ROYAL SOCIETY
OF CHEMISTRY

RSC Advances

PAPER

Highly selective and sensitive probes for the
detection of Cr(vi) in aqueous solutions using
diglycolic acid-functionalized Au nanoparticlest

i ") Check for updates ‘

Cite this: RSC Adv., 2019, 9, 10958

Yang Zhang,*®® Ruixi Bai,?° Zhigang Zhao,?® Qiuxia Liao,?® Peng Chen,?®
Wanghuan Guo,®® Chunging Cai®® and Fan Yang @ *2°

In this study, a variety of diglycolic acid-functionalized gold nanoparticle (Au NP) probes are reported, which
are highly sensitive for the detection of chromium ions, Cr(v) ions, at low concentrations in aqueous
solutions based on the application of surface plasmon resonance (SPR) theory. Due to its outstanding
affinity for Cr(vi) ions, the capped diglycolic acid would induce the aggregation of the NP probes upon
encountering them; this was evidenced by the obvious red-shifting of the SPR peak and the enlarged
size of the NPs. For the same reason, the selectivity of the probe for Cr(vi) against other heavy metal ions
was found to be remarkable. Under optimized conditions, the probe showed the limit of detection (LOD)
of 0.32 ppb for Cr(vi) and a linear detection scale ranging from 0.32 ppb to 0.1 ppm. To the best of our
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1. Introduction

Due to its large-scale applications in metallurgy, chemical
engineering, steel making and many other areas, chromium is
extensively discharged from the industries; this poses a severe
threat to the environment and human health.** Compared with
trivalent chromium, which is an essential nutrient for humans,
hexavalent chromium is a lethal toxicant to human beings.**®
According to the rules of the United States Environmental
Agency, the upper limit of Cr(vi) in drinking water is 0.05 ppm.
As reported, the overdose of Cr(vi) can cause fatal diseases
ranging from ulceration to cancer.””® Therefore, the detection of
Cr(vi) at trace amounts in water is extremely necessary and has
drawn worldwide concern for a long time.****

Due to the detrimental effects of chromium on the envi-
ronment and bio-health, diverse analytical techniques, such as
atomic adsorption spectrometry, chromatography, inductively
coupled plasma-mass spectrometry (ICP-MS), and spectropho-
tometry, have been proposed for the detection of Cr(vi) in
aqueous solutions. However, these strategies have numerous
intrinsic drawbacks such as the requirement of expensive
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instruments, complex pretreatment, and sophisticated opera-
tion. To circumvent these problems, some convenient and
efficient detection strategies have been established such as
fluorescence,"*® electrochemical,”>" and surface plasmon
resonance (SPR) methods.?>?*

Among these solutions, the sensors based on the SPR tech-
nique have received significant attention due to their charac-
teristic superiorities such as convenience, high sensitivity,
rapidity, and bio-friendliness.**** They are triggered by
a physical contact or a chemical reaction of the analyte with the
surface of the sensors, usually in the forms of nanoparticles or
thin films; this causes shifts of the plasmon resonance peaks.
This has been regarded as an ideal approach for the detection of
pesticides, toxic gases, drug molecules, and hazardous heavy
metals.”®** The common plasmon-generating substrates in this
method are the nanostructures of gold, silver, and platinum.**-%*
With moderate activity and cost as well as adjustable
morphologies and properties, gold nanoparticles (Au NPs) are
the most convenient and commonly used substrates in the SPR
methods.>*?%%

As the naked Au NPs or those encircled by only surfactants
show limited sensitivity, functionalization is often imple-
mented to enhance their sensitivity.***° To date, some effective
functionalization routes, such as chemical grafting or coating,
have been implied to endow additional superiorities, such as
better selectivity or higher sensitivity, to the probes.**** Nowa-
days, a modifying agent having significantly selective binding
tendency towards the analyte than the other ions is required.

In this study, a sensitive SPR detection system for Cr(vi)
based on diglycolic acid-functionalized Au NPs was established.
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For a long time, diglycolic acid and the derived structures have
drawn the attention of researchers due to their outstanding
selectively coordinative properties for some rare earth elements
and heavy metals that are probably generated due to particular
steric hindrance. The as-established probing system shows the
remarkable LOD of 3.2 ppb for Cr(vi), which, to the best of our
knowledge, is probably the lowest value among those of the SPR
sensors. There is a linear relationship between the decrement of
the intensity of the SPR peak and the concentration of Cr(vi) in
the range from 3.2 ppb to 0.1 ppm; this makes the application of
the proposed system possible for the quantitative measurement
of Cr(vi) in water. Moreover, the selectivity of this system
towards other ions, including Cr(i), is relatively high; based on
these findings, the concentration of Cr(vi) in some practical
samples has also been tested in this study.

2. Experimental
2.1 Chemicals

Chloroauric acid, monosodium glutamate, chitosan, diethylene
glycol, sodium hydroxide, and hydrochloric acid were
purchased from Aladdin Bio-chemical Reagent Co., Ltd
(Shanghai, China). All the reagents were of analytical degree
and used directly without further purification. Ultrapure water
was applied throughout the entire experiment.

2.2 Instruments and measurements

TEM images were obtained by a scanning electron micro-
analyzer (Hitachi SU1510). FTIR spectroscopy was conducted
using the Nicolet iS 50 Fourier transform infrared spectrometer.
The UV-vis spectra were obtained using the Agilent Cary 5000
spectrophotometer. The DLS and {-potential data were acquired
using the Brookhaven Omni size/potentiometric analyzer. The
referenced detection of Cr(vi) in real water samples was carried
out using the Agilent 8800 inductively coupled plasma tandem
mass spectrometer (ICP-MS/MS).

2.3 Preparation of the chitosan-capped unfunctionalized Au
NPs (C-Au)

The synthetic protocol was based on a reference method.*
Typically, 100 ml of 0.1 mM HAuCl, was heated to boiling. On
boiling, 12.68 mg of monosodium glutamate was added to it
under stirring. Stirring was continued for about 10 minutes
until the solution turned deep red. Then, the solution was
quickly quenched to room temperature. While quenching,
10 ml 30% chitosan solution in 1% HCI was added to the
system.

2.4 Preparation of the diglycolic acid-functionalized Au NPs
(DF-Au)

As illustrated in Scheme S1,t the diglycolic acid groups were
modified on the surfaces of C-Au through an anhydride ring-
opening process as follows. At first, the abovementioned
aqueous solution was freeze-dried for 24 h at —40 °C to obtain
the C-Au particles. After this, the C-Au particles and some
amount of diglycolic anhydride (see Section 3.2) were dispersed
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in 100 ml DMF. Then, the mixture was heated for 48 h at 40 °C.
After being washed several times with ultrapure water, the
product was re-freeze dried for 24 h at —40 °C. Then, DF-Au was
re-dispersed in 100 ml water.

3. Results and discussions
3.1 A comparison with C-Au

To clarify the mechanism of the sensitivity and selectivity of the
as-prepared sensor, a comparison was made between our
products and those capped with only chitosan (C-Au). According
to an article reported by Sugunan et. al, the purpose of the
surface modification of Au NPs by pure chitosan is to distin-
guish the intensity of the UV-vis absorption peaks
corresponding to the different concentrations of analytes.*® As
reported by the authors, the capped chitosan could play the
role of a coordinative shell sensitive to the concentration of
analytes. However, pure chitosan, which is not a selective
chelating agent, cannot endow selectivity to the probe. In this
regard, to selectively detect Cr(vi) among many heavy metals,
chitosan was initially functionalized by the DGA groups,
which showed outstanding selectivity towards some heavy
metals according to our published studies.*” According to the
results, DF-Au exhibited much higher selectivity for Cr(vi) ions
than C-Au (see Fig. 2); this suggested that an enhanced selec-
tivity was endowed by functionalization. Moreover, via the prior
functionalization step, the sensitivity of the sensor for Cr(vi) has
been significantly enhanced.

3.2 Influence of the proportion of the functionalized amino
groups of the capped chitosan

Only a portion of the amino groups of chitosan was function-
alized via the grafting of the DGA groups such that some
primary amide sites remained and assisted the oxygen atoms to
combinedly form a size- and charge-screen device. To compre-
hensively investigate the optimum proportion of the function-
alized amines of chitosan, a batch of control experiments was
conducted. Ry is defined as the molar ratio of diethylene glycol
to chitosan added in the functionalization step. A series of Ry/.
were used to examine the corresponding selectivity and sensi-
tivity of the probe for Cr(vi). As illustrated in Fig. 3A, when the
Ry was fixed at 0.6, both the selectivity and sensitivity were
highest. This further proved that the primary amides played an
essential role in assisting the oxygen atoms to form a highly
selective and sensitive sensor for the detection of Cr(vi). Thus,
all the following experiments were carried out with the Ry, set
at 0.6. To vividly illustrate the structures of the involved
chemicals and the sensing mechanism, a schematic diagram is
shown in Fig. 1.

3.3 Influence of the pH values

As revealed in some reported studies, the selective and coordi-
native ability of the DGA group is sensitive to the pH values.
Therefore, different pH values (from 0.5 to 4.0) were used to find
out the optimized pH condition for the following experiments
using sodium hydroxide and hydrochloric acid as the pH-
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Fig. 1 The schematic of the probe preparation and the sensing process.

adjusting agents. It was found that the sensitivity of the Cr(vi)
detection increased with the increasing pH values (see Fig. 3B);
this was consistent with our earlier studies.**** However, as the
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Fig. 3 The schematic of the selectivity and sensitivity for Cr®* versus different values of (A) Rq/c and (B) pH. The concentration of Cr®* was
0.1 ppm for the red columns, and 0.5 ppb for the insets. (The pH was set at 3.5 for (A), and the Ry, was set at 0.6 for (B).)
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the pH value has been fixed at 3.5 for the subsequent
experiments.

3.4 Red shifting of the SPR peaks caused by the aggregation
of Au NPs

The as-prepared colloids displayed a wine-red color with the
extinction peak at 520 nm in the UV-vis spectra (see the inset of
Fig. 4A). After the addition of some amount of Cr(vi) (at the
concentration of 0.1 ppm) to the solution, the color turned to
purple at once; this was probably the indication of the aggre-
gation of probes. This conjecture was confirmed by the red-
shifting of the SPR peaks to 715 nm in Fig. 4A. More distinct
results could be obtained from the TEM images shown in
Fig. 4B: the as-prepared DF-Au displayed a uniform diameter of
about 30 nm, whereas obvious aggregation could be observed
after the addition of Cr(vi) ions, and the diameters increased to
130 nm (see the insets of Fig. 4B). Further characterizations of
DLS and Z-potential also certified the aggregation: the average
diameter obtained from the DLS results was 28.22 + 1.02 nm for
the fresh probes and 140 £ 10.30 nm for the aggregated probes.
In addition, the very small variance of these results illustrated
that the sensors had a uniform size; this agreed well with the
microscopy images. Furthermore, the freshly prepared DF-Au
solution had a {-potential of —22.18 £+ 2.84 mV, whereas the
aggregated probes had a {-potential of —7.50 £+ 0.87 mV, indi-
cating that some degrees of sedimentation occurred with the
introduction of Cr(vi).

3.5 Sensitive and selective detection of Cr(vi)

As illustrated in Fig. 2A, the selectivity of our probe for Cr(vi)
among all the tested heavy metals ions (including Zn(u), Hg(u),
Pb(u), Cu(u), Cd(u), Fe(u), Mn(u), and Cr(m)) was conspicuous
even with the condition that the concentrations of the other
ions were 100 times that of Cr(vi). To comprehensively explore
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the sensitivity of the probe, it was contacted with a series of
Cr(vi) solutions with controlled concentrations ranging from
0.32 ppb to 0.1 ppm. Upon direct observation with naked eyes,
we could see the color gradation of the reacted colloids from
wine red to purple with the increasing concentration of the
analytes (see Fig. 5A). Moreover, from the UV-vis spectra shown
in Fig. 5B, it was depicted that the intensities of the peaks at
520 nm reduced gradually with an increase in the concentra-
tions of the samples. In fact, the relationship between the
decrement of the peak values and the corresponding concen-
trations of the samples could be fitted to a line (illustrated in
Fig. 5C) with the coefficient quite near to 1, indicating good
accuracy of the fitting. As shown, the LOD of the as-prepared
probe for Cr(vi) is 0.32 ppb, which, to the best of our knowl-
edge, is the lowest detection limit of colorimetric sensors re-
ported to date.

The selectivity of the probe for Cr(vi) is probably due to the
steric hindrance effect of the functionalizing agents of DGA, in
which the oxygen and the nitrogen atoms in the carbonyl
groups, the ether groups, the carboxyl groups and the amide
groups consist a chelate-like structure.”* This system acted as
a size- and charge-screening device. As Cr(vi) possesses smallest
diameter and highest charge, which are preferred by the probe,
it becomes the most sensitive ion among all the tested ions. As
the carboxyl and amide groups chelate Cr(vi), which acts like
a cross-linker, the DF-Au NPs are linked together, causing an
agglomeration phenomenon, which has been confirmed by the
abovementioned results.

To comprehensively compare this strategy with other exist-
ing methods, a comparison in the form of a table has been
established in Table 1. We can conclude that this adsorbent has
the merits of celerity, high selectivity, visualization (as the color
would change upon its encounter with Cr(vi)), and low LOD.

Fig. 4 (A) The UV-vis extinctions of the as-prepared DF-Au sensors before and after the addition of 0.05 ppm Cr®* and the color change from
wine-red to purple (inset). (B) The TEM images of the as-prepared DF-Au sensors before and after the addition of 0.1 ppm Cr®* (inset).
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Fig. 5 The (A) macroscopic colorimetric gradation and the (B) UV-vis extinctions of the DF-Au with different concentration of Cr(vi). The
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Table 1 The comparison of the nature of some commonly used methods for the remediation of Cr(vi)

Strategies Characteristics Ref.

Ion exchange High capacity, fast kinetics; low selectivity 54 and 55
Membrane adsorption Spatial and time efficiency; membrane fouling, complicated operation 56 and 57
Biodegradation Cost-efficiency; careful operation and selection of the bio-organisms 58 and 59
Electrochemistry methods High capacity, cost-efficiency; sacrifice of anodes 60 and 61
Precipitating reduction Easy operation, cost-efficiency; sludge production, consumption of reductants 62 and 63

3.6 Application for the detection of Cr(vi) in real water
samples

For evaluating the applied performance of the as-synthesized
sensor in the quantitative detection of Cr(vi) in real environ-
mental water samples, samples of salt-lake water (from Qinghai
Lake, China), sea waters (from Amoy, China and Ishikarihama,
Japan respectively), and metallurgical industry wastewater
(from Amoy, China, after decontamination) were reacted with
the sensor to detect the contents of Cr(vi) in them. To adjust the
concentrations of these samples to the working scale of our

Table 2 The results of the quantitative Cr(vi) detection in real water
samples using the as-prepared GF-Au sensor and the reference ICP-
MS strategy

Waters & methods GF-Au (ppm) ICP-MS (ppm)
Salt-lake water 0.17 + 0.022 0.15 + 0.022
Amoy sea water 0.04 £ 0.031 0.05 £ 0.047
Ishikarihama sea water 0.02 + 0.019 0.03 + 0.027
Industrial waste 0.53 + 0.046 0.49 + 0.052

10962 | RSC Adv., 2019, 9, 10958-10965

synthesized probe (0.32 ppb to 0.1 ppm), all the samples were
diluted 10 times before conducting the test. As can be seen from
the results displayed in Table 2, the Cr(vi) concentrations in the
abovementioned real samples are 0.17 ppm, 0.04 ppm,
0.02 ppm, and 0.53 ppm. Furthermore, to verify the correctness
of the results, the concentrations were measured using the
reference method-ICP-MS, and the concentrations were found
to be 0.15 ppm, 0.05 ppm, and 0.03 ppm, and 0.49 ppm, which
matched quite well with those obtained using our newly
developed sensor. In addition, the results corroborated well
with those reported in some previous studies on some natural

water samples.*>**

4. Conclusion

Overall, a functionalized chitosan-modified Au NP colorimetric
sensor was synthesized and applied in the detection of hex-
avalent chromium among many heavy metals, including triva-
lent chromium, based on the SPR phenomenon. The
colorimetric change could be easily detected by naked eyes or
a UV-vis spectrophotometer. Compared with the sensor capped

This journal is © The Royal Society of Chemistry 2019
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by pure chitosan, the newly developed sensor exhibited much
better selectivity and sensitivity for hexavalent chromium. It is
worth emphasizing that the as-prepared sensor shows a detec-
tion limit of 0.32 ppb of Cr(vi), which is the lowest value re-
ported to date for a sensor using the SPR phenomena
mechanism. Moreover, the chitosan used herein was initially
partly functionalized through the grafting of DGA groups; this
resulted in high selectivity and sensibility. Hence, this assay
provides an efficient strategy of the functionalization of capping
agents to improve the applied performance of the as-
synthesized sensors.
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