SCIENTIFIC DATA:

OPEN ' Data Descriptor: Genome-wide
barcoded transposon screen for
cancer drug sensitivity in haploid
mouse embryonic stem cells

Stephen J. Pettitt'"?, Dragomir B. Krastev'?, Helen N. Pemberton™?, Yari Fontebasso
Jessica Frankum™?, Farah L. Rehman™?, Rachel Brough'?, Feifei Song™?, llirjana Bajrami’?,
Rumana Rafiq'?, Fredrik Wallberg?, Iwanka Kozarewa®, Kerry Fenwick?,

Javier Armisen-Garrido®!, Amanda Swain?, Aditi Gulati?, James Campbell™?,

Alan Ashworth®? & Christopher J. Lord"?

Received: 05 July 2016 - 1,2,
I

Accepted: 05 January 2017
Published: 1 March 2017 :

We describe a screen for cellular response to drugs that makes use of haploid embryonic stem cells.

We generated ten libraries of mutants with piggyBac gene trap transposon integrations, totalling
approximately 100,000 mutant clones. Random barcode sequences were inserted into the transposon
vector to allow the number of cells bearing each insertion to be measured by amplifying and sequencing
the barcodes. These barcodes were associated with their integration sites by inverse PCR. We exposed
these libraries to commonly used cancer drugs and profiled changes in barcode abundance by lon Torrent
sequencing in order to identify mutations that conferred sensitivity. Drugs tested included conventional
chemotherapeutics as well as targeted inhibitors of topoisomerases, poly(ADP-ribose) polymerase (PARP),
Hsp90 and WEE1.

Design Type(s) screening campaign e stimulus or stress design

Measurement Type(s) transposon integration e genetic mapping data

Technology Type(s) multiplexed sequencing library ¢ DNA sequencing by synthesis
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Sample Characteristic(s) Mus musculus ¢ embryonic stem cell line
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Background & Summary

Haploid mammalian cells only contain one allele of each gene. This property greatly facilitates forward
genetic screens, as mutations that would be recessive in a diploid background can directly result in a
phenotype. Two types of mammalian haploid cell lines have been used for genetic screens: those derived
from a near-haploid human leukaemia"® and haploid embryonic stem cells derived from activated
oocytes™. Both of these cell types have previously been used for forward genetic screens using insertional
mutagens such as transposons and retroviruses. The screens have mainly looked for mutants with
selectable phenotypes, either directly (e.g., drug or pathogen resistance' ) or via a suitable reporter®,
although a screen for essential genes has been recently published”. We sought to extend these screening
systems to look for drug sensitivity phenotypes.

Doing so requires either creating a large array of individual mutants or a system for monitoring the
abundance of each mutant in a mixed pool (Fig. 1a). The latter strategy has been used extensively to
screen cells with stably-integrated short hairpin RNA (shRNA) expression vectors, by sequencing the
distinct shRNA target sequences by next-generation sequencing approaches. This yields read counts for
each ShRNA that are proportional to the number of cells with integrations of that vector®.

To allow us to apply a similar approach to transposon-mutagenised haploid cells, we inserted a
random 25 base pair barcode at each end of the transposon, and prepared a complex pool of transposon
donor plasmids with different barcodes (Fig. 1b). Since the barcodes are of identical length and average
base composition, they can be quantified accurately using a PCR and sequencing approach, allowing the
relative number of cells with each barcode to be inferred and compared between samples. However,
unlike the hairpin sequence in shRNA vectors, the barcode sequence is of no biological relevance and
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does not directly identify the disrupted gene in its associated mutant. We used inverse PCR to link
barcodes to the disrupted genes that they represent (Fig. 1c). The inverse PCR products generated in this
way have the random barcode sequence at one end and the transposon-genome junction at the other.
These PCR amplicons were sequenced using a paired end strategy on an Illumina HiSeq 2000 and used to
build a database that links barcode sequences to integration sites.

Mutants were generated by transfecting purified haploid embryonic stem cells with transposon and
transposase under conditions that generate mainly single copy integrations. The resulting colonies were
counted and the equivalent of 1,000 colonies pooled. These 1k pools were then mixed to generate ten
pools of approximately 10,000 mutants each. We carried out screens by exposing these 10 k pools to one
of 13 drugs (Table 1) at a concentration designed to kill 50% of wild type cells over the screening period
(eight days). Pools treated with DMSO (the drug vehicle) were maintained in parallel to control for
differences in mutant growth rates that were not linked to drug exposure. After the drug exposure period
we prepared genomic DNA from surviving cells and amplified the barcode sequences. These PCR
products were sequenced using the Ion Proton platform, generating read counts that represented the
abundance of each barcode. These were merged with the inverse PCR data to produce read counts for
each integration site under the different treatment conditions. The edgeR R package’ was used to
normalise the read counts and generate fold changes and P-values for differences in barcode frequency
between drug exposed and DMSO exposed cells. Analysis methods are provided to query the data for
multiple insertion sites affecting the same gene that are significantly enriched or depleted.

Methods

Vector construction

The transposon vector was assembled using InFusion cloning (for sequence see Supplementary Data).
Random oligonucleotides were purchased from IDT with appropriate overhangs, and introduced into the
vector by InFusion cloning. The cloning reaction was used to transform E. coli cells (over 2x 10°
transformed colonies produced), which were grown overnight in liquid culture with ampicillin and
plasmids Brepared (Qiagen maxi prep). A previously described hyperactive piggyBac transposase plasmid
was used ™.

Embryonic stem cell culture and transfection

Haploid mouse embryonic stem cells from 129 strain mice (H129.2) were obtained from the laboratory of
Anton Wutz''. Cells were cultured as previously described'?, using 2i+LIF medium up until the point of
mutagenesis and conventional ES cell medium with 15% serum and LIF thereafter. Prior to transfection
with the transposon plasmids, cells were purified by FACS based on forward and side scatter to enrich for
haploid cells'”. Cells were transfected with limiting amounts of transposon plasmid to obtain mainly
single-copy integrations as previously described'*.

Mapping of transposon integrations by inverse PCR

Inverse PCR was based on the previously described TRIP protocol'®. Genomic DNA was prepared from
1 k mutant libraries and five micrograms digested separately with BfuCI (both transposon ends) and
either Hhal (PB3 end) or Rsal (PB5 end). Digested DNA was diluted to 4.5 ml in T4 ligase buffer and
ligated at 16 °C overnight using 800 units of T4 DNA ligase (NEB). Ligated DNA was precipitated by
adding 0.1 volume 3 M sodium acetate and two volumes ethanol and centrifuging at 4,700 r.p.m. for
45 min. The DNA pellet was washed once with 70% ethanol and resuspended in 250 pl 5 mM Tris-HCI,

Drug Target Libraries screened

Camptothecin

Topoisomerase I

1,6,7,8,9,10

BIIB021

HSP90

1,2,3,6,7,8,9, 10, 2sims

AT13387 HSP90 1,6,7,8,9,10
Bleomycin Double strand breaks 1,6,7, 8,10
Methotrexate DHFR 1,2,3,7, 8,9, 10, 2sims
JQ1 BRD4 1,2,3,4,6,7,8,9, 2sims
KW2478 HSP90 1,6,7,9,10

BMN 673 PARP1/2 1,2,3,4,6,7, 8, 10, 2sims
MK1775 WEEI1 1

17-AAG HSP90 1,7,8,9,10
Etoposide Topoisomerase II 1,6,7, 10
Decitabine DNA methyltransferase 1,6,7,8,9 10
PF04691502 HSP90 1,8,9,10

Table 1. Drugs used in screen.
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pH 8. Primary PCR was carried out using Q5 polymerase (NEB) in a 50 pl reaction volume using 20 pl
ligated DNA. Primer sequences and cycling conditions can be found in Supplementary Data. Samples
were paired-end sequenced using a HiSeq 2000 instrument, with dark cycles to ignore the low-complexity
PCR primer sequences. Barcodes were annotated and the genomic insertion site sequence extracted from
the paired reads (inv-hiseq.rb). Insertion sites were mapped to the mouse genome (GRCm38) using bwa'®
(implemented in map.rake) and associated gene information extracted using the ruby Ensembl API
(https://github.com/jandot/ruby-ensembl-api, implemented in getgene.rb). Integration sites with fewer
than 10 reads/million were discarded, and sites from the same library mapping to sites within 5 bp of each
other were combined.

Barcode recovery and screen analysis

Barcodes were recovered by PCR with primers tailed with barcoded Ion Torrent sequencing adapters
(Supplementary Data). The primers used were based on previously published sequences for shRNA
vectors®'”. PCR reactions were run as previously described® using a total of 30 pg genomic DNA
(approximately 1,000 haploid genome equivalents per mutant) template in 38 PCR reactions per sample.
Samples were gel-purified at room temperature as previously described'® and sequenced on Ton Torrent
P1 chips (Life Technologies), loading up to 16 samples per chip in equal amounts. Samples from the same
original library were sequenced on the same chip where possible. Read counts were generated for each
barcode by parsing FASTQ files (implemented in barcode-pipe.rake). Barcodes with high similarity are
likely to be the result of sequencing or PCR errors (this was supported by comparison with inverse PCR
data) and were grouped and counted together (group.r). Fold changes and P-values (exact test based on
negative binomial distribution) were calculated using the edgeR package’ and combined with barcode
mapping data (implemented in script gg_analysis.r).

Validation

A combined Cas9-sgRNA lentiviral vector was made by cloning a double stranded oligonucleotide with
appropriate overhangs (Supplementary Data) into pLentiCRISPR'® (Addgene 49535). JM8A3 ES cells*
were transduced, selected in puromycin and colonies picked and screened by PCR and Western blot to
identify Ewsrl mutants. MCF7 breast cancer cells were transfected with shRNA vectors as previously
described?'. Cell survival after drug exposure was determined using CellTiterGlo (Promega).

Code availability
Code used to generate and analyse data is deposited on github®.

Data Records

Mappings

Inverse PCR data was processed as above to generate hashup.gene files containing mapping information
(Data Citation 1).

Barcode counts
Fastq files from barcode sequencing experiments were processed as above to generate tsv files for each
10 k library screen (Data Citation 2).

Inverse PCR product sequences
Fastq files containing unmapped inverse PCR products were filtered to exclude truncated reads and reads
that did not start with the expected sequence to form fastginv files (Data Citation 3).

Technical Validation

Confirmation of mutagenic activity of barcoded transposon

In a preliminary experiment to verify that the new transposon construct was mutagenic, we transfected
haploid mouse embryonic stem cells with the barcoded gene trap vector and selected cells with stable
integrations using G418 to create a test library. Cells with mutations in components of the mismatch
repair pathway are resistant to the modified nucleotide 6-thioguanine (6-TG). Therefore we selected this
test library in 2 pM 6-TG. Eighty surviving colonies were isolated. The transposon integrations were
mapped by Splinkerette PCR™. In 43 clones with mappings, a known mismatch repair gene was
disrupted (Table 2 and Supplementary Table 1). Furthermore, the entire canonical mismatch repair
pathway was recovered (Msh2, Msh6, Mihl, Pms2), with multiple insertions in Msh2 and Msh6
demonstrating effective genome-scale mutagenesis.

Coverage

Analysis of the full set of integrations revealed that the libraries approached saturation with 14,132 genes
in total affected by a transposon insertion (Fig. 2a). As expected, integrations were biased towards genes
that are highly expressed in mouse embryonic stem cells (Fig. 2b).
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Gene Number of 6-TG resi: loni Number of insertion sites
Msh6 33 14

Msh2 8 4

Mih1 1 1

Pms2 1 1

Csmdl 2 1

Eifla 2 1

No gene annotated 2 2

Other 29 1

Table 2. Mutants resistant to 6-thioguanine (6-TG) isolated from haploid cells with barcoded

transposon integrations. Known mismatch repair genes and others disrupted in more than one colony are
shown. For more detail see Supplementary Data.
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Figure 2. Genomic coverage of libraries. (a) Cumulative number of unique genes disrupted in libraries 1-10.
(b) Breakdown of genes disrupted by expression in mouse embryonic stem cells, The fraction of genes in each
category with at least one integration is plotted. Single cell RNA-seq expression data and categorisation have
been previously published®.

Reproducibility
Per-barcode read counts were highly correlated in the DMSO-exposed replicates for each library
(mean pairwise r=0.96, Fig. 3a).

Proof-of-concept

Brca2 mutant cells are highly sensitive to the PARP inhibitor olaparib (Lynparza)®*. ES cells with a
targeted mutation in Brca2 have previously been described®. We tagged this cell line by transfecting it
with a clonal transposon plasmid with a known barcode. These tagged cells were mixed with one of the
10,000-mutant libraries (library 2) at a 1:10,000 ratio (200 cells to 2 million library cells) to form a spiked
library (L2-spk, Fig. 3b). Exposure of this spiked library to olaparib as described above revealed that the
tagged barcode was the most depleted in the olaparib-treated population (log, fold change=3.6,
P<1.4x10"3, exact test; Fig. 3¢).

Identification of novel determinants of sensitivity to the PARP inhibitor BMN 673

We asked whether known determinants of PARP inhibitor sensitivity were hits in our screen. The most
robust of these, the homologous recombination regulators Brcal and Brca2, are known to cause a fitness
defect in ES cells when fully disrupted, in contrast to the specific truncation allele in the spiked ES cells
above, so may not be seen in our screen. Out of a total of 192,631 insertions mapped for the PB3 end,
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Figure 3. Technical validation. (a) Concordance of read counts in two replicate DMSO-treated samples.
(b) Schematic of spiking experiment. (c) Volcano plot of spiking experiment results. P values (exact test) and
fold changes were calculated using edgeR. The point corresponding to the barcode in the spiked Brca2 mutant
is labelled. (d) Volcano plot of barcodes corresponding to Ewsrl integrations in all PB3 libraries exposed to the
PARP inhibitor BMN 673. (e) Validation of Ewsr1 hit. CRISPR knockout ES cells (L5.11) are more sensitive to
BMN 673 than parental JM8A3 cells. Surviving fraction is measured using CellTiterGlo after five days growth
in the indicated drug concentration; mean and s.d. of five replicates is plotted. (f) Western blot demonstrating
knockout of Ewsrl in CRISPR mutant. (g,h) Knockdown of the human homologue, EWSRI, in MCF7 cells
using shRNA causes BMN 673 sensitivity.
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only five were observed in Brcal and only one in Brca2; these genes have also been shown to be essential
in a recent ES cell CRISPR screen’®.

We therefore looked for novel determinants of PARP inhibitor sensitivity. We applied fold change and
P-value cutoffs to the analysed barcode abundances for the potent PARP inhibitor BMN 673 (also known
as talazoparib®’) and DMSO exposed libraries. We linked significantly depleted barcodes to their
integration sites using the inverse PCR data and observed that multiple barcodes associated with Ewsrl
integrations were depleted in the samples treated with BMN 673 (Fig. 3d). To confirm this result, we used
CRISPR-Cas9 technology to knock out EwsrI in diploid ES cells and verified that these cells were more
sensitive to BMN 673 than the parental cell line (4.2-fold lower SFso, P < 0.0001, ANOVA;
Fig. 3e,f). This was further validated using three different shRNA constructs to knockdown the human
homologue, EWSRI, in MCF7 breast cancer cells (20-fold lower SFso, P < 0.001, ANOVA; Fig. 3g,h),
suggesting that EWSRI might be a genetic determinant of PARP inhibitor sensitivity.

Usage Notes

Although 1,000 colony equivalents were pooled to form each sublibrary, there are approximately 2,000
integrations identified for each. This could be due to further transposon mobilisation events occurring in
colonies after the first cell division, or a subset of cells with stable transposase expression that continue to
generate integrations. Many barcodes map to multiple integration sites—this is likely due to lower than
expected complexity of the barcoded plasmid population. Transposon ends PB5 and PB3 are referred to
in analysis files as Sims and West respectively, corresponding to primer sequences used to prepare
sequencing products®'”. Mappings were generated for all PB3 (West) libraries and PB5 (Sims) libraries
L1 and L2.
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