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Background: Given the barriers prohibiting the broader utilization of amyloid imaging
and high screening failure rate in clinical trials, an easily available and valid screening
method for identifying cognitively impaired patients with cerebral amyloid deposition
is needed. Therefore, we developed a prediction model for cerebral amyloid positivity
in cognitively impaired patients using variables that are routinely obtained in memory
clinics.

Methods: Six hundred and fifty two cognitively impaired subjects from the Korean Brain
Aging Study for the Early diagnosis and prediction of Alzheimer disease (KBASE) and
the Alzheimer’s Disease Neuroimaging Initiative-2 (ADNI-2) cohorts were included in this
study (107 amnestic mild cognitive impairment (MCI) and 69 Alzheimer’s disease (AD)
dementia patients for KBASE cohort, and 332 MCI and 144 AD dementia patients
for ADNI-2 cohort). Using the cross-sectional dataset from the KBASE cohort, a
multivariate stepwise logistic regression analysis was conducted to develop a cerebral
amyloid prediction model using variables commonly obtained in memory clinics. For
each participant, the logit value derived from the final model was calculated, and the
probability for being amyloid positive, which was calculated from the logit value, was
named the amyloid prediction index. The final model was validated using an independent
dataset from the ADNI-2 cohort.

Results: The final model included age, sex, years of education, history of hypertension,
apolipoprotein ε4 positivity, and score from a word list recall test. The model predicted
that younger age, female sex, higher educational level, absence of hypertension history,
presence of apolipoprotein ε4 allele, and lower score of word list recall test are
associated with higher probability for being amyloid positive. The amyloid prediction
index derived from the model was proven to be valid across the two cohorts. The area
under the curve was 0.873 (95% confidence interval 0.815 to 0.918) for the KBASE
cohort, and 0.808 (95% confidence interval = 0.769 to 0.842) for ADNI-2 cohort.
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Conclusion: The amyloid prediction index, which was based on commonly available
clinical information, can be useful for screening cognitively impaired individuals with a
high probability of amyloid deposition in therapeutic trials for early Alzheimer’s disease
as well as in clinical practice.

Keywords: amyloid, prediction, Alzheimer’s disease, mild cognitive impairment, memory clinic

INTRODUCTION

Cerebral amyloid beta (Aβ) deposition is the hallmark pathologic
change in Alzheimer’s disease (AD). Since amyloid positron
emission tomography (PET) imaging has made it possible to
detect cerebral Aβ pathology in living human brains (Klunk et al.,
2004), there has been a drastic paradigm shift in the diagnosis of
AD, especially in clinical research including therapeutic clinical
trials. Amyloid PET has been widely adopted in various clinical
studies for the accurate diagnosis of AD. At present, typical
AD clinical trials target the early stages of AD and specifically
target patients with mild cognitive impairment (MCI) due to
AD or mild AD dementia (McKhann et al., 2011; Sperling
et al., 2011) that is confirmed by positive amyloid deposition
on PET. However, due to the high cost, limited availability of
PET machines, and concern about radiation hazards, application
of amyloid PET imaging is still limited. Although cerebrospinal
fluid (CSF) Aβ examination is an alternative to measuring
cerebral Aβ pathology, there are possible contraindications, i.e.,
increased intracranial pressure, coagulopathy or current use of
anticoagulant, to the technique. It also requires staffs with the
adequate training and appropriate facilities (Herukka et al., 2017;
Simonsen et al., 2017). In addition, a consensus on the application
of CSF biomarkers in clinical practice is still necessary, since there
exist differences in the detailed methods of application among
countries, and even among sites (Lewczuk et al., 2006; Verwey
et al., 2009).

The limitations of these techniques highlight the need for
easily applicable and valid prediction methods to identify
cognitively impaired individuals with a high probability of
amyloid deposition. Given that about 30% of screening failures in
recent early AD clinical trials stem from enrichment with amyloid
(Coric et al., 2015; Sevigny et al., 2016; Wolz et al., 2016), such
prediction method is desperately needed to facilitate the search
for trial candidates. Although several studies previously reported
prediction models that used multiple clinical variables, including
neuropsychological, laboratory, and neuroimaging measures
(Bahar-Fuchs et al., 2013; Haghighi et al., 2015), a small sample
size and lack of external validation has restricted the value of
the models. Recently, excellent blood biomarker-based prediction
methods for amyloid accumulation based on novel analytical
techniques were reported (Burnham et al., 2014; Haghighi et al.,
2015; Ovod et al., 2017; Park et al., 2017; Nakamura et al., 2018).
However, their availability in real clinical research or practice
is still far from reality because of the further requirement for
standardized analytical procedures, optimal cutoffs based on
large-scale normative data, and the implementation of the assay
systems.

Therefore, we developed a prediction model for cerebral
amyloid positivity in cognitively impaired patients using variables
that are routinely obtained in memory clinics. We intended to
maximize the availability as well as validity of the model for
use in current clinical settings. The model was first developed
using the data from the Korean Brain Ageing Study for the Early
diagnosis and prediction of Alzheimer’s disease (KBASE) cohort
(Byun et al., 2017), and was then externally validated using an
independent dataset from the Alzheimer’s Disease Neuroimaging
Initiative 2 (ADNI-2) (Petersen et al., 2010).

MATERIALS AND METHODS

Participants
KBASE is a prospective, longitudinal cohort study that has
recruited participants with a wide age range (55–90 years) and
varying cognitive status since 2014 (Byun et al., 2017). The study
is aimed at searching for new AD biomarkers and investigating
how multi-faceted lifetime experiences and bodily changes
contribute to the brain changes or brain pathologies related to
AD. The baseline data from the KBASE cohort were used as
the development set, which included 107 amnestic MCI and 69
very mild or mild probable AD dementia patients, according to
the National Institute on Aging–Alzheimer’s Association (NIA-
AA) criteria (McKhann et al., 2011). The ADNI-2 dataset was
used for the external validation of the developed model. The
ADNI is a multisite longitudinal cohort study that was designed
to investigate the trajectories of biomarkers across the entire AD
spectrum, from normal aging to AD dementia (Petersen et al.,
2010). For ADNI-2, the follow-up length was expanded, and the
breadth of cognitive status was increased by adding patients with
early MCI and subjective memory complaint (SMC) (Beckett
et al., 2015). In addition, the depth of imaging biomarkers was
enhanced by adding florbetapir PET for all participants (Jagust
et al., 2015). The ADNI-2 dataset used in the current study
included 332 MCI and 144 AD dementia patients, and the data
were downloaded on September 2017 from the public website1.

Clinical, Neuropsychological, and
Laboratory Assessments
All subjects from the KBASE and ADNI-2 cohorts underwent
comprehensive clinical and neuropsychological assessments
according to each study protocol (Beckett et al., 2015; Jagust
et al., 2015; Byun et al., 2017). KBASE participants were
assessed via a standardized clinical assessment protocol in

1adni.loni.usc.edu
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which the Korean version of the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD-K) clinical assessment
was incorporated (Lee et al., 2002). The protocol included
various assessment tools for the evaluation of clinical diagnosis,
severity, activities of daily living, depression status, current
or past medical comorbidities, use of medication, and a vast
amount of information on lifestyle factors. For the acquisition
of accurate information, reliable informants were interviewed
and medical records were reviewed. KBASE neuropsychological
assessments were performed according to the standardized
protocol, which incorporated the CERAD-K neuropsychological
battery (Lee et al., 2004). ADNI-2 subjects also underwent
thorough clinical and neuropsychological assessments as per
the protocol (Beckett et al., 2015). The clinical assessment
protocol included items similar to those of KBASE. For the
neuropsychological assessment, a standardized protocol that
incorporated 13 items from the Cognitive Subscale of the
Alzheimer’s Disease Assessment Scale (ADAS-Cog) was used
(Beckett et al., 2015). The subjects of both cohorts also underwent
routine laboratory assessments that are part of memory clinic
evaluations, including apolipoprotein E (APOE) genotyping.

Neuroimaging
For the brain imaging, KBASE and ADNI-2 participants
underwent amyloid PET and brain magnetic resonance imaging
(MRI) at screening or baseline visit, according to each study
protocol (Jack et al., 2015a; Jagust et al., 2015; Byun et al., 2017).
KBASE participants underwent simultaneous three-dimensional
Pittsburgh compound B (PiB) PET (PiB-PET) and 3D T1-
weighted MR imaging using a 3.0T Biograph mMR scanner
(Siemens, Washington, DC, United States), according to the
manufacturer’s guidelines. For the KBASE cohort, amyloid
positivity was determined based on PiB-PET. To measure the
cerebral amyloid burden, a global cortical region of interest (ROI)
consisting of the frontal, lateral parietal, posterior cingulate and
precuneus, and lateral temporal regions was defined. A global
PiB retention value, otherwise known as a standardized uptake
value ratio (SUVR), was generated by dividing the mean value
for all voxels within the ROI by the mean cerebellar uptake value
(Choe et al., 2014). Each participant was classified as amyloid
positive if the global SUVR value was >1.40 (Murray et al.,
2015). To obtain structural brain MRI measures, T1-weighted
MR images used in this study were automatically segmented
using FreeSurfer version 5.32, and the FreeSurfer segmentation
outputs were visually inspected for each participant and manual
correction was undertaken if needed for minor segmentation
errors. Left and right hippocampal volumes were extracted
and then added to yield the total hippocampal volume. The
percentage ratio of the total hippocampal volume to the estimated
total intracranial volume [i.e., hippocampal volume ratio (HVR)]
was calculated and used as an index for neurodegeneration. For
the ADNI-2 cohort, 18F-florbetapir PET was applied to each
participant to define amyloid positivity. The global SUVR was
the mean florbetapir uptake from the gray matter within the
lateral and medial frontal, anterior and posterior cingulate, lateral

2http://surfer.nmr.mgh.harvard.edu/

parietal, and lateral temporal regions relative to uptake in the
whole cerebellum, and this summary measure was used as the
florbetapir cortical mean for each subject (Landau et al., 2012).
Each subject was classified as amyloid positive if the global SUVR
value was >1.10 (Joshi et al., 2012).

Statistical Analysis
We developed the amyloid prediction model with the KBASE
dataset using stepwise multivariate logistic regression analysis.
Of the extensive variables from the KBASE dataset (Byun
et al., 2017), only the variables that are routinely obtained
in memory clinic practice were selected for the development
of the prediction model. The selected clinical variables were
age, sex, years of education, history of vascular risk factors
such as hypertension, diabetes, or hyperlipidemia, cognitive
diagnosis (MCI vs. AD dementia), and sum of the box score
for clinical dementia rating (CDR-SB). The raw score of
four neuropsychological tests, including the Word List Recall
test (WLR), 15-item Boston Naming Test (BNT), Semantic
Fluency test (SF), and Constructional Praxis test (CP), included
in the CERAD neuropsychological battery were also selected
(Lee et al., 2004). The selected tests are widely used and
cover the main cognitive domains affected by AD: WLR for
episodic memory, BNT for language, SF for executive function,
and CP for visuospatial function. The results of the clinical
laboratory assessments that are usually performed in memory
clinic practice were also used, including thyroid function tests
(thyroid stimulating hormone and free thyroxine), liver function
tests (aspartate transaminase, alanine transaminase, alkaline
phosphatase, and total bilirubin), renal panel (creatinine and
blood urea nitrogen), complete blood cell count (white blood cell,
red blood cell, hemoglobin, and platelet), vitamin B12, folate,
glucose, total cholesterol, triglyceride, albumin, total protein,
total calcium, phosphorus, uric acid, erythrocyte sedimentation
rate, and APOE genotype. For the APOE genotyping, subjects
with at least one ε4 allele were classified as APOE4 positive,
and those without a ε4 allele were classified as APOE4
negative. Lastly, HVR was selected as a structural imaging
variable.

The final model for amyloid positivity prediction (amyloid
prediction model) was developed using a multivariate stepwise
logistic regression analysis. Demographic variables including age,
sex, and years of education were entered as fixed variables and
all other variables were sequentially entered into the model using
the forward likelihood ratio (LR) method. The logit value derived
from the final model for each subject was calculated, and the
probability for being amyloid positive, which was calculated from
the logit value, was named the amyloid prediction index (API).
Using API, receiver operating characteristic (ROC) curve analysis
was performed and the area under the curve (AUC) value was
calculated for the ROC curve. As the optimal cutoff point for
API can vary according to the purpose and setting of its use,
i.e., screening candidates for clinical trial or screening patients
who need further evaluation using amyloid PET in memory clinic
practice, we explored how the sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
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accuracy value change as the API increases from 0.1 to 0.9 by 0.1
unit, instead of determining a single optimal cutoff value for API.

The final model was validated externally using the ADNI-2
dataset. From the ADNI-2 dataset, identical or nearly identical
variables to the variables included in the final model were
selected. Using the variables, the API score for each ADNI-2
subject was calculated. ROC curve analysis was performed for the
API scores of ADNI-2 subjects.

ROC curve analyses were performed using MedCalc for
Windows, version 18.2 (MedCalc Software, Ostend, Belgium),
and all other analyses were performed using SPSS software,
version 22 (IBM Corp., Armonk, NY, United States). The level
of statistical significance was set as a two-tailed p < 0.05.

Ethics Approval
This study was approved by the Institutional Review Boards
of Seoul National University Hospital (IRB No: C-1401-027-
547) and SNU-SMG Boramae Center (IRB No: 26-2015-60),
Seoul, South Korea, and was conducted in accordance with the
recommendations of the current version of the Declaration of
Helsinki. All subjects or their legal representatives gave written
and informed consent.

Data Availability
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

RESULTS

Participants
The Characteristics of the KBASE and ADNI-2 subjects included
in this study are summarized in Table 1.

TABLE 1 | Subject characteristics from the development and validation datasets.

Variables KBASE ADNI-2 T or χ2 p-value

N 176 476

Age 73.2 ± 7.4 72.5 ± 7.7 0.97 0.332

Sex, female 117 (66.5) 208 (43.7) 26.67 <0.001

Years of education 9.6 ± 5.1 16.2 ± 2.6 −21.39 <0.001

Diagnosis, MCI, N (%) 107 (60.8) 332 (69.7) 4.68 0.030

Global CDR 0.8 ± 0.3 0.6 ± 0.2 9.31 <0.001

CDR-SB 2.9 ± 2.0 2.4 ± 1.8 2.73 0.006

MMSE, raw score 20.1 ± 4.6 26.5 ± 2.9 −17.03 <0.001

Amyloid positive, N (%) 100 (56.8) 325 (68.3) 7.44 0.006

APOE4 positive, N (%) 77 (43.8) 267 (56.1) 7.85 0.005

KBASE, Korean Brain Aging Study for Early diagnosis and prediction of Alzheimer’s
disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; df, degree of freedom;
MCI, mild cognitive impairment; CDR, clinical dementia rating; CDR-SB, clinical
dementia rating sum of box; MMSE, mini-mental state examination; APOE,
apolipoprotein.
Data for continuous variables are presented as mean ± SD and analyzed using
student t-test with T-values presented in the table. Categorical variables are
presented as N (%) and analyzed using a χ2 test with the χ2 values presented
in the table.

Amyloid Prediction Model Developed
From the KBASE Dataset
Through multivariate logistic regression analysis using the
forward LR method, age, sex, years of education, history of
hypertension, APOE4 positivity, and raw WLR score were
selected for the final amyloid prediction model (Table 2). API
was defined as the probability for a subject to be amyloid positive,
which can be calculated from the logit value derived from the
final multivariate logistic regression model for each subject. In
the model, age and years of education were continuous variables.
Sex was coded 0 for female and 1 for male, APOE 4 positivity
was coded 0 for APOE4 non-carriers and 1 for APOE4 carriers,
and a history of hypertension was coded 0 for the absence of
hypertension history and 1 for the presence of hypertension
history.

Logitcase = β0 + β1
(
age

)
+ β2 (sex)+ β3(years of education)

+ β4(APOE4 positivity)+ β5(history of hypertension)
+ β6(raw score of word list recall test)

(β0 = 1.551, β1 = −0.025, β2 = −0.549, β3 = 0.141,

β4 = 2.622, β5 = −1.400, β6 = −0.440)

APIcase =
[
exp

(
Logitcase

)]
/[1+ exp

(
Logitcase

)
]

The AUC of the ROC curve for the developed model was 0.873
(95% confidence interval (CI) = 0.815 to 0.918) (Table 3 and
Figure 1A). Table 4 shows the sensitivity, specificity, PPV, NPV,
and accuracy at various cutoff points of the API. When 0.5
was used as a cutoff point (i.e., 50% probability for a subject
to be amyloid positive), the sensitivity, specificity, PPV, NPV,
and accuracy were 83.0, 80.3, 84.7, 78.2, and 81.8%, respectively.
To compare with a simpler model, we also made three logistic
regression models for amyloid prediction that included age, sex,
years of education, and one of the three other variables in
the full model (APOE4 positivity, WLR score, and history of
hypertension) (Table 5). The AUC was 0.801 (95% CI = 0.734 to
0.857) for the APOE4 only model, 0.740 (95% CI = 0.669 to 0.803)
for the WLR only model, and 0.675 (95% CI = 0.601 to 0.744)

TABLE 2 | The results of multivariate logistic regression analysis for the final
prediction model for cerebral amyloid positivity.

Predictive
variable

Beta Wald Value OR (95% CI) p-value

Age −0.025 0.81 0.98 (0.92 to 1.03) 0.370

Sex −0.549 1.23 0.58 (0.22 to 1.53) 0.268

Years of
education

0.141 8.87 1.15 (1.05 to 1.26) 0.003

APOE4
positivity

2.622 33.51 13.77 (5.67 to 33.44) <0.001

History of
hypertension

−1.400 10.76 0.25 (0.11 to 0.57) 0.001

WLR score −0.440 13.07 0.64 (0.51 to 0.82) <0.001

Intercept 1.551

OR, odds ratio; CI, confidence interval; APOE, apolipoprotein; WLR, word list recall.
The result of the multivariate logistic regression analysis is shown with odds ratio
and Wald value for each predictive variable.
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TABLE 3 | The AUC values of ROC curves for the final and three simpler
prediction models for cerebral amyloid positivity.

Pair KBASE (N = 176) ADNI-2 (N = 476)

Final model 0.873 (0.815 to 0.918) 0.808 (0.769 to 0.842)

APOE4 only model 0.801 (0.734 to 0.857) 0.723 (0.680 to 0.763)

WLR only model 0.740 (0.669 to 0.803) 0.697 (0.653 to 0.738)

Hypertension only model 0.675 (0.601 to 0.744) 0.535 (0.489 to 0.581)

AUC, area under the curve; ROC, receiver operating characteristic; KBASE, Korean
Brain Aging Study for Early diagnosis and prediction of Alzheimer’s disease; ADNI,
Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein; CI, confidence
interval; WLR, word list recall.
The AUC value for each model is presented with the 95% CI.

for the hypertension only model. Statistical comparison (DeLong
et al., 1988) of the AUC between the full model and each of the
simpler models showed that the full model had a significantly
larger AUC than any simpler model (Table 6).

External Validation of the Amyloid
Prediction Model Using the ADNI-2
Dataset
The final amyloid prediction model developed using the KBASE
dataset was externally validated using ADNI-2 data. The ADAS-
cog delayed recall test scores included in the ADNI-2 assessment
were used for the WLR score because the two tests have
equivalent procedures, with an identical word list span and
learning trials and a similar retention interval (Zhao et al., 2012).
Since the ADAS-cog delayed recall score reflects the number of
wrong answers while the WLR score counts the number of right
answers, 10 minus the raw ADAS-cog delayed recall test score
was used in the model. With regard to the other variables in the

model, the same variables available in the ADNI-2 dataset were
used. For the ADNI-2 data, the AUC of ROC curve was 0.808
(95% CI = 0.769 to 0.842) (Table 3 and Figure 1B). Similar to
the KBASE dataset, we also made three simpler logistic regression
models that included age, sex, years of education, and one of
the three other variables in the full model (APOE4 positivity,
ADAS-cog delayed recall score, and history of hypertension) for
the ADNI-2 dataset. The AUC was 0.723 (95% CI = 0.680 to
0.763) for the APOE4 model, 0.697 (95% CI = 0.653 to 0.738)
for the WLR model, and 0.535 (95% CI = 0.489 to 0.581) for the
hypertension model. The AUC of the full model was significantly
greater than the simpler models.

DISCUSSION

The API, that is derived from commonly available variables
in memory clinic practice, showed excellent capability (AUC
0.873) in screening cognitively impaired individuals with cerebral
amyloid positivity. The results of external validation using data
from an independent cohort with different characteristics were
also satisfactory (AUC 0.808) and supported general applicability
of the API.

Several previous studies have proposed prediction models
for cerebral amyloid positivity. Bahar-Fuchs et al. focused on
neuropsychological tests as potential predictive variables for
cerebral amyloid positivity, and reported that delayed recall
tests were the best predictors in 45 MCI patients referred
from memory clinics (Bahar-Fuchs et al., 2013). After adjusting
for confounding variables, the AUC for the ROC curve for
each recall test was around 0.77∼0.86. However, the small
sample size and lack of external validation limited the value
of this model. Some excellent blood biomarker-based amyloid

FIGURE 1 | Receiver operating characteristic curves for the final and three simpler prediction models for cerebral amyloid positivity in KBASE (A) and ADNI-2 (B)
datasets. Abbreviations: KBASE, Korean Brain Aging Study for Early diagnosis and prediction of Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; APOE, apolipoprotein; WLR, word list recall.
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TABLE 4 | Sensitivity, specificity, positive, and negative predictive value, and
accuracy at various cutoff points of API in the KBASE dataset (N = 176).

Cutoff for API Sensitivity Specificity PPV NPV Accuracy

≥0.10 98.0 11.8 59.4 81.8 60.8

≥0.20 94.0 29.0 63.5 78.6 65.9

≥0.30 93.0 51.3 71.5 84.8 75.0

≥0.40 88.0 63.2 75.9 80.0 77.3

≥0.50 83.0 80.3 84.7 78.2 81.8

≥0.60 75.0 86.8 88.2 72.5 80.1

≥0.70 71.0 93.4 93.4 71.0 80.7

≥0.80 58.0 87.7 93.6 63.2 73.9

≥0.90 42.0 98.7 97.7 56.4 66.5

API, amyloid prediction index; KBASE, Korean Brain Aging Study for Early diagnosis
and prediction of Alzheimer’s disease; PPV, positive predictive value; NPV, negative
predictive value.
The results of exploration on how the sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and accuracy value change as the API
increases from 0.1 to 0.9 by 0.1 are presented as percentage values.

TABLE 5 | The results of multivariate logistic regression analysis for simpler
prediction models for cerebral amyloid positivity.

Predictive variable Beta Walds OR (95% CI) p-value

APOE4 only model

Age −0.027 1.19 0.97 (0.93 to 1.02) 0.275

Sex −0.165 0.15 0.85 (0.36 to 1.98) 0.703

Years of education 0.080 3.83 1.08 (1.00 to 1.17) 0.050

APOE4 positivity 2.42 37.48 11.27 (5.19 to 24.46) <0.001

Intercept 0.659

WLR only model

Age −0.052 4.59 0.95 (0.91 to 1.00) 0.032

Sex −0.397 0.95 0.67 (0.30 to 1.50) 0.672

Years of education 0.132 10.77 1.14 (1.06 to 1.24) 0.001

WLR −0.432 18.14 0.65 (0.53 to 0.79) <0.001

Intercept 3.84

Hypertension only model

Age −0.022 0.95 0.98 (0.94 to 1.02) 0.330

Sex −0.314 0.66 0.73 (0.34 to 1.56) 0.418

Years of education 0.086 5.60 1.09 (1.02 to 1.17) 0.018

Hypertension −0.915 7.83 0.40 (0.21 to 0.76) 0.005

Intercept 1.647

OR, odds ratio; CI, confidence interval; APOE, apolipoprotein; WLR, word list recall.
The result of multivariate logistic regression analysis is shown with odds ratio and
Wald value for each predictive variable.

prediction models have also been reported (Burnham et al., 2014;
Ovod et al., 2017; Park et al., 2017; Nakamura et al., 2018).
Unfortunately, blood biomarkers are not yet readily available
in clinical practice or clinical trials since they need further
standardization, wide incorporation of the method, large-scale
testing for normalization, and establishment of assay equipment.
Haghighi et al. developed prediction models for cerebral amyloid
positivity in 218 non-demented (168 MCI and 50 cognitively
normal) subjects from the ADNI cohort (Haghighi et al.,
2015). They proposed three models: one with neuropsychological
variables, one with blood-based biomarkers, and the third
with both variables. These models had AUCs of 0.76, 0.74,

TABLE 6 | The pairwise comparison of receiver operating characteristic curves for
the final and three simpler prediction models for cerebral amyloid positivity.

Pair KBASE ADNI-2

Final model vs. APOE4 only model

Difference between areas
(95% CI)

0.073 (0.030 to 0.115) 0.085 (0.050 to 0.120)

Z 3.33 4.79

p-value <0.001 <0.001

Final model vs. WLR only model

Difference between areas
(95% CI)

0.133 (0.068 to 0.199) 0.111 (0.070 to 0.152)

Z 3.99 5.29

p-value <0.001 <0.001

Final model vs. Hypertension only model

Difference between areas
(95% CI)

0.198 (0.117 to 0.279) 0.272 (0.195 to 0.350)

Z 4.79 6.90

p-value <0.001 <0.001

KBASE, Korean Brain Aging Study for Early diagnosis and prediction of Alzheimer’s
disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein;
CI, confidence interval; WLR, word list recall.
The results of pairwise comparison between prediction models using DeLong’s
method are presented with z statistics and p-values.

and 0.87, respectively. However, the blood-based biomarkers
included in the second and third models included prostatic acid
phosphatase, transthyretin, matrix metalloproteinase-10, and
myoglobin, which are not usually available in general memory
clinic practice settings. In addition, the models were not validated
using an independent dataset. In contrast, the API from the
current study can be easily applied to identify patients with a high
probability of amyloid deposition in both clinical practice and
therapeutic trials without further requirements. Since most of the
recent AD clinical trials target amyloid positive patients who meet
the NIA-AA criteria for MCI or AD dementia with a CDR 0.5 or
1, our API model may be useful for screening candidates for those
trials, thereby reducing screening failure rate.

APOE4 positivity, history of hypertension, and WLR score
were included in the final amyloid prediction model. The
association between APOE4 status and amyloid positivity has
been repeatedly reported in previous studies (Jack et al., 2015b;
Jansen et al., 2015; Ossenkoppele et al., 2015; Gottesman et al.,
2016). Similar to our results, these studies showed APOE4
positive MCI or AD dementia individuals were more likely
to be amyloid positive. The scores of verbal delayed recall
tests were also reported to be a reliable predictor for amyloid
positivity in some previous studies (Bahar-Fuchs et al., 2013;
Haghighi et al., 2015). History of hypertension was negatively
correlated with amyloid positivity, and cognitively impaired
individuals with a history of hypertension were less likely to be
amyloid positive than those without a history of hypertension.
Since chronic hypertension can reduce brain reserves through
overall or regional brain atrophy (Wiseman et al., 2004; Glodzik
et al., 2012; Beauchet et al., 2013; Power et al., 2016; Vemuri
et al., 2017), individuals with a history of hypertension are
more likely to be cognitively impaired with a relatively lower
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pathological burden, such as amyloid accumulation. Although
APOE4, history of hypertension, and WLR score were each
significantly related to cerebral amyloid positivity, the final model
with all the three variables showed superior screening ability
compared to the simper models with only one variable.

Of the demographic variables, years of education were
positively associated with higher probability for being amyloid
positive in our model. Since education is a well-known proxy
for cognitive reserve (Meng and D’Arcy, 2012), highly educated
individuals may endure more cerebral amyloid burden, as
compared to those with lower educational levels (Roe et al., 2008;
Rentz et al., 2010). Although age and sex are closely associated
with AD pathophysiology (Gao et al., 1998; Jack et al., 2015b;
Gottesman et al., 2016), they were not independently related to
amyloid positivity in our study.

A few precautions should be mentioned for the model using
the API. First, the performance of the prediction model or API
was not sufficient to be used as a confirmatory tool for amyloid
positivity and should be used only for screening purposes.
Second, although we externally validated the model using data
from individuals of different ethnic or cultural backgrounds,
further validation is still needed for larger populations including
individuals with various physical or psychiatric co-morbid
conditions in order to broaden the model’s applicability.

CONCLUSION

We developed a cerebral amyloid prediction model with variables
that are commonly available in memory clinic practice. The

prediction model proved to have excellent screening accuracy
for amyloid positivity among cognitively impaired individuals,
including MCI and mild AD dementia, through both internal
and external validation. The API derived from the model can be
useful for screening candidates with a high probability of amyloid
deposition in therapeutic trials for early AD, as well as in clinical
practice.
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