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Abstract: Traumatic brain injury (TBI) is one of the most frequent causes of combat casualties in
Operations Iraqi Freedom (OIF), Enduring Freedom (OEF), and New Dawn (OND). Although less
common than combat-related blast exposure, there have been significant numbers of blast injuries in
civilian populations in the United States. Current United States Department of Defense (DoD) ICD-9
derived diagnoses of TBI in the DoD Health Care System show that, for 2016, severe and moderate
TBIs accounted for just 0.7% and 12.9%, respectively, of the total of 13,634 brain injuries, while mild
TBIs (mTBIs) accounted for 86% of the total. Although there is a report that there are differences in the
frequency of long-term complications in mTBI between blast and non-blast TBIs, clinical presentation
is classified by severity score rather than mechanism because severity scoring is associated with
prognosis in clinical practice. Blast TBI (bTBI) is unique in its pathology and mechanism, but there is
no treatment specific for bTBIs—these patients are treated similarly to TBIs in general and therapy
is tailored on an individual basis. Currently there is no neuroprotective drug recommended by the
clinical guidelines based on evidence.
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1. Introduction

Traumatic brain injury (TBI) is one of the most frequent causes of combat casualties in Operations
Iraqi Freedom (OIF), Enduring Freedom (OEF), and New Dawn (OND) [1–4]. As many as 23% of
warfighters returning from the conflicts in Iraq and Afghanistan sustained a TBI [5,6] and at least 60%
of these TBIs are due to blast exposure [7,8]. According to Department of Defense statistics from 2015,
blast exposure is the main cause of combat casualties with 73% of combat injuries in U.S. forces due to
blasts [9,10]. Although less common than combat-related blast exposure, there have been significant
numbers of blast injuries in civilian populations in the U.S. [11]. Kapur et al., reported 5931 injuries
and 699 deaths due to blasts in the U.S. from 1983 to 2002 [12].

In this article, we review the current understanding of blast TBIs (bTBIs), contrasting with
traditional TBIs, and feature common approaches to clinical management to highlight the guidelines
for TBIs in general.

2. Epidemiology

2.1. Blast TBI

According to reports from OIF and OEF (Operations Iraqi and Enduring Freedom), the
patterns of combat-related injuries have shifted from penetration injuries to blastrelated injuries.
Since 4 November 2006, blasts have been the most common cause of injury among American
soldiers [13]. Through to March of 2004, 97% of the casualties suffered by the First Light Armored
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Reconnaissance Battalion of the First Marine Division were related to blast [14]. Of the approximately
one million veterans screened for TBI between 2007–2015, 8.4% were characterized as having sustained
a TBI; most were mild and the majority due to blast exposure. Since an additional 45,000 had a previous
diagnosis of mTBI, a total of 137,841 (13.8%) of those screened had sustained a combat-related TBI [15].
One striking feature of the mTBI cases seen in veterans of the wars in Iraq and Afghanistan is the high
association between mTBI and posttraumatic stress disorder [2]. Approximately 75% of non-combat
TBIs (e.g., motor vehicle accidents, sports-related TBI, etc.) sustained by U.S. military personnel
annually are classified as mild [16]. Between 2000 and 2016, 82.3% of TBIs among military personnel
were mild [17,18] and approximately 80% of mTBIs were due to blast [19].

2.2. TBI in General

Approximately 1.74 million people sustain a TBI in the United States each year [20]. As injuries to
the brain are been classified as “head and neck” injuries [21], it might be difficult to know the precise
ratio of TBIs that occur. Current United States Department of Defense (DoD) ICD-9 derived diagnoses
of TBI in the DoD Health Care System show that, for 2016, severe and moderate TBI accounted for just
0.7% and 12.9%, respectively, of the total of 13,634 brain injuries, while mTBI brain injury accounted
for 86% of the total [18].

The prognosis for an appropriately managed mTBI patient is good, generally resulting in
complete recovery [22,23]. Those who have experienced mTBI usually fully recover within
a year. Nevertheless, there can be a variety of short- and long-term sequelae of mTBIs in some
patients [24–28]. Potential chronic effects of mTBI include post-concussion syndrome [23,29],
post-traumatic headaches [30–32], post-traumatic epilepsy [33], post-traumatic vertigo [34,35],
and chronic traumatic encephalopathy [29,36–38].

Moderate and severe TBIs are associated with lingering neurological deficits and functional
impairments [28], and only one fourth of survivors of severe TBIs are able to achieve long-term
functional independence [39–41]. The prevalence of long-term disability related to severe TBIs is
reported to be approximately 1–2% of the population in the United States [42,43].

While a myriad of outcome prediction models designed to guide clinical decision-making have
been developed, the complexity of severe head injury makes it difficult to apply many of these models
to clinical decision-making in individual TBI patients [44–46].

3. Blast Physics

Blast processes involve the energy propagation of an explosive source into the surrounding
environment, followed by interaction, loading, and damage of materials, structures, and systems.
In biological systems, the extreme shifts of blast wave over (positive) pressure and under (negative)
pressure of explosions brings substantial cellular disruption due to the stresses imparted by those
rapidly changing positive and negative pressures [28].

In blast TBI, the blast wave encountering the head reflects and diffracts, resulting in highly
transient and spatially non-uniform loading over the skull. High reflected pressures appear on the
surface facing the incident wave. The combination of head size, skull thickness, and skull elasticity
may exaggerate biomechanical responses to blast-wave loading [47].

4. Mechanism and Pathophysiology

4.1. Blast TBI

In most respects, blast TBI has clinical aspects of closed head injury. Primary blast injuries are
defined as injuries that are a direct result of blast wave-induced over and under pressures. Secondary
blast injury is due to impact from objects (e.g., shrapnel) put in motion by the blast. Tertiary blast
injury is due to the acceleration of the body by the blast wind, and quaternary blast injury is any other
type of injury (e.g., burns, lung damage from toxic gases, etc.) [48,49].
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Although the exact mechanisms through which primary blast exposure causes tissue injury
are uncertain, the most commonly stated are spallation, implosion, inertial effects [50–52],
and cavitation [53,54]. Spallation occurs when the shock wave passes from a dense to a less dense
material, causing the more dense material to fragment into the less dense material [52]. A relatively
simple example is an explosion under water, causing the more dense water to spall (spray) into the
less dense air [52]. Spallation may contribute to primary blast-induced lung injury [55]. Cavitation and
implosion are related phenomena that occur as the negative pressure phase causes dissolved gases to
form bubbles in fluids [54,56]. These bubbles are compressed (imploded) by the negative pressure and
then expand explosively as the negative pressure phase passes [53,54]. Cavitation and implosion also
have been implicated in the pathophysiology of pulmonary primary blast injury [55]. Inertial forces
occur at the boundaries of tissues with different densities when the blast pressure accelerates materials
of different densities at different rates, thereby creating shearing forces [52]. To date, there is no
direct experimental evidence implicating any of these mechanisms in the pathophysiology of bTBI.
However, studies using computerized and physical models suggest that cavitation may contribute to
tissue injury secondary to blast exposure [54]. Furthermore, finite element modeling studies indicate
that cerebrospinal fluid (CSF) cavitation could occur at the pressures and durations encountered
in real-world blast events [57,58]. Generally, these effects occur primarily at the junction between
tissues of different densities, which is consistent with observations of prominent astroglial scarring
at grey–white matter junctions and in structures lining the ventricles [59]. Although primary blast
overpressure may be a factor that contributes to brain injury and cognitive dysfunction, especially if
amplified by the proximity of vehicles, buildings, and other solid structures, the threshold for bTBI
remains to be known [28].

Some blast-exposed patients have evidence of TBI in the absence of trauma. These indirect blast
effects may be precipitated by the transmission of blast energies through thoracic and abdominal blood
vessels, as well as vagally-mediated bradycardia, arterial hypotension, and perhaps the resulting
cerebral hypoperfusion [28]. There are two types of theoretical proposals for this mechanism.
One is blast wave propagation directly through the skull or sinus openings [60]. Another is
thoracoabdominal compression that transmits blast pressures to cerebral vascular and cerebrospinal
fluid systems [61]. The integrity of the blood–brain barrier is impaired by increased cerebral vascular
pressure, leading to the damage of small cerebral vessels [62]. As noted above, blast-induced
damage to air-filled organs, such as the lungs, can create air emboli through the process of
spallation [63]. The emboli may travel to the cerebral vasculature, leading to cerebral ischemia and
infarction [49]. Also, exposure to blast pressures leads to arterial remodeling that may be associated
with blast-induced vasospasm [64].

4.2. TBI in General

TBI itself is divided into two separate, but related categories: primary brain injury and secondary
brain injury.

Primary brain injury occurs at the time of trauma, i.e., damage resulting directly from external
mechanical forces transferred to intracranial contents. These include a combination of focal contusions
and hematomas, as well as shearing of white matter tracts (diffuse axonal injury) along with cerebral
edema and swelling [65,66]. Shearing mechanisms lead to diffuse axonal injury (DAI), which is
visualized pathologically and on neuroimaging studies as multiple small lesions seen within white
matter tracts.

Focal cerebral contusions are the most frequently encountered lesions. Contusions are commonly
seen in the basal frontal and temporal areas, which are particularly susceptible due to direct impact on
basal skull surfaces in the setting of acceleration/deceleration injuries.

Extra-axial hematomas are, in general, encountered when forces are distributed to the
cranial vault and the most superficial cerebral layers. These are seen as epidural, subdural,
and subarachnoid hemorrhage.
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Secondary brain injury results from a cascade of molecular mechanisms that are initiated
at the time of the first contact and sustained for hours or days. These mechanisms include
neurotransmitter-mediated excitotoxicity from glutamate release, free-radical injury to cell membranes,
electrolyte imbalances, mitochondrial dysfunction, inflammatory responses, apoptosis, secondary
ischemia from vasospasm, focal microvascular occlusion, and vascular injury [41,59,67–72].
The mechanisms involved in cell death and tissue loss after TBI include complex, multifaceted
interactions between acute and delayed biochemical, molecular, physiological, and anatomical events.
In the affected brain region with high oxidative stress, free iron released from hemoglobin contributes to
the production of free radicals [73]. Nitrosylation of proteins, another indicator of oxidative/nitrative
stress, is also markedly increased [28]. The specific combination and magnitude of secondary
mechanisms may vary with the actual biomechanics of the initial injury process.

5. Clinical Presentation and Classification

Although there is a report of differences in the frequency of long-term complications in mTBIs
between blast and non-blast TBIs [74], the preponderance of evidence indicates that the neurological,
psychological, and behavioral consequences of blast and non-blast TBIs are similar [17,75–77].

Regardless of the biomechanical causes of injury, it is important to make a careful, accurate initial
diagnosis, especially with mTBI patients who may be unable to recall what happened at the at the
time of injury due to alterations in consciousness. Immediately after TBI, patients often exhibit loss of
consciousness, memory loss, headache, confusion, nausea, and focal neurologic deficits. In the long
term, patients with TBI report cognitive impairment and neuropsychological symptoms (behavior
and personality changes, depression, and suicidality), Parkinsonism, and other speech and gait
abnormalities [29,36,78,79].

TBI has traditionally been classified using injury severity scores, the most common of which
is the Glasgow Coma Scale (GCS) [80] (Table 1). The GCS is universally accepted as a tool for TBI
classification due to its simplicity, reproducibility, and predictive value for overall prognosis. A GCS
score of 13 to 15 is considered mild injury, 9 to 12 is considered moderate injury, and 8 or less as severe
traumatic brain injury. However, for practical clinical use, the severity of initial impairment after TBI is
subdivided into two major categories: mild TBI and moderate/severe TBI. The Marshall scale (Table 2)
and the Rotterdam scale (Table 3) are two currently used CT-based grading scales [65,81].

Table 1. Glasgow Coma Scale (GCS). A GCS score of 13 to 15 is considered mild injury, 9 to 12 is
considered moderate injury, and 8 or less as severe traumatic brain injury.

Response Score

Eye opening
Spontaneous 4

Response to verbal command 3
Response to pain 2
No eye opening 1

Best verbal response
Oriented 5
Confused 4

Inappropriate words 3
Incomprehensible sounds 2

No verbal response 1
Best motor response

Obeys commands 6
Localizing response to pain 5

Withdrawal response to pain 4
Flexion to pain 3

Extension to pain 2
No motor response 1
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Table 2. Marshall CT score of traumatic brain injury.

Category Definition

Diffuse injury I (no visible pathology) No visible intracranial pathology seen on CT scan

Diffuse injury II
Cisterns are present with midline shift of 0–5 mm and/or lesions

densities present; no high or mixed density lesion >25 cm3 may include
bone fragments and foreign bodies

Diffuse injury III (swelling) Cisterns compressed or absent with midline shift 0–5 mm; no high or
mixed density lesion >25 cm3

Diffuse injury IV (shift) Midline shift >5 mm; no high or mixed density lesion >25 cm3

Evacuated mass lesion V Any lesion surgically evacuated
Non-evacuated mass lesion VI High or mixed density lesion >25 cm3; not surgically evacuated

Table 3. Rotterdam CT score. In adults, mortality at six months increases with the score; score 1: 0%,
score 2: 7%, score 3: 16%, score 4: 26%, score 5: 53%, score 6: 61%.

Predictor Value Score

Basal cisterns
Normal 0

Compressed 1
Absent 2

Midline shift
No shift or shift ≤ 5 mm 0

Shift > 5 mm 1
Epidural mass lesion

Present 0
Absent 1

Intraventricular blood or subarachnoid hemorrhage
Absent 0
Present 1

Mild TBI is defined by loss or alteration of consciousness for up to 30 min after injury, a confused or
disoriented state lasting less than 24 h, normal structural brain imaging on computerized tomographic
(CT) scanning, and a Glasgow Coma Scale score of 13–15.

Moderate/severe TBI is defined by a traumatically-induced physiological disruption of brain
function as manifested by either loss of consciousness for greater than 30 min, an initial GCS of 12 or
less after 30 min, or post-traumatic amnesia for greater than 24 h.

6. Management

As there is no treatment specific for bTBI, these patients are treated similarly to TBI in general
and therapy is tailored on an individual basis. For mild TBI, the mainstay of treatment is rest and
targeted treatment of clinical symptoms. Observation is recommended for at least 24 h after a mild
TBI [82,83]. Hospital admission is recommended for patients at risk for such immediate complications
from head injury as GCS < 15, abnormal CT findings, seizures, and comorbid coagulopathy [84–87].
Attention has been focused on mTBI recently because of the putative relationship between repeated
mTBI and the early onset of dementias such as Alzheimer’s in retired athletes, especially professional
football players [88]. The numbers of sports-related concussions has been estimated to be as high
300,000 annually in the United States [89]. Based on the assumption that the 300,000 mTBIs involving
loss of consciousness represented only 8% [90] and 19.2% [91] of sports-related TBIs, Langlois et al.
estimated that the actual number of TBIs in contact sports may range from 1.6 to 3.8 million [92].
The considerable range of the estimates of the number of sport-related TBIs (i.e., 50,000 to 3.8 million)
emphasizes the importance of accurate definitions of and/or criteria for mTBI.

Surgical treatment is indicated based on neurological status and head CT result criteria for
moderate/severe TBI. The initial treatment of moderate/severe TBI should follow Adult Trauma Life
Support (ATLS) guidelines [93] as to take into consideration systemic stabilization. Anesthesiologists
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play a critical role in securing airways, as well as obtaining large bore intravenous or central lines for
cardiopulmonary resuscitation, in addition to placing arterial lines to closely monitor hemodynamics.
Since patients with moderate/severe TBI often wear neck collars for cervical spine stabilization,
fiberoptic intubation may be required. Moreover, in cases requiring placement of a central line in
the internal jugular vein, stabilization of the neck with assistance is vital. Although hypotension
and hypoxia should be avoided, hyperoxia with a PaO2 > 300 mmHg in patients with severe TBI is
associated with higher in-hospital fatalities [94].

For moderate/severe TBIs without surgical indications, the goal of treatment is to limit
the likelihood of secondary posttraumatic hypotension and hypoxia, both of which markedly
increase mortality and morbidity [95,96], by maintaining BP (systolic > 90 mmHg) and oxygenation
(PaO2 > 60 mmHg) for TBI patients in the ICU. In general, patients with TBI should be monitored
closely to maintain euvolemia. Electrolyte disturbances are commonly seen in patients with TBI and
should be assessed on a regular basis with other labs.

Although there has been some debate about the specifics of treatment and monitoring for patients
with TBI, the Brain Trauma Foundation recently published revised 4th edition guidelines for severe
TBI, which is endorsed by neurosurgical professional organizations [97]. The guidelines have been
reviewed by high quality studies [95].

Currently, there are no evidence-based recommendations for the use of neuroprotective agents
in TBI patients. However, there have been some clinical studies that show the effectiveness of
neuroprotective agents in TBI [98–102], but none of these studies is of sufficiently high quality to
warrant the use of neuroprotective agents.

7. Conclusions

Although blast TBIs appear to be unique in terms of pathology and biomechanical
injury mechanisms, bTBI patients are indistinguishable from non-bTBI patients [17,48,75–77].
Although standards of care for TBI patients have been developed and refined over the last 20 years with
several revisions of national and international guidelines, solid evidence is scarce. Clinical decisions
should be made case-by-case based on current standard of care guidelines.

Conflicts of Interest: The authors declare no conflict of interest.
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