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Remarkable progress in the fields of machine learning (ML) and artificial

intelligence (AI) has led to an increased number of applications of (data-driven)

AI systems for the partial or complete control of safety-critical systems.

Recently, ML solutions have been particularly popular. Such approaches

are often met with concerns regarding their correct and safe execution,

which is often caused by missing knowledge or intransparency of their exact

functionality. The investigation and derivation of methods for the safety

assessment of AI systems are thus of great importance. Among others, these

issues are addressed in the field of AI Safety. The aim of this work is to

provide an overview of this field by means of a systematic literature review

with special focus on the area of highly automated driving, as well as to

present a selection of approaches and methods for the safety assessment

of AI systems. Particularly, validation, verification, and testing are considered

in light of this context. In the review process, two distinguished classes of

approaches have been identified: On the one hand establishedmethods, either

referring to already published standards or well-established concepts from

multiple research areas outside ML and AI. On the other hand newly developed

approaches, including methods tailored to the scope of ML and AI which

gained importance only in recent years.

KEYWORDS

AI Safety, systematic literature review, highly automated driving, value alignment,

adversarial robustness

1. Introduction

Background and motivation

In the field of highly automated driving, non-linear system behavior and an unknown

environment can be addressed by AI systems. These systems need to act safely at

all times – therefore, AI Safety is an important research need. For many AI systems,

especially for systems based on neural networks, classical safety analysis methods can

hardly be applied.Moreover, current standards do not address the development of safe AI

systems. Consequently, for the safety assessment of AI systems the activities validation,

verification, and testing need to be considered. In general, safety is particularly of interest

dealing with technologies. The underlying philosophical question: “What risk are we
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willing to take when we use technology?” has led to

the establishment of corresponding targets and process

specifications in the safety standards (MIT, 2021). The question

of trust in the safety of a system is susceptible if it is controlled—

fully or partially—by an AI controller. In recent years, in

particular, data-driven AI solutions gained importance for

controlling safety-critical systems. This also applies to the area

of automated driving, where driver-less vehicles operated by

machine learning techniques are already a reality, as shown in

Krafcik (2020).

Citing Rudner and Toner (2021), machine learning systems

do not comewith safety guarantees and there are nomeans yet to

ensure that these systems can be operated with a very small risk

of failure. Hence, methods providing safety of AI systems and

approaches for their validation and verification are needed. The

following questions arise: How can AI applications adequately

become safer and resilient against undetected development

errors and system failures during operation? Can conventional

methods be used to develop safe AI applications—in which

use cases do new solutions need to be found? Regarding

the latter, there are use cases where conventional algorithms

can be used in areas wherein an AI solution can be applied

safely. As an example, consider a friction clutch. The pressure

allowed to close it and whether it can be closed at all can

be determined by conventional algorithms. An AI approach

could then be designed to find an optimal filling process in

terms of comfort and wear of the gearshift. In many use cases,

such a dual approach can hardly be applied. For example, if

we think of trajectory planning, it seems difficult to monitor

an AI solution with a conventional approach. The number of

different ways to plan trajectories is too large, and the problem

itself too general. AI solutions and classical solutions are

combinable and can be mutual beneficial, but it is challenging to

identify suitable applications allowing both approaches to fulfill

their potential.

Contribution

The contribution of this paper is an overview of the current

research of AI Safety. In order to identify the most relevant

categories and topics of this field, a systematic literature review

following (Brereton et al., 2007; Kitchenham and Charters,

2007; Liberati et al., 2009; Schumann et al., 2020) was applied.

Based on the results of this review process, two categories

are identified and discussed: the so-called classical approaches

and the new approaches. The section on classical approaches

examines ways of how established norms and standards

address the problem class of AI Safety. Under new approaches

concerning validation, verification, and testing, we summarize

newly developed approaches for the safety assessment tailored

to the needs of AI use cases. In addition, models for the robust

development of AI systems are taken into account.

Outline

This paper is divided into nine sections (see Figure 1). After

the “Introduction” in Section 1, Section 2 examines the main

research areas “Highly automated driving” and “AI safety” and

links to already existing contributions in these fields. Section 3

considers already published literature reviews for the defined

problem class of AI safety of highly automated driving. Section

4 describes the planning and conducting of the “systematic

literature review,” which forms the basis of this review paper.

Sections 5, 6 deal with “classical and new approaches” in the

field of AI Safety based on the elaborated research questions. In

Sections 7, 8, the findings of the provided literature review are

discussed, and topics that, in the opinion of the authors, require

further research are mentioned. Finally, Section 9 summarizes

the contribution and limitations of this paper.

2. Background

2.1. Highly automated driving

Over the last years, there have still been many traffic

accidents. Alone in the United States of America, almost 40,000

lives were lost in 2020 (National Center for Statistics and

Analysis, 2017; Stewart, 2022). The automation of driving tasks

can improve traffic safety while improving traffic efficiency,

environmental impact, and comfort. However, classical safety

approaches do not consider Artificial Intelligence in systems.

According to the system theory described by Ropohl (2009),

a system acts in a context in order to fulfill its purpose. In

Systems Engineering, the purpose and understanding of the

context are important tasks (Walden et al., 2015). Then, a

system solution is developed that can fulfill the purpose. Models

of the complex automotive system support its development.

However, the models cannot be complete due to the complex

dependencies and the linearization of the behavior. Here, two

potential classes of problems emerge that can be more effectively

solved by AI. These are dealing with non-linear behavior and an

unknown environment.

Problem 1: Non-linear behavior: This problem class can

describe all complicated and complex problems. Schroeder

(2010) describes the possible application of neural networks

for non-linear systems. However, systems having non-linear

behavior are classical problems. Classical problems consider a

known system, e.g., a clutch controlling the maximum contact

pressure. In these systems, both the purpose and the context

are well-defined and do not change. Furthermore, for these

problems, the systems have been continuously optimized over

the years.

Due to existing non-linear behavior resulting from the

underlying physics or the interaction of different system

parts, the question arises of whether AI algorithms can

improve control.
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FIGURE 1

Structure of the review.

Problem 2: Unknown Environment: This class deviates

from the classical approach. In this problem class, the system’s

purpose is clearly defined, but the system’s environment

may change.

One example is an in-car lane departure assistant. The task of

this system is to keep the car in the specified lane automatically.

In doing so, the system must be able to deal with different

weather conditions and road markings. Since here, the testing

of the function can only be done partially due to the pervasive

environmental conditions, not all failures can be identified.

Thus, this problem class describes the operation of an unsafe

system in an unsafe environment.

To conclude, the problem classes of non-linear behavior

and unknown environment illustrate the need for AI systems.

These systems need to act safely; therefore, AI Safety is an

important research need.

2.2. What is AI, and how does it work?

According to Nilsson (2009) and Russell and Norvig (2022),

Artificial Intelligence (AI) is the subfield of computer science

dealing with the task of building intelligent entities, which

means to enable these entities to function appropriately and with

foresight in their environment.

In recent years, data-driven AI solutions, or machine

learning (ML) solutions1, have gained particular importance.

Machine learning deals with systems that use mathematical

and statistical methods to extract regularities and patterns from

large amounts of data to solve complex decision or control

problems. The process of deriving or as well improving a

decision or classification rule is called training. Mostly, training

corresponds to solving amathematical optimization problem for

1 In the course of this work, the terms machine learning solutions and

data-driven solutions are used synonymously. Since machine learning

is based on the extraction of regularities and patterns from data-

sets, every machine learning solution can also be classified as data-

driven. Conversely, there are data-driven methods, for example, in the

field of statistics, which cannot be associated with machine learning.

Consequently, the terms are to be distinguished in general. In the given

context, however, in the opinion of the authors, there is no confusion

regarding the meaning of the terms, and therefore the synonymous use

of these terms is permissible.
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data adaptation by (numerically) minimizing or maximizing a

loss function.

According to Sutton and Barto (2018) and Frochte (2019),

the field of ML can be subdivided into three broad categories:

supervised learning, unsupervised learning, and reinforcement

learning2. In the supervised learning paradigm, ground truth

in terms of labeled data is used for the training of the learning

system. The objective is to learn the relationships between the

data and its labels in such a way, that the system is able to

label accurately unseen data. In the field of autonomous driving,

solutions based on this approach are, for example, used for tasks

like traffic sign detection, pedestrian detection, or road marking

detection (Bachute and Subhedar, 2021). Unlike supervised

learning, unsupervised learning does not rely on labeled data.

Methods belonging to this field seek for hidden and previously

undetected patterns or groupings inside a given data set without

prior information on the data. In the automotive sector this type

of machine learning can be used for example, as shown in Li

et al. (2018), for the clustering of vehicle encounter data. The

training principle of reinforcement learning techniques is based

on the principle of learning through interaction. Due to repeated

interaction with its environment, the learning system discovers

which actions generate positive or negative feedback to solve a

given task. The system is then encouraged to derive a strategy

that generates maximal feedback in terms of a numerical reward

function. As suggested by Kober et al. (2013), reinforcement

learning approaches are particularly suitable for application in

the field of robotics. Furthermore, as shown in Folkers et al.

(2019), these methods can be used to derive a controller for a

self-driving car.

For the mathematical representation of machine learning

systems, so-called artificial neural networks (ANN) are often

used. From a purely mathematical viewpoint, any ANN is

a parameter-dependent function approximator allowing to

approximate a broad class of functions arbitrarily accurate

(Hornik, 1991). Especially this feature is fundamental for their

broad and frequent use. In terms of their design, structure, and

functioning ANNs mimic human brains, which also explains

their naming. For a detailed description of the concept, see

Hecht-Nielsen (1992) and Abdi (1994).

2 In the context of this paper we only aim to give a rough overview

of the field of ML and its subdivisions. Therefore, we content ourselves

with dividing the field into these three categories. For the sake of

completeness, we would like to point out that a finer subdivision can

be made. In Russell and Norvig (2022), and also in Sarker (2021) next to

supervised learning, unsupervised learning, and reinforcement learning,

the additional sub-field of semi-supervised learning is mentioned—in

Ayodele (2010) an even finer subdivision is introduced. For an insight into

these additional sub-areas, we refer to the literature cited.

2.3. What is safety?

Colloquially, safety is understood as a state of freedom from

risk or danger. In technology, several definitions of the term

safety can be found:

1. Following ISO Central Secretary, International

Electrotechnical Commission (2014), the term safe describes

a state to protect against recognized hazards which likely

cause harm.

2. In ISO 61508 (International Electrotechnical Commission,

2010), safety is defined as freedom from unacceptable risks.

An acceptable or tolerable risk refers to a risk that is tolerated

in a predefined context on the basis of current society values.

3. According to MIL 882E (Department of Defense Systems

(DoD), 2012), safety is understood as freedom from states

which might cause injury, death, illness, damage to or loss of

property or equipment or environment.

4. The standard ISO 26262—see ISO Central Secretary

(2018c)—focuses on functional safety in the automotive

context. It describes functional safety with the lack of

unreasonable risk caused by hazards that are caused by the

malfunctions of E/E systems.

According to these definitions, one may say that a system

is safe if it can be operated free from all the identified and

non-tolerable hazards. This definition also applies to systems

comprising AI algorithms, making it necessary to assess their

safety. Since many AI systems are built upon ANNs and

established safety analysis procedures are hardly applicable in

this case—see Section 6 for a more detailed discussion - these

methods have to be adapted, or novel approaches have to

be found.

2.4. How to assess the safety
performance of an AI system?

Proving safety for AI systems in a rigorous way is a difficult

task and still an open problem—see, for instance, Section 6. This

makes verification and validation approaches to ensuring safety

requirements all the more important.

2.4.1. Verification

As pointed out in Gausemeier and Moehringer (2002),

verification colloquially is the answer to the question: Is the

correct product being developed? Technically, according to ISO

Central Secretary (2015), verification deals with the task of

confirming through the provision of objective evidence that

requirements have been satisfied. Thus, following Fisher (2007)

and Goodfellow and Papernot (2017), verification aims to give

confidence that the product was built adequately and that

it will not misbehave under a vast range of circumstances.
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Usually, the process of verification is realized formally. However,

for the verification of ML systems, alternative methods are

required (see Section 6).

2.4.2. Validation

Informally, by Gausemeier and Moehringer (2002),

validation seeks an answer to the question: Is the right product

being developed? In a technical context, validation deals with

the issue of confirming by providing objective evidence that the

requirements for an intended application have been satisfied.

In contrast to verification, systems are not validated formally.

Rather, appropriate tests are designed and executed for the

process of validation.

2.4.3. Testing

Following Ebel (2015), by testing we understand the

determination of properties of a system. In particular, testing

provides information about the system, which can be used

to check whether the system satisfies defined requirements,

objectives, or hypotheses entirely, partially, or not.

2.5. Does AI/ML fit into current safety
standards?

One might be tempted to view machine learning as just

a novel paradigm for designing and implementing software

components for cyber-physical systems. So the question arises:

Can ML-based systems be designed, verified, and certified

according to current safety standards?

Salay et al. (2017) analyzed to which degree ML-based

systems could satisfy ISO26262. They conclude that while a large

portion of the standard could be satisfied, there exists a set of

open issues:

1. ML can create new hazards not due to malfunctioning of the

component but due to the complex interaction with humans.

2. Due to its novel development cycle, ML-based systems have

distinct faults and failure modes.

3. The capabilities of an ML-based system are inherently tied

to the quality of the training data-set. However, this data set

is—by definition—incomplete.

4. ML systems having a black box character, e.g., systems based

on ANNs, violate the call for hierarchical decomposition.

5. ISO26262 mandates specific techniques for software design,

verification, and validation. Some of which are only valid for

imperative programming languages.

Consequently, we have to conclude that ML-based systems

cannot fully satisfy current safety standards. In 2018 ISO

initiated a standardization project toward AI: ISO/IEC JTC 1/SC

42 Artificial intelligence. Within this project, working group 3

(WG3) focuses on trustworthiness. One aspect of the WG3 is

to investigate approaches to realize AI systems’ safety as well

as robustness, reliability, resiliency, accuracy, and privacy. In

addition, WG3 has a project on AI risk management, which

aims at a standard to address certification processes. A good

overview of the current state of “AI standardization” within

ISO/IEC JTC 1/SC 42 can be found in Zielke (2020). ISO/IEC

AWI TR 5469 (Artificial intelligence—Functional Safety and AI

systems) addresses precisely the issue of safety. Also, ISO26262

is currently working on its 3rd edition, in which AI/ML will

be addressed. Besides these efforts toward standardization, for

several essential topics (especially concerning “safety”), the

scientific basis is not sufficiently solid yet, as concluded in Zielke

(2020) with three current issues:

• “Formal methods for the verification of neural networks or

for the assessment of their robustness (Zielke, 2020)” (c.f.

Huang et al., 2020).

• “Architectures and training methods for robust solutions

based on deep neural networks (Zielke, 2020)” (c.f. Becker

et al., 2020).

• “Methods and tools for generating comprehensible

explanations for AI-based decision processes (Zielke,

2020)” (c.f. Goebel et al., 2018).

One key aspect of developing safety-critical systems is the

assurance case. The safety argument proves that the system is

safe and essential for certification. Schwalbe and Schels (2020)

highlight a set of key challenges to overcome in order to assure

the safety of ML-based systems: (1) powerful solvers, (2) use of

expert knowledge, (3) validation of data and model diversity, (4)

model introspection with guarantees. The authors highlight the

challenges along the safety life cycle and provide a detailed table

listing promising approaches and open challenges.

UL4600 (Underwriters Laboratories, 2020) addresses

the safety of autonomous driving systems without human

intervention. Therefore, the standard relies on a claim-based

approach by using assurance cases. Koopman et al. (2019a)

build on the UL4600 standard and derives an approach with

goal-based safety cases, and feedback loops in the context of

autonomous driving.

2.6. How is safety seen in AI-community?

The AI community uses the term AI Safety. As summarized

in Berlinic (2019), AI Safety may conclude that AI is beneficial

or detrimental. AI Safety needs research work to ensure it is

beneficial. Yampolskiy and Fox (2012) define the term Safety

Engineering for Artificial General Intelligence with the aim

of creating safe systems. Amodei et al. (2016) describe AI

Safety by mitigating accident risk in machine learning systems.

Russell et al. (2015) explain safety by complying with the terms
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verification, validity3, security, and control. Besides safety the

terms trustworthiness and confidence need to be considered.

According to the mission of the Stanford Center for AI Safety,

systems with AI must be safe and trustworthy to facilitate their

application in society (Barrett et al., 2022).

In the understanding of this paper, AI Safety deals

with the interaction in operating systems to ensure a safe

operation (cf. Yampolskiy and Fox, 2012; Amodei et al., 2016.

Safety mechanisms help to come to safe operating states.

Trustworthiness, verification, validation, security, and control

need to be considered in the field of AI Safety (cf. Russell et al.,

2015; Barrett et al., 2022).

In the following, seven main challenges in the context of

beneficial AI are described (Berlinic, 2019):

• Fairness: Machine learning uses decision-making, which

might be biased. For instance, the data set is biased due to

human prejudices. “AI safety asks:How do we build AI that

is unbiased and does not systematically discriminate against

underprivileged groups?” (Berlinic, 2019).

• Transparency: In many cases it is difficult to understand

how ML systems make decisions. Especially when the

ML system includes a neural network, there is a lack

of explainability of the decisions made by the system.

“AI safety asks: How do we build AI that can explain its

decisions? How do we build AI that can explain why it

made the wrong decision?” (Berlinic, 2019) (c.f. research

field Explainable AI).

• Misuse: The algorithms can be maliciously used by people.

“AI safety asks: How do we ensure that AI is only used for

good causes?” (Berlinic, 2019).

• Security: AI, like every software, is vulnerable to malicious

attacks. This might result in unintended actions of the

initial design purpose. “AI safety asks: How do we prevent

malicious actors from abusing imperfect AI Systems?”

(Berlinic, 2019).

• Policy: AI has an increasing impact on products and

society. “AI safety asks: How do we ensure that AI benefits

all, not only a few? How do we handle the disruptions that

will be caused by its development?” (Berlinic, 2019).

• Ethics: AI needs to act under certain ethical standards.

Human values are one of the broader goals to limit

functionalities. “AI safety asks:How do we decide the values

that AI promotes?” (Berlinic, 2019).

• Control/Alignment: AI must be aligned with the values of

the designer so that no misinterpretation can happen. “AI

safety asks: How do we align AI with our values so that it

does what we intend, not what we ask?” (Berlinic, 2019) (c.f.

research field Value Alignment).

3 The authors use the term validity, however in this work we will use the

term validation for describing that a system fulfills its purpose.

TABLE 1 Overview of related publications.

Type Publication Main topic Covered

years

Survey Juric et al., 2020 Quantitative review with future trends 1985–2019

Report European

Commission,

2020

Implications of legislations concerning

AI

Not defined

Blog Dawson, 2017 Application to critical infrastructures Not defined

Blog Krakovna, 2021 AI alignment Not defined

As can be seen, AI Safety is a broad topic that exceeds

the scope of a single paper. Hence, in this publication, we

will focus on the engineering question: How can AI-based

systems be designed and executed so that they do not cause

accidents? Here, the term accident is defined as unintended

and harmful behavior that may emerge from poor AI design

(Amodei et al., 2016). According to Amodei et al. (2016)

accidents caused by AI-based systems mainly stem from

three issues:

• Having the wrong objective function. The wrong function

can result from typical mechanisms like negative side effects

or reward hacking (i.e., algorithms quickly use bucks to get

unintended rewards).

• Having an objective function which is not affordable to

evaluate it frequently. For instance, a cleaning robot might

not know how to handle each possible tiny object (suck it

in or leave it).

• Undesirable behavior throughout the learning process,

e.g., from insufficient training data. For instance, the

vehicle’s environment is changing with new devices and

infrastructure to handle.

3. Related work

Table 1 gives an overview of the related works considered in

this publication.

In Juric et al. (2020), the authors review the topic of

“AI Safety” in a quantitative manner. Via a dedicated list

of keywords, they queried literature databases (SCOPUS,

Web of Science, Google Scholar) in order to see how

these topics evolved from 1985 to 2019. The single

largest growth is in interpretability. Strong growth in the

number of publications is also in AI ethics and adversarial

robustness, medium growth is in value alignment and safe

exploration, while only slight growth is in fairness and privacy.

Emerging topics seem to be distribution shift, safe exploration,

interruptibility, and reward hacking. However, a substantial

number of ideas in the area of AI Safety is not peer-reviewed
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published. Nonetheless, a set of future research directions can

be seen:

• “One of the most important open problems in

explainability is that there is no agreement on what

an explanation is Juric et al. (2020).” The evaluation of

the understanding of explanations to humans is not well

explored, and there is still no algorithm that provides both

high accuracy and explainability.

• Learning a reward function is essential for the future

of the field of value alignment. In addition, value

discovery is another major topic in this research direction.

It is the identification of better reward functions with

aligned algorithms.

• In the direction ofAI governance, there is a lack of concrete

policy suggestions.

• The direction of corrigibility focuses on an online

correction of algorithms. The so-called “corrigible

reasoning” deals with the design of agents, so they update

their reasoning and do not have the benefits of escaping or

manipulating something (Soares and Fallenstein, 2017).

• The direction of safe exploration and distributional shift

handles detecting and adjusting behaviors of agents to

prevent mistakes (Amodei et al., 2016).

• Adversarial robustness describes the need to minimize the

success rates of adversarial attacks.

• AI Ethics differ between cultures and evolve over time

(Awad et al., 2018; Hagerty and Rubinov, 2019). There is

a need to research moral preferences.

Furthermore, the European Parliament, Council, and the

European Economic and Social Committee review the safety

implications of legislation concerning AI. For instance, the

legislation should contain requirements to address the risks of

faulty data input at the design phase and processes to ensure

quality. In addition, the report states that a risk assessment

is necessary not only before entering a product into a market

but also before important changes during the product life-cycle

(European Commission, 2020).

Besides Juric et al. (2020) and the report of multiple

European institutions, we especially found several blog entries

dealing with literature reviews on AI Safety (c.f. Dawson, 2017;

Krakovna, 2021). Hence, there is a need for further peer-

reviewed literature reviews, specifically in areas that are not

covered in Juric et al. (2020) and the EU report.

4. Systematic literature review

This chapter presents the applied, systematic process of

collecting and reviewing the scientific works on the topic.

Besides the approach, the data collected during the review and

a summary are provided.

TABLE 2 Methodology for the systematic literature review (adapted of

Brereton et al., 2007; Kitchenham and Charters, 2007; Schumann

et al., 2020.

Chapter Phase Activity Description

4.1.1 Planning Select database Select based on research

questions and keywords

4.1.2 Conducting Forward search and

cluster

Search in database with

search phrases and

cluster

4.1.3 Conducting Backward search Search in references of

publications

4.1.4 Conducting Select relevant

publications

Select based on criteria

5 Documenting Document approaches Document classical

approaches

6 Documenting Document approaches Document new

approaches

4.1. Research methodology and its
application

In order to conduct a valuable review of the existing

literature and cover the addressed topic, a systematic approach is

required. The literature review is based on the process described

in Brereton et al. (2007), Kitchenham and Charters (2007),

Liberati et al. (2009), and Schumann et al. (2020). In the planning

phase, the database is created, based on research questions,

one example and keywords. The conducting phase consists

of a forward search which establishes the reference list. The

following backward search investigates this reference list. The

documenting phase in chapter 5 and 6 focuses on the identified,

relevant publications.

The following Table 2 provides an overview of six

steps which are part of the three research phases of

planning, conducting and documenting introduced in

Brereton et al. (2007).

Figure 2 illustrates the literature search based on the

PRISMA (Preferred Reporting Items for Systematic reviews

and Meta-Analyses) checklist (c.f. Liberati et al., 2009) with

the number of relevant publications in each step of the

search process.

4.1.1. Planning phase—Select database

4.1.1.1. Research questions

The methodology starts by formulating the research questions,

which are derived from the problem of applying unsafe systems

in unknown environments. The answers to the following

questions are sought in the context of the example described in

the subsection “Example” following “Keywords”:
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FIGURE 2

Overview of the number of publications in each activity based on PRISMA (c.f. Liberati et al., 2009).

FIGURE 3

Keywords.

• What have been the trends in AI over the last 10 years?

• Which are the problem classes for AI Safety in the context

of highly automated driving?

• Do suitable validation approaches exist in the identified

problem classes?

• Can complex decision-making strategies be learned

and tested?

These various questions can be summarized into one guiding

question: Which approaches and methods can be applied for

the testing, verification, and validation of AI systems for

highly automated driving?

4.1.1.2. Keywords

In the beginning, core keywords were identified (see

Figure 3). The keywords were substantiated based on the

research need and example, as well as on the results in the

forward search.

Due to the large number of contributions we have found in

this way, we have decided to narrow the focus and exclude the

following topics.

• Improvement of systems through AI Algorithms, e.g.,

sensor fusion.

• AI and Ethics.

• The Security of AI and cyber-physical systems.

4.1.1.3. Example

In order to narrow down the focus of the research, this

section describes a reference example.

Another aspect of understanding the challenges AI Safety

faces is to investigate the intended application in which AI can

be used. The question here is whether problems can be derived

from the applications that AI can better solve.

In general, the use case is intended to consider autonomous

driving. Autonomous driving is the autonomous arrival at a

given destination without the intervention of a human being.

For this purpose, the vehicle must be able to orient itself in the

environment and make independent decisions.

In order to be able to make decisions, the vehicle must be

able to identify objects in its environment independently and

derive specific actions from them. According to SAE J3016, this

corresponds to SAE level 4, i.e., a safety-critical system (SAE

International, 2021).

A vehicle is a complex system with multiple subsystems

involved in achieving its functionalities from a safety

perspective. For instance, the navigation system has the

task of suggesting a route to the destination from the vehicle’s

current position. A control computer is then responsible for

controlling the active steering system from the suggested path
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TABLE 3 Overview of the database sorted by number of publications.

Type Publication Timeframe Count

Journals IEEE Transactions on Intelligent Transportation Systems 2015–2021 2,400

Reliability Engineering and System Safety 2015–2021 790

Journal of Artificial Intelligence Research 2015–2021 360

Artificial Intelligence for Engineering Design, Analysis and

Manufacturings

2015–2021 303

German Journal of Artificial Intelligence 2019–2021 174

Frontiers in Artificial Intelligence and Applications 2015–2021 140

Conferences IEEE Conference on Computer Vision and Pattern Recognition 2015–2021 5,817

International Conference on Software Engineering 2015–2021 4,742

International Conference on Artificial Intelligence and Advanced

Manufacturing

2019-2021a 177

Further Publications Workshops: WAISE—Workshop on Artificial Intelligence Safety

Engineering, AI Safety Workshop

2019–2021 70

Standards: ISO26262-(1-12:2018), ISO/PAS 21448:2019, ASAM

OpenX, ANSI/UL4600-2020

2018–2021 18

Blog articlesb – 5

aAvailable to the authors on ACM Digital Library.
bBlog articles represent personal opinion without any peer review process. The following blog articles were considered: Ortega et al. (2018), Burton (2021), Gauerhof et al. (2021), Krakovna

(2021), and Faculty.

so that the vehicle reaches its destination. A situation awareness

system derives the current situation of the vehicle and the

environment from various sensor information. In a hazardous

situation, the vehicle must be controlled and stopped by a brake

assistant, for example, so that no severe damage is caused. The

interaction of various independently acting systems enables the

realization of an autonomously driving vehicle.

The vehicle operates in an Operational Design Domain

(e.g., public road) and interacts with other systems like

traffic participants and infrastructure. This so-called System

of Systems can contain AI systems. The typical challenges

of System of Systems like different life cycles, operational

and managerial independence, and many stakeholders with

sometimes conflicting objectives need to be addressed.

In addition, an autonomous vehicle is embedded in

other systems. If the position and speed are continuously

communicated to a traffic control system, the current traffic

situation can be created based on this data. If a forecast

is also provided, the navigation system can determine and

consider alternative routes. Moreover, newly learned strategies

for successfully evaluating and reacting to a situation can be

transferred to a fleet of autonomous vehicles. To support the

situation representation system, access to external sensors may

improve the identification of objects and the system’s reaction.

Thus, an autonomous driving car is a cyber-physical system

that interacts with other systems in a highly complex System

of Systems.

4.1.1.4. Database

With import functions on high-ranked journals and

identified conferences as well as other publications, a literature

basis for the forward search was created. The authors identified

that not only journals and conferences but also internet

documents contain new and relevant information, which should

be considered (see Table 3; c.f. Schumann et al., 2020). The total

number of researched publications is 14,996.

The literature management tool Citavi allows to collect the

publications. Afterwards, an analysis is conducted in the tool

MAXQDA (VERBI Software, 2021).

4.1.2. Conducting phase—Forward search and
cluster

In the following, the results of the forward literature search

are described with metrics. During the forward search, nine

main categories in the field of AI Safety were identified (see

Figure 4).

Figure 5 shows how often the selected keywords in this

contribution are used in the publications over the years. There is

high volatility in the usage of certain keywords like robustness.

In conclusion, there is no clear tendency. Possible causes are

many safety-related documents in 2016 and the tendency to use

more specific keywords.

As Figure 6 points out, the literature research resulted in

more than 55 relevant documents in the area in focus. As a result,
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the authors conclude that the amount of publications is sufficient

for the forward search phase.

In conclusion, over the past 6 years, there has been a shift of

topics more to safety, vehicle(s), and monitoring. Furthermore,

FIGURE 4

Relative occurrences of categories in database.

the high percentage of certain keywords indicates a good

selection of the publications.

4.1.3. Conducting phase—Backward search

The backward search in references of identified publications

result in 80 more publications to consider (see Figure 2). Based

on the results of the backward search, the list of contributions

was divided into the two areas, “established approaches and

methods” and “new approaches and methods” (see chapters 5

and 6). The two areas were defined to give a better overview and

address the possible use of established approaches and methods.

4.1.4. Conducting phase—Select relevant
publications

The final selection of relevant publications are based on the

following criteria:

• AI Safety-related

FIGURE 5

Occurrences of keywords in publications.
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FIGURE 6

Occurrences of search phrases in publications.

• Selection of high-ranked journals and conferences.

Selection of blogs, norms, and standards (see Table 3)

• Identified with search phrases or further references

identified with backward search (see Section 4.1.2)

• Suitable for the example of highly automated driving (see

example in Section 4.1.1).

Publications related to the criteria “non-English and

non-German articles” and the keywords “ethics, security,

improvement of system(s)” are excluded to limit the scope.

According to the results of the backward search, the

following particularly relevant topics emerged: robustness (6, 27)

(read: number of publications in 2015, number of publications in

2021), value alignment (0, 2) and validation (10, 15), verification

(16, 30), testing (72, 105).

5. Classical approaches

Classical or established approaches describe existing

approaches for non-automated and automated systems. For

instance, the neural network’s relevant approach to neuron

coverage resembles the traditional code coverage testing

in computer science. Hence, it is categorized as a classical

approach. As a result, classic or established approaches are

already published standards and established concepts in

different research fields over more than 10 years. In the

first section, classical approaches are summarized based on

model approaches.

5.1. Modeling approaches

Different verification models exist to systematically and

formally verify statements of an argument. The field of

argumentation theory deals with arguments for logic and

rhetoric. An example of a general statement is the claim

stated in Figure 7. The already 1958 published Toulmin model

with additional content in a new edition (Toulmin, 2003)

is shown in Figure 7. This classical approach can handle

autonomous learning systems with logic (Collopy et al., 2020).

Starting from a claim, one or multiple warrants describe the

guarantees for this claim. These can be rebuttals or rely

on evidence.

Further extensions are done by Hirata and Nadjm-Tehrani

(2019) with a combination of Goal StructuringNotation with the

Systems Theoretic Process Analysis to support the safety claim.

In the field of Neural Networks, Kurd’s Neural Network

Development Model can be applied. It integrates hazard analysis

in the development of the neural network’s knowledge and deals

with neural networks developed specifically for safety-critical

use (Kurd and Kelly, 2003).

Shalev et al. introduce a formal model of safe and scalable

self-driving cars. The contribution of the paper is two-fold:

Firstly, a mathematical model called “Responsibility

Sensitive Safety” (RSS) formalizes an interpretation of “duty and

care.” It is designed to achieve the following three goals:

• Its application complies with how humans interpret the law

of duty of care.
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FIGURE 7

Example classified according to the Toulmin method—extract (c.f. Toulmin, 2003).

• The interpretation leads to a useful driving policy, i.e., it

should lead to an agile driving policy rather than overly-

defensive driving.

• The interpretation is efficiently verifiable so it can be

thoroughly proven that a self-driving car correctly applies

the interpretation of the law.

Secondly, a semantic language consists of units,

measurements, action space, and specifications. The language

is used to plan, sense, and actuate an autonomous vehicle. The

authors state in particular that the model guarantees (from a

planning perspective) that there will be no accidents caused by

the autonomous vehicle (Shalev-Shwartz et al., 2018).

Further safety argumentation is realized in Burton et al.

(2019) and Schwalbe et al. (2020). Burton et al. (2019)

developed an approach for building confidence arguments.

These arguments are used for the evaluation of performance in

machine learning. The approach was applied for the evaluation

of pedestrian recognition.

5.2. Norms, standards, and roadmaps

Multiple norms and standards currently address the

topic of AI Safety. Furthermore, the domain focus of this

contribution is on highly automated driving. For a better

overview, the contributions are chronologically introduced.

They focus on approaches as well as challenges, guiding

questions, requirements, and classifications in the context of

AI Safety.

2018: For automotive safety, the ISO 26262:2018 addresses

functional safety. The norm categorizes the risk by Automotive

Safety Integrity Levels (ASIL) to differentiate the proposed

measures of handling the risk levels. Inductive methods like the

Failure Mode and Effects Analysis (FMEA) have a bottom-up

approach to start with the occurred effect first, subsequently

deriving the effect’s causes. In addition, deductive methods like

the Fault Tree Analysis (FTA) use a top-down approach (Salay

et al., 2017; ISO Central Secretary, 2018b, p. 11). These result

in safety considerations starting from the system and refining it

to components with, for instance, their probabilities of default.

With the FTA, a probability of default on the system level can

be derived.

2019: In April 2019, the European High-Level Expert Group

on Artificial Intelligence (HLEG-AI) (HLEG, 2019; Independent

High-Level Expert Group on Artificial Intelligence, 2020)

published Ethical, Legal, and Technical “Key Requirements” for

reliable AI systems. The seven requirements include:

• Human Agency and Oversight

• Technical Robustness and Safety

• Privacy and Data Governance

• Transparency

• Diversity, Non-discrimination, and Fairness

• Societal and Environmental Wellbeing

• Accountability.

In a report considering trust in human centered AI, it is

stated to realize safety, a fallback plan and a proactive testing

of safety measures is necessary. Moreover, safety measures

should depend on the risk posed by AI systems. (HLEG, 2019;

Independent High-Level Expert Group on Artificial Intelligence,

2020).

In the white paper titled “SAFETY FIRST FOR

AUTOMATED DRIVING,” multiple automotive companies

address the issue of nonexistent solutions in the topics of

automated driving, e.g., safety assurance of AI. They argue

that safety-related use cases need to be analyzed for different

safety level assurances. Other topics of interest are functional

descriptions, assessment, development process, verification,
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validation, experiments, safety analyses, and safe design

(Wood, 2019).

The roadmap SafeTRANS subdivides ten categories for

future human-machine systems: integrity and certification,

cooperation, context, strength, responsibility, and reflection. For

instance, the categories autonomy is subdivided in maneuver,

mission, collaborative, and autopoietic autonomy (SafeTRANS,

2019a,b).

Diverse norms rank and categorize future areas of interest

according to categories like IT-safety and security (SafeTRANS,

2019a).

2020: In 2020, the HLEG-AI presented its final assessment

list for Trustworthy Artificial Intelligence. (European

Commission, 2020) In total, the group identified four ethical

principles and seven requirements which companies can follow

to achieve trustworthy AI. For the general safety of AI, the AI

HLEG derive five key questions:

• “Did you define the AI system’s risks, metrics, and risk

levels in each specific use case?”

• “Did you identify the possible threats to the AI system

(design faults, technical faults, environmental threats) and

the possible consequences?”

• “Did you assess the dependency of a critical AI system’s

decisions on its stable and reliable behavior?”

• “Did you plan fault tolerance via, e.g., a duplicated system

or another parallel system (AI-based or ‘conventional’)?”

• “Did you develop a mechanism to evaluate when the AI

system has been changed to merit a new review of its

technical robustness and safety?”

In contrast to the specific autonomous focus of some

norms and standards, the UL4600 is the standard for safety

for evaluating autonomous products. The standard gives

mandatory and recommended advice in five subcategories

for each topic. For machine learning, the standard gives the

following six criteria to be considered: acceptable capabilities

(1), acceptable performance (2), acceptable data (3), robust

to data variations (4), the post-development does not

comprise the safety (5), safety also for every other AI not

considered in machine learning (Underwriters Laboratories,

2020).

2021: Other organizations state questions to address the

“future” topic of safety. The European initiatives OSS.5 hosts an

event for system safety for SAE level 4 and 5 automated vehicles.

On its website, the questions are risen (Tomorrows Business

GmbH, 2022):

• How to formulate a continuous safety case in the field of

autonomous driving?

• How to integrate safety of functional operations in the field

of AI, ML, and Deep Neural Networks?

• How to ensure that deep learning-based systems are safe?

The International Telecommunications Union focuses on

“AI for Autonomous and Assisted Driving.” The aim is to

develop performancemeasurement standards for AI that control

self-driving vehicles. In particular, a data protocol for Safe AI

is in development (International Telecommunication Union,

2022).

5.3. Classical approaches and methods of
non-norm and non-standard
publications

5.3.1. Verification

Cheng et al. (2017) propose extensions for existing safety

standards for the usage of neural networks. They extend the

aspects “Implementation understandability,” “Implementation

correctness,” and “Specification validity” from the existing

standard toward safety certification of neural networks. A

concrete use case is presented, and a reference to a NASA

report covering the topic in the aeronautic area is given

(Cheng et al., 2017).

5.3.2. Validation

In the field of validation, Ebert and Weyrich (2019)

summarize mainly non-data-driven AI. According to the

authors, the validation technologies for autonomous systems

can be subdivided into white-box/black-box validation strategy

and manual or automatic validation handling. For AI purposes,

black-box validation strategies, in particular, should be focused

on, as the authors believe AI has a black-box character. As

a result of this, the following methods are evaluated in the

contribution (Ebert and Weyrich, 2019):

• Experiments and empirical test strategies

• Specific quality requirements tests, for instance,

penetration testing, and fuzzing

• Brute-force usage in the real world while running

realistic scenarios

• Intelligent validation, for instance, cognitive and AI testing.

5.3.3. Testing

One approach for testing neural networks for autonomous

driving with synthetic data is described by the authors (Dreossi

et al., 2017). With synthetic data, the authors could test the

CNN4 to detect cars. This approach can be seen as a classical

way of handling the safety analysis bymodeling the environment

4 CNNs, short for convolutional neural networks, refer to special

artificial neural networks, which are used particularly frequently in the

field of image processing. For a brief introduction to the topic, see for

example O’Shea and Nash (2015) and Albawi et al. (2017).
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with synthetic data to train the CNN. Combined with further

approaches to analyze the robustness of CNNs, this may help

generate enough training data. Further research on synthesizing

sensor data is done in Yang et al. (2020).

Koopmann introduces safety cases for SAE level 3 testing.

He argues that better autonomy results in more challenging

situations. The test platform with different actors and systems

involved might be partly applicable for higher levels of

automated vehicles (Törngren, 2019).

Other research focuses on search algorithms to find (test)

data generation in the context of autonomous driving (c.f.

Han et al., 2021).

5.4. Extract of other classical approaches

An extract of other classical approaches in three different

fields is shown in the following.

In the context of neurological research, Sotala (2015)

researched safe AI with concept learningmethods from humans.

He reviews multiple approaches and extracts basic steps for

concept learning.

The authors’ (Page et al., 2018) discuss issues and risks

(such as malfunction, malicious attacks, mismatch of objectives)

appearing in the usage of AI systems. For this purpose

applications of agent-based systems are considered. Some of

the accompanying risks (and potential strategies for mitigating

them) are discussed. These include the change of objectives

and the exploration of the environment. This is especially

beneficial if the AI has unlimited access to all environment

variables. Due to security reasons, this might not be realizable

(Page et al., 2018).

In the context of System of Systems, the topics of safety

and Artificial Intelligence are important. For example, the word

“Artificial Intelligence” is used 25 times and safety 121 times

in the book “Disciplinary Convergence in Systems Engineering

Research.” It is pointed out that a socially acceptable degree

of reliability and safety of highly autonomous vehicles can not

be assured by treating the vehicle solely as a software system

(Koopman and Wagner, 2016). More likely, the vehicles must

be seen as part of a System of Systems (Boehm et al., 2018).

5.5. Current gap in classical approaches
and the resulting need for new
approaches

In summary, the classical approaches focus on established

approaches in multiple research fields. Classical approaches

focus on SAE levels 1–3 and focus on known environments

and applications. However, considering higher SAE levels, new

approaches are necessary for AI Safety. Moreover, the safety

consideration of highly connected AI systems can be further

considered. In order to deal with these new challenges of highly

autonomous systems like vehicles, the next chapter depicts new

approaches for validation, verification, and testing.

6. New approaches and methods

Due to the identified gap, new methods are needed.

In addition, there is the challenge of autonomous driving

(SAE 4) as an application of AI in specification, design, and

implementation. In the following, new approaches are described

for verification, validation, and testing. Exemplary Adversarial

Robustness and Value Alignment are considered in more detail.

6.1. Verification, validation, and testing

Many AI systems—for example, ML systems—differ

considerably from classical software solutions. Classical

software is characterized due to a set of instructions translated

into program code by a developer. Applying these instructions

to input data gives the output, i.e., it is evident how the output

data depends on the input data. In contrast, ML approaches

try to extract inference knowledge from so-called training data.

If the ML system is based on a neural network, the acquired

knowledge is represented in terms of a parameter-dependent

model—the neural network.

Neural networks are created by the concatenation of a

typically large number of mathematical operations and can

schematically be represented in layers consisting of neurons (see,

for example, Abdi, 1994). ANNs consisting of multiple layers are

called deep neural networks (DNN) (see Montavon et al., 2018).

The deeper a network, i.e., the more layers a DNN possesses, the

more complex the input and output variables of the network are

linked with each other. Consequently, if only the effect of a DNN

on given input data is known, i.e., only the corresponding output

can be observed, it is difficult to infer the exact functioning of the

DNN. For this reason ANNs are often characterized as a black

box. According to that, a classical safety analysis is not applicable

since a complete understanding of the system’s functionality

would be required. Additionally, due to the lack of an existing

instruction set, traditional validation, and verification methods

are not suitable for learning systems. Thus, as requested in

Droegemeier et al. (2019), new methods for safety assessment

and, in particular, for verification and validation are required.

6.1.1. Verification—adversarial robustness

In recent years, a requirement that has gained importance

is robustness against so-called adversarial attacks. It refers

to the vulnerability of neural network-based classifiers with

respect to small perturbations in the input data. As shown in
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Moosavi-Dezfooli et al. (2016) or Kong and Liu (2019) at any

fixed input sample, for humans, imperceptible perturbations

can be constructed such that the resulting perturbed input

is misclassified. Inputs of this kind are termed adversarial

examples. A taxonomy of adversarial examples and a review

of different methods for their generation and as well on

countermeasures against adversarial attacks can be found in

Yuan et al. (2019). Two trends can be identified for improving

adversarial robustness. There are, on the one hand, approaches

focusing on the enrichment of the training data-set with a wide

variety of adversarial examples (see for example Szegedy et al.,

2013; Tramèr et al., 2017; Song et al., 2018) and on the other

hand methods based on the adequate choice of the underlying

cost function (see Goodfellow et al., 2014; Madry et al., 2017).

As addressed in Tsipras et al. (2018), Su et al. (2018) increasing

the adversarial robustness of a classifier may negatively affect its

accuracy. In contrast to this, however, in Mao et al. (2019) and

Stutz et al. (2019), it has been shown that it is, in fact, possible to

develop robust and accurate neural network-based classifiers.

Besides developing training strategies to reduce the

vulnerability of ML systems against adversarial attacks, research

is being conducted to find formal guarantees on its robustness—

see for example Hein and Andriushchenko (2017). Formal

verification methods, in general, seek to prove that desired

properties are satisfied using mathematical reasoning. Even

though ANN is a well-defined concatenation of mathematical

operations, a formal analysis of its functionality is usually not

suitable because of its size and complexity. Hence, citing Katz

et al. (2017a), only automatic verification techniques are needed.

According to Katz et al. (2017a) again, it can be shown that

this problem is nondeterministic polynomial-time complete (or

short NP-complete—see for example Goldreich, 2010) and thus

difficult to solve. Progress was made in this respect for ANNs

based upon ReLU5 activation functions—see once more Ehlers

(2017), Katz et al. (2017a), or Katz et al. (2017b), Singla and

Feizi (2019).

6.1.2. Validation—value alignment

For the validation ofML systems, the area of value alignment

is of particular interest and importance. It tackles the issue of

developing a system following the intentions of its developer (see

Soares et al., 2015; Taylor et al., 2016 or as well Hubinger et al.,

2019). To illustrate this issue, consider the fictional cleaning

robot problem presented in Amodei et al. (2016). In order to

keep an office free from messes, a cleaning robot relying on a

ML controller trained by means of reinforcement learning (RL)

techniques shall be used. Assume that the training is designed

5 ReLU, short for Rectified Linear Unit refers to the function x ∈ R 7→

max(0, x). It is a popular choice for activation functions of artificial neural

networks—see for example Goodfellow et al. (2016) and Sharma et al.

(2017).

so that the robot gets rewarded only if it is not perceiving

any messes in the office. Then the most profitable strategy in

terms of reward maximization may be obtained if the robot

deactivates its perception system, which ensures that it will not

find any messes at all. This, of course, gives a solution that

does not solve the actual problem of keeping the office clean.

This example emphasizes that training a ML system may result

in optimal solutions to the underlying optimization problem

but, in general, does not consider other aspects. While harmless

in the context of such an example, this phenomenon—called

reward hacking (see Amodei et al., 2016)—may have serious

implications in other circumstances like the control of self-

driving cars, which implies the special relevance of this topic

in the given scope. To this end, in Taylor et al. (2016) two

main issues are pointed out: specification of the right kind

of objective function and the design of ML systems which

avoid undesirable behavior even if not perfectly aligned with

its developer’s intentions. The authors designate and review

eight research directions that, according to their conclusions,

may be beneficial for the development of reliable and safe

learning systems.

The danger that the incorrect choice of the cost function

can lead to unexpected and undesirable side effects is also

addressed in Amodei et al. (2016). Therein specific attention

is paid to the role of RL in the context of value alignment.

RL is based on regular interactions between the ML system

and its environment, suggesting that this technique can

be used as a valid strategy to solve the value alignment

problem. However, this assumption is challenged by the possible

occurrence of reward hacking, as the cleaning robot example

emphasized. A promising extension of RL for tackling the value

alignment problem is inverse reinforcement learning (IRL)—

citing (Hadfield-Menell et al., 2016) IRL is certainly relevant

to the value alignment problem. In contrast to RL, where an

optimal control is derived solely by the interaction of the ML

system with its environment given a fixed, predefined reward

function, approaches to IRL are based, in simple terms, on the

idea of mimicking control strategies are considered optimal.

More precisely, by observing a system that acts according to

an optimal control strategy, one aims to derive the underlying

reward function, which is then used to train the ML system. For

amore detailed elaboration, see Ng et al. (2000), Hadfield-Menell

et al. (2016), or as well Finn et al. (2016).

6.1.3. Testing

Freeman (2020) provides a list of themes that may serve as

a starting point for test and evaluation methodologies of data-

driven AI systems. In particular, a risk-based test approach is

recommended, and the usage of metrics is highly encouraged.

Concerning the latter already existing concepts may properly

extended or adjusted—see Cheng et al. (2018) and again

Freeman (2020). Additionally Skias (2006) suggests tackling
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during the assessment of a learning system, among others, the

following topics:

• Has the correct data been learned, or has been learning

something else closely related to the data?

• Did the training procedure give a global optimum or only a

local one?

• How does the system react to unseen data or edge cases?

As for non-data-driven systems, any test concept of ML

systems has to comprise criteria that allow proving a statement

by providing sufficient evidence in favor of this statement. As a

procedural approach for this purpose, one may consider again

the generic Toulmin-method or, for safety-relevant questions,

the approach presented in Kurd and Kelly (2003).

6.2. Development model

The increasing usage of applications with machine learning

components calls, following Serban et al. (2020), for mature

engineering techniques which ensure these are built robustly.

As pointed out in Arpteg et al. (2018), there are fundamental

differences between developing systems comprising ML

solutions compared to traditional software systems. Thus, there

is, as pointed out also in Ammar et al. (2006), the need to

extend classical software development models like the waterfall

methodology or the spiral model. In this regard, the authors of

Ammar et al. (2006) discuss three different approaches:

• Common ML system development model: Iterative cycle

consists of design, training, and testing stages.

• Rodvold’s model: Incorporating nested development

loops and containing elements from the waterfall and

spiral model.

• Kurd’s model: Comprising hazard analysis and addressed

in particular for the development of ML systems in safety-

critical applications.

An insight into the ML workflow of Microsoft workgroups is

provided in Amershi et al. (2019). It consists of nine stages,

which are pooled into two groups: data-oriented and model-

oriented. The first group deals with data acquisition and data

cleaning, while the second group is dedicated, among others, to

training, evaluation, deployment, and monitoring. According to

findings in Lorenzoni et al. (2021), a very recent work giving

a systematic literature review on the development of machine

learning solutions, this process is the most comprehensive and

accepted one in the literature.

A similar process for the development of ML solutions

is provided in Hesenius et al. (2019). In their proposal of a

development process, the authors define phases and roles that

are to be assigned to members of the development team and are

interwoven with the flow of the process. They name here domain

expert, data scientist, data domain expert, and software engineer.

According to this process, in the first phase, data scientists have

to decide whether an ML solution is suitable for the problem.

The first model is implemented only after exploring the available

data (phase 2), and requirements are defined (phase 3). The last

two phases of the process deal with the integration and operation

of the developed components. Even though the authors propose

an agile development process, they emphasize that the method

described can also be applied in a more rigorous process.

7. Discussion

Many of the topics discussed in this article can be considered

apart from AI Safety in light of other research areas. Specifically,

this concerns value alignment and adversarial robustness. While

the former can be assigned to the area of AI ethics (see Vakkuri

et al., 2019; Kazim and Koshiyama, 2021), the latter is according

to Carlini et al. (2019) a security-relevant topic. The importance

of security in state-of-the-art vehicle development is discussed,

for example, in Schwarzl et al. (2021). The authors discuss the

impact of security risks on safety and outline safety and security

co-analysis and co-design methods in autonomous driving.

From this article, it can be deduced that security aspects must

also be considered for a fully comprehensive safety analysis.

A major difficulty in validating and verifying data-driven

approaches that should not be overlooked is that all statements

about the performance of such an approach are of statistical

nature. For example, all that can be said about an ML system

for traffic sign recognition is that it correctly recognizes a

certain percentage of all signs belonging to a test set. Even if

the recognition rate on this test set is one hundred percent, it

cannot be assumed that the system works appropriately outside

of it, i.e., without false recognition. As was pointed out in

Section 6.1.1, even minor disturbances in the input data can

lead to misclassifications. Consequently, the quantification of

the uncertainty or, more precisely, the specification of an upper

bound for the uncertainty with which a ML system makes

decisions is highly necessary.

The topic of uncertainty quantification (UQ) is not a

unknown one in the science community. The increased use of

ML solutions in decision-making has brought this area back to

focus in recent years. An overview of the topic is provided for

example in Begoli et al. (2019), Abdar et al. (2021), Seuß (2021),

or Psaros et al. (2022). In regard to UQ, or more general, in

regard to management with uncertainty, we would also like to

draw attention on the fuzzy logic approach. According to Zadeh

(1983), fuzzy logic or fuzzy reasoning provides an alternative

approach for the management of uncertainty. It refers to a

multi-valued logic allowing to introduce values between two

extreme characteristics like 0 and 1 or true and false. According

to Hellmann (2001) and Zadeh (2008), this approach applies
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human-like thinking in the programming of computers and

provides the capability to reason and make rational decisions in

an environment of imperfect information. In the context of the

(automated) control of a vehicle, fuzzy logic allows for example

to formulate and model mathematically notions like steer, steer

sharp, brake, or brake hard. For more in-depth information

on this topic, its implementation and possible applications,

especially in the field of automated driving, we refer to Lee

(1990), Passino et al. (1998), Peri and Simon (2005), Dey et al.

(2016), and Masmoudi et al. (2016).

8. Open challenges and future trends

There is an increasing amount of publications in the

area of AI Safety. The authors think this trend will intensify

with even more publications in the future. There are

promising approaches, especially in the investigated areas of

validation/verification/testing. Splitting up the safety assessment

of AI systems into the separate tasks of validation, verification

and testing seems to the authors as a promising point of

reference for future development in the field of AI Safety. The

topics of validation/verification/testing will need to be addressed

from general perspectives as well as for specific problems.

Several standards and norms in the area of AI Safety of

highly autonomous vehicles emphasize the high relevance of the

topic. However, as mentioned in Salay et al. (2017), standards

like ISO26262 would need to extend their notion of “hazard”

toward cases of AI interaction with humans. A first step in

this direction can be expected from the publication of ISO/IEC

DTR 5469734 Artificial intelligence—Functional safety and AI

systems, which is still under development. The authors believe

that the introduction of standards or the extension of existing

standards to AI systems is essential and one of the prerequisites

for the safe application of AI systems in control of safety-

critical systems.

Systems consisting of AI are getting increasingly complex.

This results in big systems with many interrelations and

stakeholders involved. Terms like Advanced Systems, Cyber-

Physical Systems and Product-Service Systems can contain AI

and need to be safely designed. Hence, the scope of AI Safety

should not be limited to one kind of system and authors should

consider connectives between systems.

Besides the system’s autonomy coming from AI within

systems, most systems are socio-technical. Therefore, the

interaction with humans is an important topic not covered in

this publication. Hereby, multiple standards and norms address

this topic and give an outlook (c.f. ISO Central Secretary, 2018a;

HLEG, 2019; Koopman et al., 2019b).

The automotive infrastructure is critical due to its many

challenging demands for safe and reliable systems. While the

main focus is on ground transportation, there are influences

and connections to other areas such as aerospace by employing

drones or the energy sector by connecting vehicles to a (smart)

charging grid. Hence, safety standards and regulations have to

be aligned. Classical approaches in other fields like aerospace

can be taken into account and can have substantial benefits in

the automotive system development. In the context of unknown

environments, coping with uncertainties is a crucial task. As

already mentioned in Section 7 approaches based on fuzzy logic

may be helpful in this regard.

9. Conclusion and limitations

Due to the rising number of machine learning solutions and

more general AI solutions for the partial or full control of safety-

critical systems, the field of AI Safety becomes increasingly

important. For the purpose of providing an overview of this

extensive research area, a systematic literature review focusing

on the field of highly automated driving was conducted. It

appears that the topic of AI Safety has become more important

over the last years. Despite fluctuations, we identified a trend

of publications considering our keywords increasing from 368

(2017), 2,778 (2018) to 2,844 in the year 2021. Furthermore, the

review shows that the term AI Safety is only found 12 times.

Other search phrases like “AI Testing” or “Safety AND Artificial

Intelligence” are mentioned more often. Therefore, it seems that

the term “AI Safety” is not yet well-established. The cumulative

research question of this paper examines the approaches and

methods which can be applied for the verification, validation and

testing of AI systems for highly automated driving. According

to the findings of this literature review, we identified two

major branches comprising approaches and methods for the

safety assessment of AI systems: classical approaches, such

as the Toulmin method (Section 5) and newly developed

approaches (Section 6) tailored to ML use cases, such as value

alignment. In addition, the literature review revealed that the

aerospace industry has already been facing challenging topics

like verification and validation of AI systems for a considerable

amount of time—see for example Bhattacharyya et al. (2015)

or Underwriters Laboratories (2020). This emphasizes that for

the development of safe AI systems in the automotive sector,

findings from the aerospace sector should be taken into account

and may be used as a guidance. Furthermore, we conclude

that approaches for the safety assessment of AI systems can

be considered in a general framework superior to the specific

use case.

Limitations

The findings of this work have to be seen in the light

of some limitations, which are listed and discussed briefly in

the following:

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2022.952773
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Wäschle et al. 10.3389/frai.2022.952773

• Six high-ranked journals and three conferences are

considered. Furthermore, norms, standards, workshops

and blog entries are included, since the topic is developing

quickly. Apart from these sources, there might be more

relevant research, as identified in the backward research.

• Only German and English language publications were

considered. Massive investments in AI research in China

(see for example Roberts et al., 2021) suggest putting special

emphasis on publications from the Asian region and to

consider publications in Asian languages, too.

• The article is clustered in classical and new approaches.

Other subdivisions might be helpful andmay be considered

in future research.

• The research focus with one main research question and

nine inclusion keywords and three exclusion keywords can

be extended in future research.

• We explicitly excluded the topic of security from the

literature research process. As indicated in Schwarzl

et al. (2021), a security analysis is indispensable for a

comprehensive safety analysis. Thus, an enhancement of

the search criteria in direction of security may complete

the picture.
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