) may also define the
success of the algorithm.

In the case of SVM-BD, the fixed regularization param-
eter defines the trade-off between the goal of minimizing
the training error (i.e., the loss) and minimizing the model
complexity to avoid overfitting. The higher its value, the
simpler themodel. Nonetheless, setting an intermediate value
or one close to zero may produce a better performance in
classification [48]. This is the case of the ROS (RS: 100%) +
SVM-BD (regParam: 0.5) classifier that exhibits the best AUC
and 𝐺-Mean values in S. cerevisiae-S. pombe and the best
balance between TPRate and TNRate in the three datasets
(Figure 2).

In order to balance time with classification quality,
time consumption is another aspect to have in mind when
comparing big data solutions. Table 11 contains run time in
seconds for all big data solutions in each dataset and the faster
algorithms are highlighted in boldface. These results allow
us to prove that the time required is directly related to the
operations needed for each method, as well as to the size of
the datasets used to build the model. The fastest algorithm
considering the average run time is SVM-BD followed by
SVM-BD combined with ROS. Thus, the fastest algorithms
coincide with the ones with better performance. In general,
the ROS (RS: 100%) + SVM-BD (regParam: 0.5) classifier can
be considered the best supervised solution considering both
performance and time.

3.2. Comparison of Supervised versus Unsupervised Classifiers.
The average results of AUC and 𝐺-Mean obtained for the
best supervised algorithms and the unsupervised algorithms
with different parameter values are shown in Table 12 for
Experiments 1 and 2. The average TPRate and TNRate are
also depicted in Figure 3. The supervised classifiers out-
perform the unsupervised ones. Among the unsupervised
algorithms, RSD reaches the highest G-Measure value by
setting 𝐸-value = 1𝑒 − 05 and 𝛼 = 0.8 (recommended values
in [55]) in S. cerevisiae-C. glabrata where similar results can
also be seen for AUC and TPRate values. On the contrary,
OMA was the best among the unsupervised algorithms in S.
cerevisiae-S. pombe datasets (Table 12).

In general, the performance of all classifiers declined in S.
cerevisiae-S. pombe datasets due to the fact that S. pombe is a
distant relative of S. cerevisiae [56]. The supervised classifiers
performance is affected for the same reason and also by the
difference in data distribution between the train and test sets
[57]. Conversely, ROS (RS: 100%) + SVM-BD (regParam: 0.5)
remained stable in S. cerevisiae-C. glabrata and S. cerevisiae-
S. pombe datasets when considering the balance between
TPRate and TNRate. Superior results in S. cerevisiae-C. glabrata
are outstanding, since both genomes underwent WGD and



BioMed Research International 7

Table 8: Unsupervised algorithms and parameter values in the experiments.

Algorithm Parameter values Implementation

RBH Soft filter and Smith Waterman alignment
𝐸-value = 1e − 06

BLASTp program1
Matlab script

RSD 𝐸-value thresholds: 1e − 05, 1e − 10, and 1e − 20
Divergence thresholds 𝛼: 0.8, 0.5, and 0.2.

BLASTp program1
Python script2

OMA Default parameter values OMA stand-alone3
1Available in http://www.ncbi.nlm.nih.gov/BLAST/.
2Available in https://pypi.python.org/pypi/reciprocal smallest distance/1.1.4/.
3Available in http://omabrowser.org/standalone/OMA.0.99z.3.tgz.

Table 9: Geometric mean results of the best supervised classifiers in each dataset.

Dataset
ROS (RS:
100%) +
RF-BD

(Scer-Klac)

ROS (RS:
130%) +
RF-BD

(Scer-Klac)

RF-BDCS
(Scer-Klac)

ROS (RS:
100%) +
RF-BD

(Scer-Cgla)

ROS (RS:
130%) +
RF-BD

(Scer-Cgla)

RF-BDCS
(Scer-Cgla)

ROS (RS:
100%) +
SVM-BD
(regParam:

1.0)
(Scer-

Spombe)

ROS (RS:
100%) +
SVM-BD
(regParam:

0.5)
(Scer-

Spombe)
Blosum50 0.9818 0.9818 0.9896 0.9889 0.9885 0.9934 0.8393 0.8673
Blosum621 0.9801 0.9818 0.9855 0.9891 0.9903 0.9932 0.8707 0.8959
Blosum622 0.9793 0.9793 0.9905 0.9910 0.9910 0.9929 0.8536 0.8694
Pam250 0.9818 0.9818 0.9899 0.9912 0.9905 0.9941 0.8495 0.8839

Table 10: AUC and 𝐺-Mean results of supervised classifiers in Experiments 1 and 2.

Algorithm S. cerevisiae-K. lactis S. cerevisiae-C. glabrata S. cerevisiae-S. pombe
AUC 𝐺-Mean AUC 𝐺-Mean AUC 𝐺-Mean

RF-BD 0.6979 0.6291 0.7455 0.7005 0.5172 0.1851
ROS (RS: 100%) + RF-BD 0.9809 0.9807 0.9901 0.9900 0.6096 0.4527
ROS (RS: 130%) + RF-BD 0.9813 0.9812 0.9901 0.9901 0.6121 0.4581
RF-BDCS 0.9889 0.9889 0.9934 0.9934 0.7294 0.6745
ROS (RS: 100%) + SVM-BD (regParam: 1.0) 0.9477 0.9477 0.9542 0.9542 0.8632 0.8533
ROS (RS: 100%) + SVM-BD (regParam: 0.5) 0.8845 0.8791 0.9540 0.9539 0.8845 0.8791
ROS (RS: 100%) + SVM-BD (regParam: 0.0) 0.6135 0.4961 0.9432 0.9431 0.6135 0.4961
ROS (RS: 130%) + SVM-BD (regParam: 1.0) 0.8164 0.7956 0.9523 0.9522 0.8164 0.7956
ROS (RS: 130%) + SVM-BD (regParam: 0.5) 0.8629 0.8528 0.9539 0.9539 0.8629 0.8528
ROS (RS: 130%) + SVM-BD (regParam: 0.0) 0.6248 0.5147 0.9429 0.9428 0.6248 0.5147

Table 11: Run time results in seconds of the big data solutions in Experiments 1 and 2.

Datasets S. cerevisiae-K. lactis S. cerevisiae-C. glabrata S. cerevisiae-S. pombe
RF-BD 1201.59 2174.90 2060.99
ROS (RS: 100%) + RF-BD 2983.75 4562.38 4440.03
ROS (RS: 130%) + RF-BD 3345.04 4805.50 4681.51
RF-BDCS 1302.41 2362.04 2025.15
SVM-BD 461.87 482.85 480.45
ROS (RS: 100%) + SVM-BD (regParam: 1.0) 867.38 1011.59 1012.46
ROS (RS: 100%) + SVM-BD (regParam: 0.5) 874.62 1008.77 1013.32
ROS (RS: 100%) + SVM-BD (regParam: 0.0) 859.17 1008.24 999.31
ROS (RS: 130%) + SVM-BD (regParam: 1.0) 927.14 1079.19 1079.58
ROS (RS: 130%) + SVM-BD (regParam: 0.5) 929.17 1084.19 1076.33
ROS (RS: 130%) + SVM-BD (regParam: 0.0) 924.42 1076.37 1077.21
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Table 12: AUC and 𝐺-Mean results of the unsupervised and the best supervised classifiers in Experiments 1 and 2.

Algorithm S. cerevisiae-K. lactis S. cerevisiae-C. glabrata S. cerevisiae-S. pombe
AUC 𝐺-Mean AUC 𝐺-Mean AUC 𝐺-Mean

RBH 0.1497 0.0062 0.8196 0.7995 0.4697 0.4525
RSD 0.2 1e − 20 0.5862 0.4862 0.9238 0.9206 0.4874 0.4438
RSD 0.5 1e − 10 0.5926 0.4643 0.9340 0.9316 0.4980 0.4063
RSD 0.8 1e − 05 0.5886 0.4518 0.9382 0.9362 0.5009 0.3899
OMA 0.5765 0.4904 0.9287 0.9259 0.5151 0.4644
RF-BDCS 0.9889 0.9889 0.9934 0.9934 0.7294 0.6745
ROS (RS: 100%) + SVM-BD (regParam: 1.0) 0.9477 0.9477 0.9542 0.9542 0.8632 0.8533
ROS (RS: 100%) + SVM-BD (regParam: 0.5) 0.8845 0.8791 0.9540 0.9539 0.8845 0.8791
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Figure 2: Average true positive and true negative rate values of supervised classifiers obtained in Experiments 1 and 2.

a subsequent differential loss of gene duplicates, so that
algorithms are prone to produce false positives. Thus, this
dataset contains “traps” for OD algorithms [24].

The reduced quality shown by RBH, RSD, and OMA,
mainly in the case of RBH, could be caused by their initial
assumption that the sequences of orthologous genes/proteins
aremore similar to each other than they are to any other genes
from the compared organisms.This assumptionmay produce
classification errors [22], mainly in RBH, that infer orthology
relationships simply based on reciprocal BLAST Best Hits, in
spite of the fact that BLAST parameters can be tuned as has
been recommended in [58].

Conversely, RSD not only compares the sequence simi-
larity of query sequence 𝑎 of genome 𝐴 against all sequences
of genome 𝐵 using the BLASTp algorithm, but also separately
aligns sequence 𝑎 against the corresponding set of hits result-
ing fromaBLAST search.Those pairs that satisfy a divergence
threshold (defined as the fraction of the alignment total
length) are used for the calculation of evolutionary distances.
From this step, sequence 𝑏 yielding the shortest distance
with sequence 𝑎 is retained and then used as query for

a reciprocal BLASTp against genome 𝐴. Thus, the algorithm
is repeated in the opposite direction, and if 𝑏 finds 𝑎 as its
best reciprocal short distance hit, then the pair (𝑎, 𝑏) can be
assumed as an ortholog pair and their evolutionary distance
is retained. In sum, the RSD procedure relies on global
sequence alignment and maximum likelihood estimation
of evolutionary distances to detect orthologs between two
genomes, and as a result, it finds many putative orthologs
missed by RBH because it is less likely than RBH to be misled
by existing close paralogs.

The OMA algorithm also displays advantages over RBH,
corroborated in both Experiments 1 and 2. It uses evo-
lutionary distances instead of alignment scores. This algo-
rithm allows the inclusion of one-to-many and many-to-
many orthologs. It also considers the uncertainty in distance
estimations and detects potential differential gene losses.

From the point of view of the intrinsic information
managed by the algorithms, the success of big data supervised
classifiers managing imbalance over RSD and OMA may be
explained by feature combinations calculated for the datasets
together with the learning from curated classifications. That
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0.00 1.00 2.00 3.00 4.00 5.00 6.00

RBH
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ROS (RS: 
100%) + 
SVM-BD

(regParam: 
0.5)

RBH
RSD 0.2 RSD 0.5 RSD 0.8 

OMA

TP_ScerKlac 0.9304 0.0001 0.9137 0.9609 0.9658 0.8795
TP_ScerCgla 0.9450 0.6392 0.8476 0.8680 0.8765 0.8574
TP_ScerSpombe 0.7895 0.5957 0.6889 0.7860 0.8154 0.2921
TN_ScerKlac 0.9626 0.2993 0.2588 0.2243 0.2113 0.2734
TN_ScerCgla 0.9629 0.9999 0.9999 0.9999 0.9999 0.9999
TN_ScerSpombe 0.9795 0.3437 0.2858 0.2100 0.1864 0.7382

ROS (RS: 100%) + SVM-BD. . .

1e − 051e − 101e − 20

RSD 0.8 1e − 05

RSD 0.5 1e − 10

RSD 0.2 1e − 20

Figure 3: Average true positive and true negative rate values of the unsupervised and the best supervised classifiers in Experiments 1 and 2.

is, the assembling of alignment measures together with the
comparison of sequence lengths, the membership of genes
to conserved regions (synteny), and the physicochemical
profiles of amino acids improves the supervised classification
results on the test sets, even in those built from two species
that underwent WGD.

With the aggregation of global and local alignment
scores, we are combining protein structural and functional
relationships between sequence pairs, respectively. Besides,
we incorporate other gene pair features: (i) the periodicity
of the physicochemical properties of amino acids which
allows us to detect similarity among protein pairs in their
spectral dimension [59]; (ii) the conserved neighborhood
information, which considers that genes belonging to the
same conserved segment in genomes of different species will
probably be orthologs; and (iii) the length of sequences that
can be seen as the relative positions of nucleotides/amino
acids within the same gene/protein in different species and
in duplicated genomic regions within the same species.

In order to obtain (i), each of the two aligned sequences
is first represented as an ordered arrangement of moving
average values of amino acids contact energies in a window
frame of the aligned regions without gaps. Then, each
spectrum is correlated to obtain the pair similarity value.This
featuremay allow us to deal with sequences having functional
similarities despite their low amino acid sequence identities
(<35%). These sequences may affect OD in S. cerevisiae-S.
pombe which are moderately related and their orthologs may
be diverged.

In feature (ii), two genes from different genomes are
more likely to be orthologs when they share a high sequence
similarity and they are placed in the same LCB (conserved
segment that does not seem to be altered by genome rear-
rangements [60]). The detection of authentic orthologs is
frequently impaired by genome rearrangements and other
large-scale evolutionary events like WGD.

With regard to sequence length (iii), it is disturbed by
insertion and deletion of stretches of DNA over evolution-
ary time. This makes more distant relatives have a higher
likelihood of sequence length difference [61]. In this way,
the genomes involved in this study are relatives and length
similarities may complement the detection of homology.

4. Conclusions

The development of effective supervised algorithms for POD
in a big data scenario was made possible by (i) the avail-
ability of curated databases (authentic orthologs), (ii) the
combination of traditional alignment measures with other
gene pair features (sequence length, gene membership to
conserved regions, and physicochemical profiles) to comple-
ment homology detection, and (iii) the treatment of the low
ratio of orthologs to the total possible gene pairs between
two genomes. By applying evaluation metrics such as 𝐺-
Mean, AUC, and the balance between TPRate and TNRate, our
results show that gene pairwise feature combinations provide
excellent POD in a big data supervised scenario that considers
data imbalance. The SVM-BD classifier combined with the
ROS (RS: 100%) preprocessing with regulation parameter 0.5
outdid the rest of the big data supervised solutions and the
popular unsupervised (RBH, RSD, and OMA) algorithms
even when the supervised model was extended to datasets
containing “traps” for OD algorithms. The classification
performance of the supervised algorithms measured by 𝐺-
Mean and AUC metrics did not significantly change in the
four test sets obtained with different alignment parameter
settings. When the balance between time and classification
quality is considered, ROS (RS: 100%) + SVM-BD (regParam:
0.5) also proves to be the algorithm of choice.

In future research, the introduction of new gene pair
features might improve the effectiveness and efficiency of the
supervised algorithms for POD.
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