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Kaposi’s sarcoma (KS) is a highly vascularized tumor supporting large amounts of neo-
angiogenesis. The major cell type in KS tumors is the spindle cell, a cell that expresses
markers of lymphatic endothelium. KSHV, the etiologic agent of KS, is found in the spindle
cells of all KS tumors. Considering the extreme extent of angiogenesis in KS tumors at all
stages it has been proposed that KSHV directly induces angiogenesis in a paracrine fash-
ion. In accordance with this theory, KSHV infection of endothelial cells in culture induces
a number of host pathways involved in activation of angiogenesis and a number of KSHV
genes themselves can induce pathways involved in angiogenesis. Spindle cells are pheno-
typically endothelial in nature, and therefore, activation through the induction of angiogenic
and/or lymphangiogenic phenotypes by the virus may also be directly involved in spindle cell
growth and tumor induction. Accordingly, KSHV infection of endothelial cells induces cell
autonomous angiogenic phenotypes to activate host cells. KSHV infection can also repro-
gram blood endothelial cells to lymphatic endothelium. However, KSHV induces some
blood endothelial specific genes upon infection of lymphatic endothelial cells creating a
phenotypic intermediate between blood and lymphatic endothelium. Induction of path-
ways involved in angiogenesis and lymphangiogenesis are likely to be critical for tumor
cell growth and spread. Thus, induction of both cell autonomous and non-autonomous
changes in angiogenic and lymphangiogenic pathways by KSHV likely plays a key role in
the formation of KS tumors.
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KAPOSI’S SARCOMA AND KSHV
Kaposi’s sarcoma (KS) was first described in the 1800s as a rare,
fairly indolent tumor of specific populations. This form of KS, now
referred to as classic KS, usually presents on the skin of the lower
extremities of elderly men of specific European regions and reli-
gious origins. In the middle of the twentieth century KS became
endemic in parts of Africa and is currently one of the most com-
mon tumors in parts of central Africa (Wabinga et al., 1993). In
the late twentieth century KS became one of the first AIDS defin-
ing illnesses and is the most common tumor of AIDS patients
world-wide. AIDS associated KS is generally far more aggressive
than classic KS, arising on the skin in many parts of the body as
well as in the oral cavity and can occur on internal organs where
it is often fatal.

While they differ in aggressiveness, all forms of KS are relatively
indistinguishable at the histological level. Grossly, the tumors have
a characteristic red to purple hue, indicative of the high vascu-
larization of the tumor. Histologically, the tumor exhibits large
vascular slits lined by flattened endothelium; the slits are often,
but not always, filled with blood cells. There are discernable lev-
els of extravasated red blood cells and infiltrating lymphocytes in
the tumor. While a number of cell types are present, the tumor
is predominantly made up of elongated spindle cells. The spindle
cells express endothelial cell markers on their surface including

CD31 and CD34, but express low levels of factor VIIIRa (Russell
Jones et al., 1995). Recent expression data and array studies have
found that spindle cells most closely resemble lymphatic endothe-
lium, expressing VEGF receptor 3 (VEGFR3), a specific marker
of lymphatic endothelial cells (Jussila et al., 1998; Skobe et al.,
1999; Weninger et al., 1999; Wang et al., 2004a). Other lymphatic
endothelial cell specific markers, including LYVE-1, podoplanin,
and Prox-1, are also expressed by the spindle cells (Carroll et al.,
2004; Hong et al., 2004; Wang et al., 2004a).

Based on the epidemiology and the multicentric nature of the
tumor, KS was predicted to have an infectious cause (Beral et al.,
1990). In 1994,KSHV was discovered associated with all KS tumors
and is now considered to be the etiologic agent (Chang et al., 1994).
KSHV was the eighth human herpesvirus discovered and is sub-
classified as a gamma herpesvirus. Like all herpesviruses KSHV
has both a lytic and latent lifecycle. During lytic replication all
of the greater than 90 viral genes are expressed, the virus repli-
cates rapidly, produces infectious virions and ultimately causes
cell death likely due to a combination of host cell shut off and
virus production. During viral latency in endothelial cells, a lim-
ited number of genes are expressed from a single locus. This locus
includes LANA, vCyc, vFLIP, a family of proteins from a repeat
region called the Kaposins, and 12 pre-microRNAs encoding 17 or
more mature miRNAs. These latent genes are responsible for the
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maintenance of the latent viral episome as well as the survival of
latently infected cells.

In later-stage KS tumors, all of the spindle cells maintain infec-
tion with KSHV (Boshoff et al., 1995; Staskus et al., 1997; Dupin
et al., 1999). As expected the virus is predominantly found in the
latent state in spindle cells where the limited number of latent
genes and miRNAs are expressed (Staskus et al., 1997; Marshall
et al., 2007). However, approximately 1–5% of the spindle cells
express lytic viral genes and produce infectious virus. In addition
to spindle cells, KSHV is also found in other cell types in the KS
lesion including monocytes (Blasig et al., 1997). However, only
very low levels of these cells are infected in the tumor. KSHV can
only sporadically be detected in the endothelium lining the vas-
cular slits in the KS tumor (Dupin et al., 1999). KSHV is also
associated with two lymphoproliferative diseases, primary effu-
sion lymphoma (PEL) a pleural cavity solid B-cell lymphoma,
and plasmablastic multicentric Castleman’s disease, a lymph node
B-cell growth (Cesarman et al., 1995; Soulier et al., 1995).

Because KS is an angioproliferative disease and the KS tumors
are highly vascularized even at early stages, it has been proposed
that KSHV may directly induce angiogenesis. Angiogenesis is a
tightly regulated process. Endothelial cells of the vascular system
are normally maintained in a quiescent, non-proliferating state.
However, during solid tumor formation, the secretion of pro-
angiogenic cytokines by tumor cells can activate nearby endothe-
lial cells to induce new blood vessel formation. Many of the
vascular slits identified in histological sections of early stage KS
lesions are lined by uninfected endothelium, suggesting they are
formed by endothelial cells activated in a paracrine fashion (Dupin
et al., 1999). These uninfected cells may later become infected, as
KSHV has, in some cases, been detected in the cells surrounding
the vascular spaces of later-stage nodular KS (Boshoff et al., 1995;
Dupin et al., 1999).

Despite the evidence for paracrine activation of uninfected
endothelial cells, KSHV also likely activates infected endothe-
lial cells in an autocrine or cell autonomous fashion. Because
KS spindle cells are endothelial in origin, induction of the KS
tumor cell is similar to the processes of angiogenesis. Many of
the characteristics of activated endothelial cells and angiogene-
sis are also associated with oncogenesis, including proliferation,
migration, and metalloprotease expression. These same pheno-
types are induced in KSHV-infected endothelial cells. This review
discusses the recent evidence that suggests that (1) KSHV pro-
motes continual neovascularization through paracrine factors and
(2) KSHV may drive tumor cell growth through autocrine and cell
autonomous activation of angiogenic phenotypes.

PARACRINE INDUCTION OF ANGIOGENESIS BY KSHV
The vascular endothelial growth factor (VEGF) family of cytokines
plays a prominent role in regulation of angiogenesis (Breen, 2007).
VEGF-A and its receptors are required for embryonic vascular
development and are important for vascular permeability, prolif-
eration, and survival of newly formed vasculature. Several studies
have explored the role of VEGF-A in KS pathogenesis. VEGF-A
expression is detected in spindle cells of KS lesions, and its secre-
tion is known to be increased by inflammatory cytokines that are
present in the KS lesions (Samaniego et al., 1998). VEGF-A is also

expressed by KSHV-infected PEL cell lines and conditioned media
from these cells is sufficient to induce capillary morphogenesis
by endothelial cells (Liu et al., 2001; Akula et al., 2005; Subra-
manian et al., 2010). Infection of endothelial cells with KSHV
directly leads to increased expression of VEGF-A (Masood et al.,
2002; Sivakumar et al., 2008; Wang and Damania, 2008). Further,
KSHV conditioned media has been shown to regulate angiogenic
phenotypes in endothelial cells (Sharma-Walia et al., 2010). There-
fore, KSHV induction of VEGF-A is likely to be critical for both
the induction of angiogenesis as well as the activation of infected
spindle cells.

Although the mechanisms by which KSHV induces VEGF-A
expression and secretion are still unclear, several potential path-
ways have been uncovered. Hypoxia induced factor (HIF)-1α is
a transcription factor that has been shown to be important for
upregulation of VEGF-A (Sodhi et al., 2000; Shin et al., 2008). HIF-
1α is readily degraded during normal oxygen conditions. However,
during hypoxia, HIF-1α is stabilized and can induce expression
of genes through hypoxia responsive elements, including VEGF-
A. Interestingly, KSHV infection of endothelial cells induces the
expression of HIF-1α during normoxia which leads to increased
HIF transcriptional activity (Carroll et al., 2006). Other studies
have shown that KSHV encodes proteins that can lead to increased
stability of HIF-1. The KSHV latency associated nuclear protein
(LANA-1) can stabilize HIF-1α, through both degradation of its
suppressors, von Hippel–Lindau protein and p53 (Cai et al., 2006),
and through direct interaction between HIF-1α and LANA-1 (Cai
et al., 2007). Additionally, the virally encoded interferon response
factor (vIRF3) can, like LANA-1, interact with and stabilize HIF-
1α, leading to increased VEGF-A expression (Shin et al., 2008).
The KSHV viral G-protein coupled receptor (vGPCR) is able to
increase the activity of HIF-1α as a transcription factor through
activation of the MAPK and p38 signaling pathways and sub-
sequent phosphorylation of HIF-1α (Sodhi et al., 2000). These
pathways are depicted in Figure 1. While induction of HIF mRNA
expression by KSHV infection has been shown, stabilization of
HIF directly by KSHV infection of endothelial cells has yet to be
clearly shown.

Other host proteins have been shown to be involved in the
induction of VEGF-A during KSHV infection of endothelial cells
as well. For example, Emmprin is a membrane-associated gly-
coprotein that promotes matrix metalloproteinase expression.
Its expression in KSHV-infected cells promotes cell invasiveness
through activation of the PI3K/Akt and MAPK pathways (Qin
et al., 2010; Dai et al., 2011). These pathways are also necessary for
emmprin-induced VEGF-A expression. Further work is ongoing
in multiple labs to determine the cellular pathways essential for
KSHV induction of VEGF-A.

Several KSHV genes expressed during lytic replication have
been implicated in regulation of VEGF-A expression (Table 1). In
BCBL-1 cells (a pleural effusion lymphoma cell line), glycopro-
tein B (gB) and K8.1 are required for enhanced VEGF expression
(Subramanian et al., 2010). Treatment of these cells with siRNA
or neutralizing antibodies to gB or K8.1 significantly reduced
VEGF-A production. vGPCR is a constitutively active signaling
receptor that has been linked to a variety of cell survival and
pro-angiogenic signaling pathways (Arvanitakis et al., 1997; Bais
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FIGURE 1 | Overview of KSHV induction of angiogenic and

lymphangiogenic pathways. Pro-angiogenic factors that are induced by
KSHV are indicated in red ovals, pro-lymphangiogenic factors induced by
KSHV are indicated in blue ovals. White ovals indicate the activated pathway
necessary for KSHV induction of blood to lymphatic endothelial cell
differentiation. KSHV genes known to induce angiogenic or lymphangiogenic
pathways are indicated in green ovals. The upper left corner indicates

phenotypes of angiogenesis that are activated in normal endothelium by
KSHV-infected cells and the gradient of cytokines secreted by KSHV-infected
cells is indicated by the red gradient. The blue gradient in the upper right hand
corner indicates the gradient of lymphangiogenic cytokines induced by
KSHV-infected cells that could induce lymphangiogenesis. The central box
indicates angiogenic phenotypes induced by KSHV in a cell autonomous
fashion.

Table 1 | KSHV genes involved in the induction of angiogenesis.

KSHV gene Pro-angiogenic effect

Glycoprotein B Increased VEGF-A secretion

K8.1 Increased VEGF-A secretion

Kl Increased VEGF-A secretion; Disrupted VE-cadherin

signaling

LANA-1 HIF-1 stability

vIRF3 HIF-1 stability

vGPCR HIF-1 stability; Increased VEGF-A secretion; Increased

angiopoietin-1 secretion; Increased angiopoietin-like 4

secretion; Disrupted VE-cadherin signaling

vIL-6 Increased VEGF-A secretion; Increased angiopoietin-1

secretion

Viral miRNAs Downregulation of thrombospondin-1

vMIPs I–III Chemoattraction

K5 Degradation of VE-cadherin; Degradation of PECAM-1

et al., 1998, 2003; Sodhi et al., 2000; Montaner et al., 2001; Shan
et al., 2007). When injected into mice, NIH3T3 cells expressing

vGPCR form highly vascularized tumors with some similarities
to KS and this may be due, at least in part, to increased VEGF-A
secretion (Bais et al., 1998; Guo et al., 2003). vGPCR upregu-
lates VEGF-A through activation of MAPK and p38, which, as
described above, promotes HIF-1α activity (Sodhi et al., 2000).
Transgenic mice expressing vGPCR also form highly vascularized
tumors that are reminiscent of KS tumors. However, cell lines
derived from these tumors expressed the lymphatic growth fac-
tor VEGF-C, rather than VEGF-A (Guo et al., 2003). Increased
VEGF-A expression in cells expressing vGPCR is associated with
constitutive activation of its receptor, VEGFR2/KDR and down-
stream activation of PI3K/Akt, contributing to endothelial cell
survival (Montaner et al., 2001; Bais et al., 2003). However, gB,
K8.1, and vGPCR have only been detected in cells supporting lytic
KSHV infection whereas the bulk of the tumor cells are latently
infected. The KSHV glycoprotein K1 also induces increased VEGF-
A expression in endothelial cells and is capable of immortaliz-
ing primary endothelial cells (Wang et al., 2004b, 2006). While
there is evidence that K1 is expressed at very low levels during
latency, the majority of its expression occurs during lytic infection
(Chandriani and Ganem, 2010). In summary, the lytic phase of
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KSHV infection might play a role in the paracrine induction
of angiogenesis through increased secretion of VEGF-A into the
tumor milieu.

In addition to VEGF-A, KSHV-infected endothelial cells also
express other angiogenic cytokines. Angiopoietin-1 and -2 are lig-
ands for the receptor tyrosine kinase Tie2. Although less is known
about the functions of angiopoietins and Tie2, their signaling is
required for proper vascular development during embryogene-
sis (Dumont et al., 1994). Angiopoietin-1 is an agonist for the
Tie2 receptor, promoting endothelial cell survival and stability.
In contrast, Ang2 acts as an antagonist for Tie2, although its
role is context-dependent. Ang2 is upregulated during pathologic
angiogenesis and this expression is thought to destabilize endothe-
lial cells, allowing them to be activated by other pro-angiogenic
stimuli, such as VEGF, see Figure 1, circle 1 (Gale et al., 2002).
Interestingly, Ang2 is expressed in KS lesions, and is upregulated
in endothelial cells infected with KSHV (Brown et al., 2000; Wang
et al., 2004a; Vart et al., 2007; Ye et al., 2007). This induction can
be activated by the KSHV genes vGPCR and vIL-6, and can occur
through a paracrine mechanism (Vart et al., 2007). Another study
suggests that the MAPK pathway activation of transcription fac-
tors AP-1 and Ets-1 is involved (Ye et al., 2007). In addition to Ang2,
cells transfected with the vGPCR gene expressed increased levels
of angiopoietin-like 4, a member of the angiopoietin-like proteins
that may play a role in vascular permeability and angiogenesis (Ma
et al., 2010).

KSHV induces a number of other cytokines known to be
involved in angiogenesis in other systems. These include inter-
leukin 6 (IL-6), Monocyte chemoattractant protein-1 (MCP-1),
PAX-1, and prostaglandin E2 (Schwarz and Murphy, 2001; Polson
et al., 2002; Xie et al., 2005; Caselli et al., 2007; Fonsato et al., 2008).
Cyclooxygenase enzymes catalyze the rate limiting step in the con-
version of arachidonic acid into prostaglandins. Prostaglandins
signal through g-protein coupled receptors to regulate a vari-
ety of functions, including metabolic, neuronal, and immune
functions. Cyclooxygenase-2 (COX-2) expression is induced early
during KSHV infection of endothelial cells and plays a role in
the establishment of latency (Naranatt et al., 2004; Sharma-Walia
et al., 2006). This expression is associated with increased secre-
tion of prostaglandin E2, which promotes inflammatory cytokine
expression, cell survival, and angiogenesis (Sharma-Walia et al.,
2010). An additional cellular factor associated with angiogenesis,
angiogenin, is induced in endothelial cells by the latent protein,
LANA-1. Angiogenin was recently shown to aid in induction of
angiogenesis by both VEGF and basic fibroblast growth factor
(Sadagopan et al., 2009). KSHV-induced angiogenin was able to
promote endothelial cell migration and capillary morphogene-
sis (Sadagopan et al., 2009). Since angiogenin is internalized by
both infected and uninfected cells, the authors suggested angio-
genin may work in both paracrine and autocrine fashions. In
fact, all KSHV-induced cytokines that act on endothelial cells
have the potential to promote angiogenesis-like phenotypes on
the endothelial-derived spindle cells.

Regulation of angiogenesis involves coordinated expression of
both pro- and anti-angiogenic factors. KSHV not only upregu-
lates pro-angiogenic cytokines, it may also promote angiogenesis
through repression of angiogenic inhibitors. The KSHV latent

locus encodes for 17 miRNAs which may play a role in down-
regulation of angiogenic gene expression (Cai et al., 2005; Pfeffer
et al., 2005; Samols et al., 2005). Expression of 10 of these miRNAs
in 293 cells altered the expression of 81 genes (Samols et al.,
2007). Interestingly, one of these genes is the natural angiogenic
inhibitor thrombospondin-1. Thrombospondin-1 plays multi-
ple roles in the repression of angiogenesis, however one of its
main functions is activation of the anti-angiogenic growth fac-
tor transforming growth factor-β (TGF-β). This study found that
thrombospondin-1 contains 34 putative miRNA binding sites, and
can be downregulated by multiple KSHV miRNAs (Samols et al.,
2007). Downregulation of thrombospondin-1 by KSHV miRNAs
corresponds to decreased TGF-β signaling. Therefore, downreg-
ulation of anti-angiogenic factors may be an important way by
which KSHV promotes continual neovascularization.

The KSHV genome itself encodes for cytokine and chemokine-
like factors that activate endothelial cells and stimulate angio-
genesis (Table 1). Among these factors are three genes with
homology to the cellular chemokine macrophage inflammatory
protein, the vMIPs I–III (Boshoff et al., 1997; Stine et al., 2000).
In addition to having chemoattractant properties, these proteins
promoted neovascularization in the chick chorio-allantoic mem-
brane angiogenesis assay (Boshoff et al., 1997; Stine et al., 2000).
KSHV also encodes a viral homolog of interleukin 6 (IL-6), a
pro-inflammatory and pro-angiogenic cytokine. This cytokine,
when expressed in NIH3T3 cells, promoted secretion of VEGF-
A (Aoki et al., 1999). Furthermore, when these cells were injected
into mice, they gave rise to tumors more quickly than control cells
and the tumors were more highly vascularized (Aoki et al., 1999).
Expression of the vMIPs has been predominantly shown to occur
during lytic infection. The viral IL-6 (vIL-6) is mostly detected
in endothelial cells and spindle cells undergoing lytic replication
but like K1 it has been shown to be expressed at very low levels in
latently infected PEL cells and to be induced during latency only
under specific conditions (Chatterjee et al., 2002; Chandriani et al.,
2010).

In summary, conditioned media from KSHV-infected cells can
induce angiogenic phenotypes in uninfected endothelial cells as
indicated by the red gradient in Figure 1. KSHV infection of
endothelial cells induces expression of a number of cytokines that
are capable of inducing angiogenesis in a paracrine fashion. Para-
mount among these is VEGF-A, an angiogenic cytokine that is
induced by KSHV infection of endothelial cells. While the pre-
dominant viral mechanism of VEGF-A induction is unknown,
a number of lytic KSHV genes are sufficient to induce VEGF-A
when overexpressed. KSHV-infected cells also produce a num-
ber of other angiogenic cytokines of cellular and viral origin
that likely play a role in the induction of angiogenesis. Taken
together, all of the cytokines and induced pathways likely create
a milieu that is beneficial to the induction of new blood ves-
sels and play a significant role in the high vascularization of KS
tumors.

KSHV INDUCTION OF ANGIOGENIC PHENOTYPES WITHIN
THE INFECTED CELL
The predominant tumor cell of KS lesions is the endothelial-
derived spindle cell. Oncogenesis in endothelial cells and
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angiogenesis have many phenotypes in common. Therefore KS
tumor formation is likely to include increased angiogenic capac-
ity of the spindle cells. There is growing evidence demonstrating
the manipulation of host cell phenotypes by KSHV and the role
of these changes in the promotion of angiogenesis related pheno-
types. These infected cell phenotypes include increased stability
of tubules formed by macrovascular endothelial cells, induction
of capillary morphogenesis in low growth factor conditions, and
enhanced migration and invasion (Qian et al., 2007; Sadagopan
et al., 2007, 2009; Wang and Damania, 2008; Couty et al., 2009;
DiMaio et al., 2011). Additionally, KSHV induces the expression
of VEGF receptors on the surface of infected endothelial cells as
discussed below.

Endothelial cells lining the vasculature form coordinated junc-
tions to maintain barrier function. Breakdown of these junctions
is necessary for initiation of angiogenesis, immune cell extravasa-
tion, and tumor cell metastasis. Interestingly, several studies have
evaluated the adherens junctions of KSHV-infected endothelial
cells and found them to be perturbed (Mansouri et al., 2008;
Qian et al., 2008; Guilluy et al., 2011). This may result from the
degradation of VE-cadherin (Mansouri et al., 2008; Qian et al.,
2008) as well as disruption of VE-cadherin/beta-catenin signal-
ing (Guilluy et al., 2011). Therefore, KSHV infection can directly
initiate a key angiogenic step, the breakdown of cell–cell adher-
ence. While the direct mechanism of KSHV-induced disruption of
adherens junctions during latency is not known, there are a num-
ber of candidate KSHV genes that could be involved (Table 1). The
KSHV-encoded ubiquitin ligase protein, K5, targets VE-cadherin
for degradation (Mansouri et al., 2008). Overexpression of the
KSHV vGPCR induces endothelial cell permeability and downreg-
ulation of cell surface VE-cadherin as well (Dwyer et al., 2011). K5
also targets other cellular proteins, including platelet/endothelial
cell adhesion molecule-1 (PECAM-1, CD31), a transmembrane
protein important for endothelial cell–cell communication, which
could contribute to barrier dysfunction and increased permeabil-
ity (Tomescu et al., 2003; Mansouri et al., 2006). K1, a primarily
lytic protein that may also be expressed at low levels during latency
was also shown to initiate signaling similar to that required for
disruption of Cadherin signaling (Guilluy et al., 2011). While
the exact viral mechanism of disruption of adherens junctions
by KSHV infection is not known, the virus encodes multiple genes
capable of altering Cadherin.

During angiogenesis, endothelial cells migrate from the pre-
existing vasculature toward the site of angiogenic stimulus.
Endothelial cells exhibit enhanced migration and invasion follow-
ing latent KSHV infection (DiMaio et al., 2011; Wu et al., 2011).
This has been demonstrated by more rapid motility through tran-
swell dishes. KSHV-infected cells also express increased levels of
the matrix metalloproteinases MMP-1, -2, and -9 (Qian et al.,
2007). MMP proteins break down the extracellular matrix sup-
porting stable vasculature to allow for invasion and migration of
endothelial cells during angiogenesis (Figure 1, circle 2). Expres-
sion of MMP proteins induced by KSHV allows for increased
invasion of both infected and uninfected endothelial cells (Wang
et al., 2004b; Qian et al., 2007; Shan et al., 2007). While these
processes constitute one component of angiogenesis, they are also
known to play roles in oncogenesis (Gialeli et al., 2011) indicating

that KSHV activation of angiogenic phenotypes in endothelial cells
may lead to enhanced oncogenesis as well.

Endothelial cells grown in three-dimensional culture will
migrate and organize into capillary-like structures. This activity
is dependent, at least in part, on growth factors and cytokines
present in the matrix or growth media. KSHV-infected cells are
able to undergo capillary morphogenesis in low growth factor
conditions to a greater extent than uninfected cells (Wang and
Damania, 2008). This could be partially due to increased cytokine
secretion from KSHV-infected cells. In fact, when endothelial cells
are cultured in the presence of conditioned media from KSHV-
infected BCBL-1 cells, their ability to organize into capillary-like
structures is increased (Wang and Damania, 2008). However,
the effect of BCBL-1 conditioned media was greater on KSHV-
infected endothelial cells than on mock-infected cells, suggesting
that infected cells are more receptive to angiogenic growth factors.
In addition, this same study found that capillary-like structures
formed by KSHV-infected endothelial cells are more persistent
than mock-infected cells, indicative of the promotion of cell sur-
vival and continual angiogenesis by KSHV (Wang and Damania,
2008 and our unpublished results).

KSHV latent infection of endothelial cells also induces VEGF
receptor expression, which may allow infected cells to respond
more robustly to VEGFs. There are three main receptors for
VEGFs. VEGF receptors 1 and 2 play roles in angiogenesis while 2
and 3 play a role in lymphangiogenesis (described below). While
KSHV infection has not been reported to alter the expression levels
of VEGFR2 (KDR), VEGFR1 expression is significantly increased
following KSHV endothelial cell infection (Carroll et al., 2004).
Drugs that inhibited HIF-1 activation and signaling also inhib-
ited VEGFR1 upregulation (Carroll et al., 2006). VEGFR1 has
been described as both a positive and negative regulator of angio-
genesis depending on the context. VEGFR1 mouse knockouts
have higher levels of angiogenesis (Fong et al., 1995). However,
in cell culture models, VEGFR1 has been shown to potentiate
angiogenesis (Cao, 2009). More studies will be needed to deter-
mine the importance of increased VEGFR1 expression in KSHV
infection and KS tumor formation. Interestingly, expression of
VEGFR3, the main receptor for VEGF-C and D is also signifi-
cantly increased by KSHV infection (Carroll et al., 2004; Hong
et al., 2004). VEGFR3, a receptor specific to lymphatic endothe-
lium and critical for lymphangiogenesis will be discussed below.
Importantly, endothelial tip cells at the leading edge of new vascu-
lar protrusions are the only main adult cell type known to express
both the blood endothelial cell receptor, VEGFR1, and the lym-
phatic endothelial cell receptor, VEGFR3 (Tammela et al., 2008):
KSHV infection of endothelial cells directly induces expression of
both of these receptors.

The mechanisms by which KSHV induces angiogenic phe-
notypes in latently infected cells are largely unknown. A num-
ber of angiogenic phenotypes are likely to be a direct result of
the cytokine milieu of the infected cells. As described above,
KSHV-infected cells secrete both viral and host cytokines that
are sufficient to induce angiogenic phenotypes. These paracrine
factors surely play a role in the induction of tumor cells. How-
ever, it is also apparent that some of the angiogenic effects seen in
latently infected cells are cell autonomous, independent of either
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paracrine or autocrine factors. As described above, conditioned
media from PEL cells had stronger effects on tubule formation of
KSHV-infected endothelial cells (Akula et al., 2005). We have also
recently found that KSHV infection induces the pro-angiogenic
integrin, integrin β3, during latent infection (DiMaio et al., 2011).
Induction of integrin β3 leads to increased cell surface expres-
sion of the αVβ3 integrin heterodimer. We have further shown
that latently infected endothelial cells become more adherent to
the integrin ligands fibronectin and vitronectin, and are more
migratory than mock-infected cells. These induced phenotypes
require RGD-binding integrins, specifically integrin β3. Although
both uninfected and infected cells organize in three-dimensional
cultures in complete media, infected cells are more sensitive to
inhibitors of integrin β3 and its downstream signaling molecules,
such as Src kinase (DiMaio et al., 2011). This suggests that during
latent KSHV infection there is a shift in endothelial cell signal-
ing that results in a more angiogenic phenotype dependent on
αVβ3 expression on the surface of the cell (Figure 1, center).
Therefore, KSHV alteration of endothelial cell signaling path-
ways can dramatically affect how the cell responds to intra- and
extra-cellular signals. These changes that lead to alterations in
angiogenic properties are likely to play a role in the growth and
cell–cell interactions of infected cells, thereby playing a role in KS
tumor formation.

ANGIOGENESIS VS. LYMPHANGIOGENESIS
During development of the vascular system, a subset of endothelial
cells in the cardinal vein begin to express markers of lymphatic dif-
ferentiation, including the master regulatory gene, prox-1. These
cells then bud from the cardinal vein, differentiate into lymphatic
endothelial cells, and form the lymphatic vascular system (Wigle
and Oliver, 1999). The mechanisms regulating lymphangiogenesis
are in general less well understood when compared to angiogen-
esis. Immunohistochemistry of KS tumors showed that spindle
cells express markers of lymphatic endothelium, suggesting these
cells may arise from primary infection of lymphatic endothe-
lial cells, rather than blood endothelial cells (Jussila et al., 1998;
Skobe et al., 1999; Weninger et al., 1999; Pyakurel et al., 2006). An
alternative hypothesis is that KSHV infection of blood endothe-
lial cells drives differentiation toward a more lymphatic pheno-
type. This idea is supported by evidence that KSHV infection of
blood endothelial cells promotes expression of lymphatic-specific
genes, including prox-1, VEGFR3, podoplanin, and LYVE-1, effec-
tively driving the reprogramming of blood endothelial cells to
become lymphatic endothelium (Carroll et al., 2004; Hong et al.,
2004; Wang et al., 2004a). Microarray analysis comparing KSHV-
infected blood endothelial cells to blood and lymphatic endothelial
cells indicate that KSHV-infected blood endothelial cells have gene
expression profiles that align more closely to lymphatic endothe-
lial cells than that of blood endothelial cells (Carroll et al., 2004;
Hong et al., 2004; Wang et al., 2004a).

The mechanism by which KSHV induces lymphatic differenti-
ation is not completely clear. The KSHV latent gene Kaposin B can
directly promote the stability of Prox-1 mRNA (Yoo et al., 2010)
leading to increased expression of Prox-1. However, this effect
was not sufficient to induce Prox-1 expression in blood endothe-
lial cells. We recently found that induction of blood to lymphatic

endothelial cell reprogramming requires signaling through the cel-
lular receptor gp130. Endothelial cells that are latently infected
with KSHV have increased expression and signaling of gp130
(Morris et al., 2008). This leads to activation of the JAK/STAT3
pathway and the PI3K/AKT pathway leading to expression of
lymphatic-specific genes starting with Prox-1. Inhibition of this
pathway by siRNAs that target gp130 or AKT or pharmacolog-
ical inhibitors that block PI3 kinase or Jak2/STAT3 signaling is
sufficient to block lymphatic differentiation (see Figure 1, cen-
ter). The cytokine responsible for activating gp130 is currently not
known. KSHV vIL-6 is sufficient to induce gp130 activation and
we recently found that vIL-6 is sufficient to induce lymphatic dif-
ferentiation (Morris et al., 2012). However, KSHV lacking vIL-6
is still able to cause blood to lymphatic endothelial cell differ-
entiation, indicating that KSHV has evolved multiple strategies
to activate gp130 and induce blood to lymphatic endothelial cell
differentiation (Morris et al., 2008).

Induction of lymphatic differentiation by KSHV is only part
of the story, however. Despite the expression of lymphatic-specific
genes, blood endothelial cells infected with KSHV retain expres-
sion of some blood specific markers (Wang et al., 2004a). Addition-
ally, infection of lymphatic endothelial cells with KSHV induces
expression of blood specific markers (Wang et al., 2004a). KSHV
miRNAs were found to target the transcription factor MAF
(Hansen et al., 2010). Downregulation of MAF in lymphatic
endothelial cells by siRNA restored expression of blood endothelial
markers, such as VEGFR1 and CXCR4. Thus, infection of blood or
lymphatic endothelial cells by KSHV alters host gene expression
to an intermediate state between the two cell types. As described
above, this intermediate phenotype with both VEGFR1 and R3
expression is only present in the leading tip of endothelial cells
involved in active neo-angiogenesis. In the KS lesions only LANA+
cells expressed Prox-1, indicating that this effect requires KSHV
gene expression (Hong et al., 2004). This suggests that differen-
tiation toward lymphatic endothelial cells may specifically allow
the spindle cells to respond to lymphangiogenic growth factors.
In fact, KSHV infection of endothelial cells induces both VEGF-A
and VEGF-C (Sivakumar et al., 2008). VEGF-C is a key regulator of
lymphangiogenesis. Therefore, induction of both VEGFR1 and R3
allow KSHV-infected cells to respond to key angiogenic and lym-
phangiogenic factors in the tumor environment. The direct role of
KSHV reprogramming of blood endothelial cells to lymphatic in
induction of angiogenic and lymphangiogenic phenotypes is still
under investigation.

SUMMARY
The highly vascular nature of KS tumors and the large amounts
of neo-angiogenesis in the tumor led to the proposal that the
etiologic agent of the tumor might directly induce angiogenesis.
In accordance with this hypothesis KSHV infection of endothe-
lial cells, the main tumor cell type, induces host cell cytokines
involved in angiogenesis. In particular, KSHV induces the expres-
sion of VEGF-A and -C and other cytokines as well as encoding
angiogenic cytokines from its own genome (Boshoff et al., 1997;
Aoki et al., 1999; Brown et al., 2000; Stine et al., 2000; Schwarz and
Murphy, 2001; Masood et al., 2002; Polson et al., 2002; Wang et al.,
2004b; Xie et al., 2005; Caselli et al., 2007; Vart et al., 2007; Ye et al.,
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2007; Fonsato et al., 2008; Sivakumar et al., 2008; Wang and Dama-
nia, 2008; Sadagopan et al., 2009; Ma et al., 2010; Sharma-Walia
et al., 2010). Therefore, KSHV may induce seeding of new blood
vessels to the tumor milieu. Additionally, because the tumor cell is
endothelial in nature, induction of angiogenic cytokines may also
activate the tumor cells and aid in the growth of KS tumors. KSHV
also induces angiogenic phenotypes directly in latently infected
cells in a cell autonomous fashion, indicating that angiogenic acti-
vation of the infected endothelial cell may directly play a role in
tumor formation.

While KSHV activates many growth-signaling properties and in
general the induction of angiogenic phenotypes supports endothe-
lial cell proliferation, in most cultures KSHV does not induce
increases in endothelial cell proliferation. It is possible that the cell
culture milieu simply does not match the tumor milieu. KS spindle
cells are not fully transformed ex vivo and, except in very rare cases,
have a limited life span indicating that factors in the tumor envi-
ronment that come from other cells types could be necessary to
maintain KS spindle cell growth. The increase in growth could also
be masked by the fact that endothelial cells in culture are rapidly
dividing and therefore do not need additional growth signals.
Along those lines, mature endothelium in vivo is relatively quies-
cent. That being said, the endothelial cell transforming potential of
KSHV in culture can be unmasked given specific conditions. Der-
mal microvascular endothelial cells that were immortalized with
the E6 and E7 genes from papillomavirus are readily transformed

by KSHV, including increased proliferation (Moses et al., 1999).
Therefore,KSHV activation of endothelial cells can induce a prolif-
erative advantage in the correct genetic environment. However, it is
unknown if viral induction of angiogenic phenotypes is necessary
for the growth in the E6/E7 immortalized endothelial cells.

In general, viruses do not evolve to cause cancer, as it is likely a
dead end for transmission. KSHV likely evolved to activate the cell
where it is maintained to ensure survival and spread of the virus.
A major side effect of this activation may be providing an ideal
environment for angiogenesis leading to increased vasculariza-
tion of small tumor growths and expansion of KS tumors. While
the study of viral induction of angiogenesis can lead to a better
understanding of how KSHV causes endothelial cell tumors, infor-
mation gleaned from the study of viral mechanisms of induction
of angiogenesis and lymphangiogenesis will also lead to a better
understanding of endothelial cell activation and tumor angiogen-
esis in general. Thus, the study of KSHV infection of endothelial
cells provides a controlled system for analyzing the regulation and
induction of angiogenic phenotypes that will likely shed light on
the field of tumor angiogenesis.
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