
Review of Electrostatic Force Calculation Methods and Their
Acceleration in Molecular Dynamics Packages Using Graphics
Processors
Anu George,* Sandip Mondal, Madhura Purnaprajna, and Prashanth Athri

Cite This: ACS Omega 2022, 7, 32877−32896 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Molecular dynamics (MD) simulations probe the
conformational repertoire of macromolecular systems using
Newtonian dynamic equations. The time scales of MD simulations
allow the exploration of biologically relevant phenomena and can
elucidate spatial and temporal properties of the building blocks of
life, such as deoxyribonucleic acid (DNA) and protein, across
microsecond (μs) time scales using femtosecond (fs) time steps. A
principal bottleneck toward extending MD calculations to larger
time scales is the long-range electrostatic force measuring
component of the naive nonbonded force computation algorithm,
which scales with a complexity of N()2 (N, number of atoms). In
this review, we present various methods to determine electrostatic
interactions in often-used open-source MD packages as well as the
implementation details that facilitate acceleration of the electrostatic interaction calculation.

1. INTRODUCTION
Molecular dynamics (MD) simulations1−5 are widely used to
investigate spatial and temporal fluctuations of biomolecules.
MD simulations of processes such as protein−drug inter-
actions6−9 and folding/unfolding of proteins in the explicit
solvent10−14 require micro- to millisecond length simulations
to provide the chemical and biological inferences that
researchers commonly probe. The number of iterations or
time steps can range from tens to hundreds of millions. This
high sampling requirement is attributed to the high-frequency
motion of bond-stretch variation.15 Bond constraint algorithms
such as SHAKE16 and atomic mass scaling of the atoms in the
system17 have been used to decrease the sampling rate.
Nonetheless, the time steps in these simulations are in the
range of a couple of femtoseconds. The compute-intensive
stages involved in each time step (summarized below),
compounded by the high sampling rate requirement, result
in simulations that extend from hours to months (wall time).18

In each iteration or time step of the MD simulations, the
force on the system is calculated as the sum of bonded and
nonbonded components.1 Hence, the choice of the energy
function is an important decision toward providing a stable
MD simulation package. In general, most MD software
packages (see Section 3) use an additive form of individual
functions mapped to specific empirically calculated parameters
to express a particular form of interaction that contributes to
the instantaneous total potential energy of the system. A

defined combination of such functions and their associated
parameters is known as a force field. The force field used in
most MD packages is shown in eq 1. It is the sum of
intramolecular (Vintra) and intermolecular (Vinter) contribu-
tions. The Vintra term comprises eqs 1a through 1d, and the
functions represent bond (Vbond), angle (Vangle), and dihedral
or torsional angle (Vtors), and V1,5 is the Vinter contribution.
Vinter is the sum of long-range electrostatic (Vel) and short-
range van der Waals (Vvdw) interactions (eqs 1e and 1f). Thus,
the total potential energy can be written as

= +

= + + + + + +

E V V

V V V V V V V

p intra inter

bond angle tors imp 1,5 vdw el

(1)

=V k b b()bond
bonds

b 0
2

(1a)

Received: May 22, 2022
Accepted: August 26, 2022
Published: September 8, 2022

Reviewhttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

32877
https://doi.org/10.1021/acsomega.2c03189

ACS Omega 2022, 7, 32877−32896

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anu+George"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sandip+Mondal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Madhura+Purnaprajna"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Prashanth+Athri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c03189&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/37?ref=pdf
https://pubs.acs.org/toc/acsodf/7/37?ref=pdf
https://pubs.acs.org/toc/acsodf/7/37?ref=pdf
https://pubs.acs.org/toc/acsodf/7/37?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/

=V k ()angle
angles

0
2

(1b)

= [+]V k n1 cos()tors
dihedral

0
(1c)

=V k ()imp
improper

0
2

(1d)

=
<

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
V

r r
4

i j
ij

ij

ij

ij

ij
vdw

12 6

(1e)

= =
< <

V
q q

r

q q L r r

4

(,)

4i j

i j

ij i j

i j i j
el

0 0 (1f)

Here, kb, kθ, kϕ, and kω are the bond, angle, dihedral angle, and
Urey−Bradley force constants, respectively. (b − b0), (θ − θ0),
and (ω − ω0) are the difference between the instantaneous
values of the specific atoms and the reference (equilibrium)
values of bond, angle, and improper angles, respectively.
Dihedral angles are represented as a combination of Cosine
functions, and in eq 1c, n is the multiplicity and ϕ0 the phase
shift. The ∑i<j notation indicates that the summation is carried
out over every distinct pair of i and j without counting any pair
twice. qi is the partial charge on the ith atom, and ϵ0 is the
absolute dielectric permittivity of the vacuum. ϵij and σij are the
Lennard-Jones parameters for the van der Waals interaction
between two interacting sites, i and j, while rij = ||rj − ri|| is the
distance between those sites and L(ri, rj) = 1/||ri − rj||.

The bonded forces determine the molecular conformation.
It accounts for the potential energy contribution from the
covalent bonds, angles, and torsion angles. Further, it is
observed that their influence drops off steeply after a
reasonably chosen cutoff radius.2 The van der Waals potential
between two atoms also rapidly approaches zero since it is
inversely proportional to r6, where r is the distance between
two atoms.19 However, in the case of the electrostatic force
between charged atoms, it does not cease to exist even when
the distance between them is considerable.20,21 Due to this, the
cutoff distance for electrostatic calculations is much larger than
that for van der Waals in nonbonded force calculations.
Further, the computational complexity N(())2 increases with
an increasing number of atoms, N. Thus, the electrostatic

forces in nonbonded force calculations are the primary
bottleneck in MD simulations.19,22

In this review, the implementation of electrostatic potential
calculation algorithms (eq 1f) in the most widely used
simulation packages, namely, AMBER,23 NAMD,24 GRO-
MACS,25 LAMMPS,26 DESMOND,18 and ACEMD,27 is
explored. These MD packages are able to achieve very long
time-scale MDs in the micro- to millisecond ranges through
the use of GPUs (graphics processing units).

The organization of the paper is as shown in Figure 1, and
the objectives are the following:

• summarize the available methods of long-range electro-
static or Coulomb force calculations with respect to
accuracy, complexity, and scalability (Section 2);

• review the software and GPU-enabled technologies
currently used by popular MD;

• packages to accelerate electrostatic calculations (Section
3).

Algorithms used to reduce this complexity can be
categorized as Ewald-based and non-Ewald-based calculations.
In algorithms that use the Ewald-based method, the slowly
converging force (given in eq 1f) is split into real space
contribution and reciprocal space contribution along with self-
term, which is associated with error correction. This splitting
into components makes the computation much faster.28−30

The non-Ewald algorithms, such as the Wolf method, reaction
field method, preaveraging method, zero-dipole summation
methods, etc., are based on the assumption that the effect of
long-range interactions is negligible beyond the cutoff radius
for an electrostatically neutral system.30 The Ewald-based
algorithms are the particle mesh Ewald (PME)31 (reviewed in
Section 2.3) and the particle−particle/particle mesh Ewald (P3

M)31,32 methods (Section 2.4). The other variants of
electrostatic force calculation algorithms discussed in this
review are the direct Coulomb summation (DCS)33 (Section
2.1), multilevel summation method (MSM)34 (Section 2.2),
and fast multipole method (FMM)35,36 (Section 2.5).

2. DIFFERENT METHODS OF COULOMBIC
INTERACTION FORCE CALCULATIONS

Electrostatic interactions are one of the main forces that
contribute to determining the structure of biomolecules.37

They play a significant role in modeling the dynamics of

Figure 1. Different electrostatic force calculations (EFCs) are explored in Section 2 of the review. In Section 3, different techniques for the
acceleration of the EFC by the GPU are studied in MD packages along with solo GPU implementations of the algorithm. The yellow-colored box
encloses the different electrostatic force calculation algorithms, whereas the gray box encloses the MD packages and solo algorithmic
implementations, respectively. The color code used for implementation is the same as the fill color of the box of the algorithm name.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32878

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

charged molecules of proteins, DNA, and membranes in
explicit solvent simulations.38,39

The main challenges in electrostatic potential computation
(eq 1f) are the slow convergence of the electrostatic potential
of atoms with distance and the need to avoid artifacts
introduced in the potential calculation. These artifacts are due
to the boundary conditions as the surface molecules experience
different forces from other molecules present.29,40 While the
primary objective of this study is to provide a survey of
methods implemented to address the slow convergence issue,
it should be noted that periodic boundary conditions (PBCs)
are used to address surface effects. The central cell containing
the simulated system is replicated in three dimensions to form
an infinite lattice. During the course of the simulation, when a
molecule moves in the central original box, its periodic image
in each of the adjacent boxes moves in exactly the same way.
Therefore, whenever a molecule departs the central box, one of
its images enters the opposite face. There are no walls at the
central box boundary and no surface molecules in the PBC
scheme, and hence errors introduced due to boundary surface
effects are negligible.

The convergence bottlenecks exist since electrostatic
potential does not reduce to zero even for vast distances,41,42

and long-range methods are used to address this. The effect of
electrostatic interactions for long ranges is achieved by the
application of periodic boundary conditions (PBCs). The PBC
method considers the interactions between direct particles,
which are contained in the central simulation box, as well as
their mirror images in the replicated boxes.2,43 This yields a
more accurate value for the potential and, in turn, for the
forces acting on the atoms. Hence, the simulation of
biomolecules using long-range methods results in a more
accurate in silico reproduction of the experimental results.44

However, the computation-intensive nature of this method
becomes the bottleneck for scaling larger time scales.45,46

There are several long-range-based algorithms available to
handle Coulombic interactions. Among them, the most
common algorithms used for Coulombic computation in
explicit solvent MD are

• direct Coulomb summation (DCS)33 (Section 2.1)
• multilevel summation method (MSM)34 (Section 2.2)
• particle mesh Ewald (PME)31 (Section 2.3)
• particle−particle/particle mesh Ewald (P3 M)31,32

(Section 2.4)
• fast multipole method (FMM)35,36 (Section 2.5)

These algorithms are explained and compared in terms of
their accuracy, computational complexity, and scalability. The
algorithmic variations of the Coulombic force calculations
result in differences in accuracy, computational complexity,
and scalability. The accuracy is measured with respect to the
root-mean-square (rms) error in terms of force. The
complexity depends on the number of particles in the system
simulated and the methods used, such as fast Fourier transform
(FFT), etc. The scalability of the above long-range-based
algorithms is determined by the volume of intercommunica-
tion between different functional modules in the algorithm.
The scalability increases as the amount of communication in
the algorithm decreases. Highly scalable algorithms provide
increased performance by utilizing more computational
resources. The accuracy, computational complexity, and
achievable scalability are the factors that determine the

suitability of an algorithm for use in molecular dynamics
(MD) simulation.
2.1. Direct Coulomb Summation. It is a lattice-based

method in which the coordinates of atoms and their partial
charges are taken into account for the computation of
electrostatic potential.33 A rectangular lattice is defined around
the atoms with a fixed lattice spacing in all three dimensions.
The electrostatic potential contribution, V(i), at each point i in
the lattice is calculated as

=V i
q

r r
()

4 ()j

j

ij ij0 (2)

where qj is charge of atom j; ϵ0 is the absolute dielectric
permittivity of the vacuum; ϵ(rij) is the dielectric constant that
varies with the distance between the lattice point i and atomic
charge qj;

33 and rij is the pairwise distance between the atom j
and the lattice point i as shown in Figure 2.

The potential map that is calculated by using the rectangular
lattice can be subdivided into planes and rows. The
components of distance calculation (z−, y− coordinates) for
an atom to points on the same row and plane are constant.
Hence, calculation of the potential energy contribution of an
atom to all the points in a row of the lattice can reuse the
distance component.47 This reuse of the distance component
achieves increased performance as memory accesses and
computations are reduced for the computation of the potential
of each atom.48

Accuracy. This method does not involve any approxima-
tions and hence is used as the benchmark to compare the force
calculation methods for accuracy.47

Complexity. The complexity of the method for a system
composed of N atoms and Q points in the lattice is NQ().
Scalability. The scalability of the algorithm is nonlinear due

to the quadratic complexity of the summation algorithm.
2.2. Multilevel Summation Method. The significant

latency of convergence in the direct Coulomb summation
method makes it an unsuitable choice for large molecular
systems with more than a few hundred atoms. Multilevel
summation is one of the fastest potential approximation
methods that can be used for periodic, semiperiodic, and
nonperiodic systems.34,49−51 The steps involved in the
multilevel summation algorithm are shown in Figure 3.

Figure 2. Electrostatic potential calculation in direct Coulomb
summation.33

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32879

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

In this method, the Coulombic potential (given in eq 1f) for
the atomic partial charges on the lattice defined around the
biomolecule is calculated by hierarchical interpolation.
Hierarchical interpolation and restriction are the two actions
performed to estimate the charge at each lattice point at
different levels of the grid. The charge at each grid point is due
to all the atomic charges in the biomolecule. The potential of
the system is split into two parts. The first component is the
short-range part that disappears after the cutoff distance a. The
long-range part is (vlong). It is obtained by excluding the force
involved in the interaction of the atoms with itself in the mirror
images (vex) as shown in eq 3.

= +

=
| |

= + +

= =

= =

=

i
k
jjjjj

y
{
zzzzz

V V q q L r r q v v

v q q
a

r r

a

v I L I L I L r r q

1
2

(,) 1
2

1
2

1

(... (()...))(,)

N

j i

N

i j i j
i

N

i i

i

N

i j
i j

j i

i
j

N

m m M M i j j

msm

1 1
0

1

long ex

ex

1

long

1
1 1 1 1

(3)

The long-range term is mapped to a grid where the lattice
spacing doubles for every successive level. This allows the use
of different time steps for the calculation of each term in the
potential and hence helps in improving performance. The term
L(ri, rj) in Vel (given in eq 1f) is split into the sum of short-
range and long-range interactions. The short-range interaction
L0 is truncated at distance a. The slowly varying long-range
part is split into L1, L2, L3, ···, LM−1, LM, which are clipped off at
distances 2a, 4a, 8a, ···, 2k−1a, ∞.

= + + ··· +L r r L r r L r r L r r(,) (,) (,) (,)M0 1 (4)

where L0(r, r′) and LM(r, r′) are given as in53

=
| |

| |

= | | | |

= | |

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

i
k
jjj y

{
zzz

L r r
r r a

r r
a

L r r
a

r r
a a

r r
a

L r r
a

r r
a

(,)
1 1

(,)
1

2 2
1

2 2

(,)
1

2 2

m m m m m

M M M

0

1 1

1 1 (5)

where r, r′ is the position vector of the ith and jth atom; γ(R) =
1/R for R ≥ 1 is a softening function; and R in the softening
function is | |r r

a2k where k = 0 to m and m = 1, 2, 3 ..., M − 1 is

the level of the grid.
The interpolation of the forces from the grids of spacing h,

2h, 4h, 8h,···, 2m−1h is done using the interpolation operator Im.
Im is calculated in terms of the interaction between the grid
point rm = (xm, ym, zm) and the corresponding nodal basis
function ϕm,34 which expressed in terms of the single-
dimensional basis function Φ as

=

=
i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzz

i
k
jjjjj

y
{
zzzzz

I L r r r L r r r

r
x x

h

y y

h

z z

h

(,) () (,) ()

()
2 2 2

m m
p n

p
m

m p
m

n
m

n
m

p
m p

m

m
p
m

m
p
m

m1 1 1
(6)

where,m = 1, 2,.., M and p, n are the indices of the grid points.
The continuous differentiation property of Φ and the

continuation of γ ensure the conservation of energy, which is
critical in long simulations. The interaction kernel L(r, r′) is
approximated efficiently by nesting between levels of
interpolation53 as

+ + +L r r L I L I L I L r r(,) ((... (()...)))(,)m m M M0 1 1 1 1
(7)

The interpolation function Im (eq 6) can be further divided
into computations that assign charges to the grid points. Then
the potential at these grid points is calculated based on the
charge assigned. Finally, the long-range contribution to the
potential is interpolated from the lattice points on the finest
grid (the smallest spacing between the lattice points). The
local support for Φ is provided by interpolation with a
piecewise polynomial of degree q with stencil size q + 1.54

These steps are computed by finding the intermediate charge
qm and the electrostatic potential em as described in ref 33.The
negative gradient of the potential function (given in eq 3)
provides the force exerted on the particles due to electrostatic
interaction. It is then used along with bonded and van der
Waals forces to find out the displacement of the particles in the
system in one time tep by solving Newton’s equations of
motion.
Accuracy. The appropriate choice of spacing of the finest

grid (h) and the short-range cutoff distance (a) determines the
accuracy of the force computation. An h-spacing of 2 Å, which
is close to the interatomic spacing, is used along with a cutoff
radius a between 8 Å and 12 Å. The choice of these values for
grid spacing and cutoff radius results in a relative error of less
than 1%.49 Accuracy can be further improved by the use of
higher orders of interpolation. Nevertheless, as stable dynamics
are achieved at a much lower accuracy in MSM, lower
interpolation orders can be used for simulations.33

Figure 3. Workflow involved in the multilevel summation algorithm.
Adapted with permission from ref 52. Copyright 2014 American
Institute of Physics.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32880

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Complexity. The computation complexity at each grid point
is a constant, and the number of grid points decreases by a
factor of 1/8 in each level. The complexity of the algorithm is

+N Q() where Q is the number of lattice points, and N is
the number of atoms.
Scalability. The dense, localized convolution calculations

involved and the close neighbor communications in MSM
facilitate high scalability and, thus, maximum utilization of
parallel-intensive computation platforms.33

2.3. Particle Mesh Ewald (PME). PME is based on the
Ewald scheme of potential calculations.31 The application of
periodic boundary conditions (PBCs) is used in PME to
overcome the boundary surface effect. The use of PBCs results
in certain artifacts which are dealt with in the computation of
Coulombic potential. In the calculation of Coulombic
potential, the correlation between the particles in the central
cell and the replicated cells must remain the same. It should
also be taken care that there should not be any correlation
between the original particle contained in the central cell and
the mirror image of that particle contained in the replicated
cell.56 These factors are accounted for in the PME method by
calculating the potential energy as the sum of the direct space
sum (vd), the reciprocal space sum (vr) calculated as shown in
Figure 4, and the error-correcting term or self-term (vc). The
direct space sum (vd) calculates the potential due to
interactions between charges within the cutoff radius. The
reciprocal space sum, vr, includes the interaction between
charges in the central unit cell and the replicated cell, and vc is
subtracted from the sum of vd and vr to remove the interaction
of charges with itself in the replicated cells.57

= + +

=
*

=
+

=
=

()()

V v v v

v q q
r

r

v
V

q q
m r r

m

v q

1
2

erfc()

1
2

exp 2 ()

n i j

N

i j
ji n

ji n

i j

N

i j
m

m
j i

i

N

i

Ewald
d r c

d

,

,

,

r

, 0

2

2

c

1

2

(8)

where N is the number of particles in the system simulated; n is
the coordinate vector of the unit simulation cell and * denotes
all values of n which does not include n ≠ = 0 and i = j; qi and
qj are the ith and jth charges between which the interaction is
being calculated; erfc(x) = 1 − erf(x) where erf(x) is the error
function and erfc(x) is the complementary error function; α is
the Ewald parameter; rji,n = |rj− ri + n|; V is the volume of the
unit cell; and m is the reciprocal lattice vector.58 VEwald converts
the slowly converging direct potential energy (given in eq 1f)
into a fast converging series.57 The Ewald parameter α allows
the balancing of computation between the direct and
reciprocal space with no change in the accuracy of the
potential calculation.

The calculation of the reciprocal space (vr) is done by
approximating the atom charges on a three-dimensional grid.
This approximation is made by interpolation using cardinal-B-
splines.58 The reciprocal space vr given in eq 8 can be rewritten
as

=

+ +

=

i
k
jjjjjj

i
k
jjjjj

y
{
zzzzz

y
{
zzzzzz

()()
v

V
q q

m
S m S m

S m Q k k k i
m k

K
m k

K
m k

K

F Q m m m

1
2

exp
() ()

() (, ,)exp 2

()(, ,)

i j

N

i j
m

m

k k k

r

, 0

2

2

, ,
1 2 3

1 1

1

2 2

2

3 3

3

1 2 3

1 2 3

(9)

where S(m) is the structure factor;59 Q is the 3D grid of
dimension K1, K2, and K3 onto which the charges are
interpolated; and F(Q) is the discrete Fourier transform of Q.
Accuracy. The main parameters that determine the accuracy

of the method are the Ewald splitting parameter (α), the value
of the cutoff radius, for which the short-range potential (vd) is
calculated, the order of the charge assignment function, and
the spacing of the 3D grid. It is an optimization problem to
find the optimal value of these parameters that attains the
desired accuracy. The charge approximation error decreases
with an increase in the order of the B-spline used.60,61

Complexity. When α is chosen to be sufficiently large,
interaction in direct space beyond a certain cutoff radius
becomes negligible, and its complexity reduces to N(). The
use of fast Fourier transform (FFT) to compute the reciprocal
space energy and force reduces the complexity of the long-
range part to N N(log).32

Figure 4. Long-range part of the electrostatic potential calculation in the particle mesh Ewald method.55 Adapted with permission from ref 55.
Copyright 2014 Marc Snir.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32881

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Scalability. The scalability is constrained by the method of
implementation of 3D-FFT used in the reciprocal space
calculation. The scalability of PME can be improved by
increasing the load of the direct space and thus decreasing the
FFT computation to be done in the reciprocal space. This can
be achieved by increasing the 3D-grid space.62,63

2.4. Particle−Particle/Particle Mesh Method (P3 M). P3

M is also based on the Ewald summation method.31 It gives
the most accurate potential among the different methods
developed based on Ewald, and it is also the most flexible.32 In
this method, similar to the Ewald method, the electrostatic
potential is divided into short-range and long-range as given in
Figure 5.

The contributions of the short-range and long-range parts
are weighted by the Ewald parameter (α). The division into
short-range and long-range in P3 M is achieved by deducting a
shielding charge distribution of identical magnitude from the
actual point charge. The short-range potential is calculated as
the direct summation of the interaction potential between the
combination formed by the point charge and shield charge
distribution over the adjacent neighbors.64 The long-range part
involves the effects due to the shielding charges.

The S2 function proposed by Hockney and Eastwood for
standard charge distribution65 is given as

=
<

>

l
m
oooooo

n
oooooo

i
k
jjj y

{
zzz

r a
a

r r
a

r
a

()

48
2 2

0
2

4

(10)

where a adjusts the S2 distribution, and r is the position vector
of an atomic charge.

The short-range interaction potential between two particles
with charge distribution γ(r) is expressed as

= <
=

i
k
jjjjjj

y
{
zzzzzzr a

C()
1

4
1 1

70
2ij

ij n
n ij

n
ijs

0 1

7

(11)

where =ij
r

a

2 ij and Cn is a constant that depends on the range
of values of ζij as given in Toukmaji and Board.57

The accurate potential due to interaction between the point
charges is found by adding potential due to interaction

between the charge distributions (long-range part) and the
short-range interaction potential.64 The long-range interaction
potential at each grid point k is found by applying the inverse
fast Fourier transform (FFT) on ψ̂(k), which is calculated as

= =k
k

k
k G k k()

()
() () ()

2

0
2 (12)

where k is the position vector of each grid point; ρ̂(k) is
obtained by the FFT of the gridded charge distribution; and
Ĝ(k) is the optimal influence function.66 Ĝ(k) is calculated
once at the start of the simulation based on the charge shape,
system size, and interpolation function.64 The force at each
grid point due to the potential of the nearest-neighboring grid
point is calculated by applying the finite difference operators.
Improved accuracy is obtained by considering not only the
potential due to the nearest neighbors but also the next nearest
neighbors in chain. Thus, a linear combination of finite
difference operators is applied to calculate the potential at each
grid point. Unlike analytical differentiation, this method
conserves momentum and thus avoids errors such as incorrect
particle drifts.65 Fourier transformation is done once to obtain
in real space the force exerted on each particle of the system
and, in turn, the velocity and thus the displacement in each
time step.
Complexity. The complexity of the algorithm is
N N(log), which is similar to the other mesh-based Ewald

methods.67

Accuracy. It is the most accurate among the Ewald-based
methods. The accuracy of the algorithm depends on the use of
a refined mesh or the use of higher orders of interpolation,
which are computationally expensive.32 Another method called
“interlacing” is used, in which a second grid is introduced at
half a grid spacing, and the same calculation as on the initial
grid is performed. The potential and force obtained on both
the grids are averaged to get more accurate values.68 Thus,
interlacing facilitates the use of wider spaced grids, and hence
performance is not hindered.
Scalability. Similar to PME, the scalability depends on the

workload distribution between the short-range and long-range
parts. More long-range load results in more FFT calculations
involving all-to-all communication and hence less scalability.

Figure 5. Potential calculation in the particle−particle/particle-mesh algorithm by dividing into two parts, namely, particle−particle for the short-
range part and particle mesh for the long-range part. For the short range, a 3D chaining mesh is built around the system such that the sides of the
cell HC1 and HC2 are greater than the cutoff radius R. The cutoff radius R is taken as 3 to 4 times of the sides H1, H2 of the potential mesh.32

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32882

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The algorithmic implementation of 3D-FFT plays a very
significant role.69,70

2.5. Fast Multipole Method (FMM). The FMM is one of
the top 10 algorithms of the 20th century36 developed by
Greengard and Rokhlin for the fast calculation of electrostatic
potential.35 In this method, the potential calculation is divided
into interactions between neighboring or direct particles and
those between distant particles as shown in Figure 6. The
distant particle interaction is calculated by multipole
expansions.71

The infinite multipole expansion gives the potential V(r) at
point P, which is at a distance of r from the center of a
collection of point charges enclosed in a sphere of radius a and
is shown in eq 13 as

=
= =

+V r
M
r

y() (,)
i m l

l
l
m

l l
m

0
1

(13)

where ylm(θ,ϕ) is the spherical harmonic potential;73 θ and ϕ
are the zenith and azimuth angles of the atom at point P; and
Ml

m is the lth multipole moment at level m.
The simulation box is hierarchically decomposed into a tree

structure of smaller subunits. The interaction effect of all the
particles in a subunit on a distant particle is calculated by the
truncation of multipole expansion for =p log 3 terms,
where ϵ is the required accuracy. The effect of larger groups of
particles is obtained by hierarchically combining these
multipole expansions. Potential accumulation due to the
interaction of all subunits is obtained by the hierarchical
combination of the Taylor expansions.74 The distant forces
thus calculated are added to the direct forces to obtain the
potential of each particle.75

The long-range electrostatic interaction of systems having a
nonuniform distribution of particles can be computed using
the FMM. It can also be applied to both periodic and vacuum
systems. The FMM is utilized for QC calculations of large
systems where scaling is considered an essential criterion along

with accuracy.76 However, for QM/MM calculations, PME is
considered more efficient than the FMM. The greater code
complexity of the FMM and the lack of energy conservation
compared to mesh-based Ewald methods have led to the usage
of primarily mesh-based Ewald methods in the molecular
dynamics’ packages of the current era.
Accuracy. It is based on two parameters, mainly the depth

or levels of the FMM tree and the length/number of terms in
the multipole expansion. Based on the user-provided energy
error threshold, the optimal set of these parameters is obtained
by running the error control and energy minimization
scheme.77,78

Complexity. FMM has a complexity of N() and hence
scales linearly with system size.79,80

Scalability. It is one of the most scalable algorithms among
electrostatic algorithms due to its linear complexity. The
communication complexity is P(log) where P is the number
of processes due to its hierarchical nature.81 The distribution of
particles among processes is performed using the z-space filling
curve. It reduces the communication required between the
processes and, in turn, increases the algorithm’s scalability.

The summary of comparisons of the different algorithms
used for electrostatic force calculation, discussed in Section 2,
is given in Table 1 in terms of accuracy, complexity, scalability,
and boundary conditions required for the respective
algorithms.

3. ELECTROSTATIC FORCE CALCULATION ON GPUS
BY DIFFERENT MD SOFTWARE

The data-parallel, compute-intensive nature of MD force
calculation stages makes graphics processing units (GPUs) a
very suitable choice for accelerators.83,84 The use of GPUs with
multicore CPU provides the researchers with increased
computation capability on workstations and laptops. Thus,
GPU augments multicore CPU performance. GPUs are
equipped with floating-point performance of over tens of
teraflops, high-bandwidth memory, and hardware multithread-

Figure 6. In the fast multipole method, the interactions on a particle at the particle−particle level are calculated between all the particles that are
located in the same and surrounding cells. The interactions with particles from the larger cells are approximated. Adapted with permission from ref
72. Copyright 2006 Taylor and Francis Group LLC (Books) US.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32883

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ing. These GPU features help to accelerate the electrostatic
force calculation stage of MD. The design and implementation
of the electrostatic force calculation algorithm such that it
scales to hundreds of tightly coupled processors is the most key
requirement for harnessing the power of GPU computing.

The exploration of different techniques of acceleration of the
electrostatic force calculation in MD production packages by
GPUs is done in the following sections. It gives information to
the researchers and developers working on MD performance
on the currently employed strategies for accelerating electro-
static force calculation algorithms.
3.1. AMBER MD. Assisted model building with energy

refinement (AMBER) is a set of force fields developed to
simulate the dynamics of biomolecules,85,86 and the AMBER
MD23 is a MD package that utilizes the AMBER force fields for
simulation. The nonbonded force calculations in AMBER
involve the van der Waals (vdW) interactions and the
Coulomb interactions.87 For the van der Waals (vdW)
interactions, the cutoff distance is used as it decays to zero
after a certain distance, whereas the Coulomb forces reduce in
strength very slowly. Hence, if ignored, it can lead to abrupt
dynamics due to the lack of energy conservation. The use of
periodic boundary conditions (PBCs) avoids artifacts due to
boundary conditions. Hence the unit cell, which contains the
system to be simulated, is replicated in all three dimensions.88

The Coulomb force calculation algorithm is done in
AMBER using PME (given in Section 2.3), the lattice sum
method, which is used to take into consideration the force
contribution beyond the cutoff. In AMBER, for explicit solvent
MD,89 the long-range electrostatic force is calculated fully on
GPU using this algorithm. In the reciprocal space, 3D fast
Fourier transform (FFT) of charge from real to complex is
performed using the CUFFT library90 of Nvidia. This
calculation in AMBER implementation happens with one
thread per particle.
Techniques for Acceleration. Arithmetic Precision. The

single-precision fixed-point (SPFP) integer arithmetic com-
bines single precision with a 64-bit fixed-point arithmetic. The
use of SPFP in the place of a double-precision floating point
for PME calculation helps significantly to boost the perform-
ance with not much loss in accuracy.91 This use of SPFP also
helps fully utilize the future and present GPU architectures
without incurring a performance degradation in the old GPUs.
The current version of AMBER provides three precision
models: the SPFP, which is the default model; the SPDP,
which uses double-precision floating-point variables for all
three bonded term (bond, angle, and dihedrals) calculations;
and the accumulation of potential and single-precision floating

points for all others, the DPDP, which uses double precision
for the entire GPU code.91,92

Neighbor-List Creation. The neighbor-list of atoms within
the cutoff distance is obtained using two sorting mechanisms.93

This list is used to perform the direct sum on the GPU. The
atoms are first sorted into boxes with dimensions at least equal
to the cutoff radius, and each atom is assigned a box ID. Then,
in the next step, to improve the spatial locality of each atom in
the box, a Hilbert curve94 is implemented as shown in Figure 7.

The box ID and the Hilbert curve coordinates are then used to
sort the atoms. The neighbor list for each atom is done using
the sorted atoms by considering all the adjacent boxes within
the extended cutoff (cutoff radius + buffer); i.e., all the atoms
within (extended-cutoff) R2 are taken as a neighbor. A
proposed optimization uses a bit-mask on the Hilbert ID to
exclude certain atoms from the R2 calculation. Once the
neighbor-list is formalized, the vdW and electrostatic
interactions are calculated by skipping the 1−2, 1−3, and 1−
4 interactions that are listed in the topology file.95

GPU Cluster. Parallel simulations across multiple GPUs
were done using the message passing interface (MPI) protocol
by replicating the data structures to all the GPUs.93 Hence, the
memory usage on each GPU is approximately identical with a
single parallel implementation, which can be improvised by
better communication and peer-to-peer functionality for direct
memory copies.96

In AMBER18,97 additional features have been added to
improve the acceleration of PME calculation. AMBER18 has
achieved for dihydrofolate reductase (DHFR) a simulation
speed of 657 ns/day compared to 588 ns/day in Amber16 (4 fs
time step, constant energy). This acceleration has been
achieved by faster PME real space and reciprocal space
calculation by the innovative spline tabulation look-up and
particle mapping kernels and optimizing the memory access of
bonded and nonbonded terms.
3.2. NAMD with PME. The smooth particle mesh Ewald

(SPME) algorithm is used in NAMD24,98 for electrostatic force
calculations, which is a variation of PME. In this, the charge-
spreading action is performed by the B-spline functions. This
interpolation scheme is a continuous function at the grid
points (n). As the points are all distinct, their derivatives are all
continuous up to a certain degree (n − 1).99 This property of

Table 1. Summary of Comparisons between Different
Electrostatic Force Calculation Algorithms (EFC Alg.)a

EFC
Alg. complexity accuracy scalability

boundary
conditions

DCS NQ()60 Highest47 Low47 NPC, PC

MSM +N Q()33 Medium33 High33 PC, SPC,
NPC

P3 M N N(log)67 High32 Medium69,70 PC

PME N N(log)32 Medium60,61 High62,63 PC

FMM N()79,80 Medium77,78,82 High81 NP, PC
aNPC stands for nonperiodic conditions, PC for periodic conditions,
and SPC for semiperiodic conditions.

Figure 7. Neighbor-list is prepared by the use of a Hilbert curve ID
along with a Box ID. Adapted with permission from ref 93. Copyright
2013 American Chemical Society.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32884

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

B-splines helps conserve energy as the derivatives of the
potential yield continuous forces. It also helps reduce the
number of FFTs to half compared to the PME method. In
SPME, potentials are approximated, but the forces are the
exact derivatives. Integration of the forces is achieved by
multiple time steps where the nonbonded forces are calculated
the least frequently. The neighbor list for short-range forces is
obtained by dividing the system spatially into patches. Within
each patch, the atoms are sorted into groups of 32 using the
orthogonal recursive bisection method.100 A compute object in
NAMD consists of 32 × 32 tiles. It is further divided into tile
lists that can be run on any thread block. This division into tile
lists provides more flexibility for load balancing between the
warps in a thread block.24

Techniques for Acceleration. FFT Parallel Implementa-
tion. The 3D FFT is implemented for multi-GPU by using a
pencil, slab, or box decomposition based on the number of
GPUs as shown in Figure 8. Each decomposition is assigned to

a single GPU. For pencil decomposition, 1D FFT is
performed; 2D FFT is performed for slab; and 3D FFT is
performed for box-level decompositions, respectively, using the
cuFFT library.90 For 1D FFT, transposing of the grid is done
to get a contiguous memory location for the next FFT
direction.101 The parallel implementation of FFTs requires
numerous messages to be passed between MPI nodes.
Nevertheless, the MPI architecture adhered to by NAMD
makes it possible to interleave the FFT calculations with the
dominant short-range nonbonded interactions.102

Newton’s Third Law. According to Newton’s third law,
when the interactive forces between atoms i and j are
calculated if a force f ij is exerted on i, then the force exerted
on j by atom i will be −f ij. This law helps to avoid the
calculating force on atom j again. Race conditions generated

when all the threads in a warp are trying to write to the same
memory location of atom j can be avoided by looping through
the tile in diagonal lines.104 The use of shared memory and its
synchronization overheads for shifting atom coordinates,
charges, and computed forces are avoided by the use of shf l
instruction, which makes use of GPU registers.105

Charm++. This is a programming system and run-time
library used by NAMD.106 It provides a message-driven
programming framework and processor virtualization capa-
bility. In message-driven programming, a method is invoked on
an object only when a message arrives for it, and thus it helps
to avoid communication latency.107 Processor virtualization
allows algorithm writing for a maximum number of parallel
objects and dynamic distribution among the available
processors at a run time. The performance achievable is
decided by the nonbonded calculation, which scales as NR3ρ
where N is the number of atoms, R the cutoff distance for
short-range calculations, and ρ = N/V the number of atoms per
unit volume V.24

3.3. NAMD with MSM. The multilevel summation method
(MSM, Section 2.2) is used as an alternative method for
electrostatic force calculation in NAMD53,108 as it supports
periodic, semiperiodic, and nonperiodic biomolecular simu-
lations. The GPU accelerates this compute-bound algorithm.
High throughput is achieved by harnessing the power of
thousands of multithreaded cores in the GPU. The
communication structure of the MSM algorithm guarantees
parallel scalability, and the slowly varying potential allows
multiple time steppings, which helps to improve perform-
ance.109

The short-range part of the system potential Vmsm (the first
term in eq 3) becomes more compute-intensive as the grids
become finer. The most time-consuming computations
involved in the algorithm are the lattice-based cutoff part,
vlong, and the short-range part of Vmsm. Hence, these
calculations are accelerated by the GPU.
Techniques for Acceleration. Small-Bin-Based Geometric

Hashing. This approach is used to accelerate the short-range
part of the MSM. In this, the CPU performs the geometric
hashing of the atoms into small bins. This separation allows the
calculation of interactions to be limited to only the neighboring
bins. CPU regularizes the approach to avoid boundary
conditions by adding empty bins. Then, these bins are copied
to the global memory of the GPU. A subcube of lattice points
is assigned to a thread block. The thread block calculates the
potential of each subcube of lattice points by iteratively
copying the neighboring atom bins to the shared memory. The
offsets of the neighboring bins are read from the constant
memory by using their thread block index. The load balancing
between the CPU and GPU for computation of atom
interactions was found to be ideal for a bin size of 4 Å.101

Sliding Window Approach. The potential at each point in
the lattice is the sum of surrounding charges that are weighted
by their distance to the respective point. The potential due to
interaction between points on a lattice is calculated by the
lattice cutoff part vlong (eq 3). At each level, k, the bounding
sphere which has a cutoff radius of 2k+1a has the same number
of atoms as levels k + 1 and k − 1. The weights at the boundary
of a sphere can be calculated theoretically, as the distances
between points on a uniform lattice are the same.

Each thread block is assigned a subcube of size 64 lattice
points, and each thread is assigned a point. The constant
memory is used to store the precalculated weights, and the

Figure 8. Different types of decomposition for parallelization of FFT
(a) slab decomposition and (b) pencil decomposition. The all-to-all
communication is minimum in slab decomposition. The number of
slabs is based on the number of processes in the CPU/GPU node.103

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32885

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

shared memory is used to store the surrounding neighboring
cubes of charges. To achieve constant memory access at a
registered speed, all the threads in a warp have to read the
same weight. The sliding window approach is used to achieve
this. The shared memory is loaded with eight subcubes
containing 64 charges each in this approach. A sliding window
of size 43 is shifted four times in the three dimensions, namely,
x, y, and z, within a triply nested loop. In each sliding window
position, every thread applies a single weight value to its
corresponding charge to obtain the updated potential. This
sliding window loop is embedded in another triple-nested loop
that iterates over the neighborhood cubes loaded in the shared
memory. For the correctness of the sliding window approach,
the eight subcubes should be padded by a layer of subcubes
with no charged points in them. For coalesced reads from
global memory, the lattice points in each subcube are stored in
x,y,z-ordering, and the subcubes are stored in row−column−
depth order.101

3.4. GROMACS with PME. GROMACS is one of the most
widely used open-access MD packages. It employs the
heterogeneous platform of multicore CPUs and GPUs for
maximum performance, throughput,25,110 etc. The electrostatic
force calculation is performed using PME (Section 2.3). The
highly parallelized environment of GROMACS divides the
computation among ensembles, domains, and multiple SIMD
cores.111 This decomposition of workloads with SIMD,
openMP, and MPI acting on each domain helps maximize
balanced hardware resource utilization. The different methods
implemented for PME acceleration in GROMACS are
explored.
Techniques for Acceleration. Eighth Shell Domain

Decomposition. This method112 helps to significantly reduce
the communication involved for force calculation between the
domains. Charge groups (grouping of partially charged atoms
into a single neutrally charged group) are used as the basic
element in the decomposition as it reduces the number of
calculations involved. In the eighth-shell decomposition, the
system is split into independent subsystems along with
dynamic load balancing, and these subsystems are then
mapped into separate MPI ranks (while retaining the “locality
of reference” within each domain). Multiple OpenMP threads
are contained in each MPI rank. The best performance is
achieved when the product of the number of MPI ranks and
number of OpenMP threads are equal to the number of cores
on a node, and the threads are pinned to the core. Each of the
subsystems is described as a triclinic cell, which helps decrease
the volume of solvent compared to a rectangular cell and thus
helps reduce computation and increase performance by 40%.
The apparent difference in the workload between the protein
and solvent/water domains is addressed by dynamic load
balancing.113 For the electrostatic interactions, 3D domain
decomposition is performed for the direct space, and 2D pencil
decomposition is done for the reciprocal space.25

Dedicated Nodes. The long-range part of the electrostatic
interaction is allocated with separate dedicated MPI
nodes113,115 as in Figure 9. The division of the available
nodes is such that 3−4 nodes are dedicated to a direct space
map, and a single node is dedicated to reciprocal space. The
PME nodes are kept to a minimum as the message
communications required for 3D FFT calculations scale as a
square of the number of nodes involved. The 3D FFT is
performed using 2D pencil decomposition.116 This mode of
allocation helps to automatically determine the division of the

workload into short-range and long-range force calculations
among the nodes available in the simulating platform.

The FMM has also been implemented in GROMACS on
GPU.82 The FMM is faster when the simulation is performed
on a large number of particles, large simulation boxes,
inhomogeneous charge distributions, and high paralleliza-
tion.116,117 The multipole-to-local calculation is the most
compute-intensive part of the FMM. Its complexity depends
on the multipole order (refer to Section 2.5). The ScaFaCoS
FMM67 is used in GROMACS, which is fully parallelized using
CUDA.
3.5. LAMMPS. The large-scale atomic/molecular massively

parallel simulator (LAMMPS)26 is a highly parallelized MD
package. The parallelization is achieved by spatial decom-
position of the system domain into multiple subdomains.
Domain decomposition is performed dynamically for load
balancing, as shown in Figure 10. Each of the subdomains is

allocated to separate nodes. The communication between the
nodes is based on the message passing interface (MPI)
protocol. In LAMMPS, the long-range electrostatic potential
calculation is done by the P3 M algorithm. The acceleration of
the P3 M algorithm is achieved by its implementation on a
distributed system of GPU clusters connected by InfiniBand69

and the algorithmic methods proposed for PME.101

Techniques for Acceleration. Charge Assignment Accel-
eration. The charge assignment function used is a spline of

Figure 9. Scaling with domain decomposition is achieved with the
multiprogram multidata approach in which particle−particle (PP)
ranks to PME ranks are allocated in the ratio of 3:1 for rectangular
simulation boxes and 2:1 for rhombic dodecahedra to minimize all-to-
all communication. The arrows represent the flow of communication.
Each PP rank communicates with the PME rank.114

Figure 10. Domain decomposition for a system with uniform density
into an equally sized box provides an equal load to all the allocated
cores, but for a nonuniform density system, an equally sized block
gives different load to the cores as shown in (a). LAMMPS performs
domain decomposition as shown in (b) for load balancing.118

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32886

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig10&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

order P. The algorithm’s accuracy depends on P and the
spacing of the grid, h. The values used for P and h determine
the error due to the discretization of the charge. The
parameters P (default value of 5), h, and α are fixed for a
user-specified value of the root-mean-square (RMS) discretiza-
tion error.32

For parallelization, a 3D grid is virtually implanted in the
simulated system, and the system is divided into subdomains.
The subdomains are allocated to each of the processors in the
cluster. The processor performs the grid charge allocation for
the charges that belong to its subdomain. All the grid points
(P3) within a P-stencil width centered on the grid point closest
to the charge are affected by the charge allocation. Since this
charge allocation involves ghost grid points that do not belong
to the respective processor, it must be communicated to the
neighboring processors.
3D FFT Acceleration. Once the charge allocation has been

performed, parallel 3D FFT is performed. The forward 3D
FFT is carried out in three communication stages. The 3D grid
is partitioned into 2D columns in x-dimension, then 2D-x into
2D-y, and finally 2D-y into 2D-z. On the final output of the
grid partitioning, 2D-z, convolution is performed. The inverse
FFT is performed using the same three communication stages
in the reverse order. The gradient for force calculation is done
using the ik-differentiation119 in the reciprocal space. The
electric field vector of each particle is obtained by interpolation
from P3 grid points. It also involves the ghost grid points. This
information is obtained by six-way communication with the
neighboring processors.69

The large volume of communication exchanged between
processors compared to computational intensity is the
bottleneck in the scalability of parallel 3D FFT and, hence,
the scalability of particle-mesh methods.
3.6. ACEMD. ACEMD27 is an MD software designed to

scale across multiple GPUs to achieve the microsecond long
simulation in an economical and effective manner. The ideal
system for ACEMD is a single node attached to multiple GPUs
via PCIe expansion slots. The GPUs compute different force
terms based on a simple force−decomposition scheme.120

Dynamic load balancing is performed to distribute the particles
for force calculation among the GPUs. The host processor
then sums up the force terms computed by the GPUs. This
total force matrix is transferred back to all the GPUs for
complete system integration. For electrostatic force calcu-
lations, the PME60 algorithm is implemented in a scalable
parallel manner by dedicating a specific number of GPUs for it.
Techniques for Acceleration. Cell-List Construction. The

system is decomposed into cells for dynamic load balancing.
Then, based on the cell-list scheme,101,122 the particles are first
binned based on their coordinates. For an MD simulation that
uses a cutoff radius, R = 12 Å, approximately 22 atoms can be
accommodated in bins with size R/2. Thus, the number of
atoms in a bin (cell) is comparable to the warp size in a GPU
of 32 threads. Each cell is assumed to have a maximum of 64
atoms to overcome the density fluctuations that arise during
the simulation. For PME, the accuracy required for MD is
provided, by using a cutoff radius R = 9 Å. This, in turn, results
in each cell being populated with at most 32 atoms. Each
thread launched by the cell-list construction kernel processes
the construction of the cell list for one particle at a time for all
atoms in that cell. Atomic memory operations are used to avail
concurrent access to the cell-list array.123

Optimized Memory Access. For the nonbonded force
computation, a thread block is allocated a single cell as shown
in Figure 11. All the atom coordinates within a radius R of the

current cell are loaded into the shared memory. The forces are
computed by looping over the particles loaded in the shared
memory. The cost of global memory access restricts the use of
Newton’s third law in this GPU implementation, and hence
the reciprocal force is not stored. The texture memory helps by
providing radial components of the force functions (Coulomb
and van der Waals) from a lookup table. The lookup table
provides the linearly interpolated values of these functions.
The error due to the use of the lookup table is acceptable for
MD as it is consistently less than 10−4.18

3.7. DESMOND. DESMOND18 is an open-source MD
program developed by D. E. Shaw Research. DESMOND
achieves high performance through well-defined implementa-
tion techniques and novel distributed memory parallel
algorithms that accelerate parallel MD simulations significantly.
These include parallel decomposition methods, message-
passing techniques, novel communication primitives, and
short-vector SIMD capabilities. The reduction of conflicts in
updating the nonbonded forces has provided the maximum
performance improvement.22

Techniques for Acceleration. Midpoint Method. The
system that is to be simulated is partitioned into a mesh of
rectangular parallelepipeds or boxes. To parallelize the range-
limited electrostatic interactions within a cutoff radius R,
similar to the spatial decomposition strategy,124 each process
updates particles in one box of the grid. This significantly
reduces the communication bandwidth required by the
process, and it further reduces if the cutoff radius is
decreased.112,125−128

The midpoint method126 further reduces the communica-
tion bandwidth. This method, shown in Figure 12, calculates
the interaction between two particles in a box if the midpoint
of the segment connecting the two particles falls in that
respective box. The data of particles that reside within the R/2
distance of the home box have to be imported for the
interaction calculation and are called the import region in the
midpoint method. The communication bandwidth require-
ment for this parallelization method depends on the size of this
import region. The midpoint method has the advantage that
the same data communicated for pairwise nonbonded
interactions can be reused for bonded forces, requiring local
communication. The particle simulation parallelization engine,
a custom portable library, helps with the efficient communi-
cation and computation in the midpoint method. The library
manages data order in memory, and the messages to be sent to
other nodes are assembled in the order in which it is to be sent.

Figure 11. Optimized memory access with each cell allocated to a
thread block in the GPU.121

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32887

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig11&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Task Decomposition. The particle-based approach is used
for task decomposition.22 The near-pairs, which are pairs of
atoms that come within the cutoff radius, are stored in a
nonredundant linear list. In this decomposition, each GPU
thread is dedicated to one particle, and it performs the force
calculation for all pairs involving that particle. For force
calculation, the “full-shell” mechanism is used, where the force
for each particle is calculated by its respective thread. Hence,
the same pair interaction is calculated twice.129 The conflict
removal of different threads updating the same particle’s
memory is obtained at the cost of redundant storage and
computation. This mechanism leads to better load balancing.

Charge spreading and force interpolation involved in PME
and the k-space Gaussian split Ewald method (k-GSE)130

require no further communication when this decomposition
method is implemented. Force contribution to all the particles
in the import region must be exported after computing all the
home−box interactions. Once the force on the particle has
been calculated, particle migration to different processors has
to be taken care of due to the atom position update. However,
if the import region is increased slightly, this particle migration
needs to be performed only after a few time steps. This is
because the position change of a particle is significantly less as
compared to R125 in each time step. This reduces the
communications required at the cost of a slight increase in
bandwidth for increased particle information during particle
import and force data transfer in the force export stage. The
volume of the import region is the measure of communication
bandwidth for this parallelization strategy.18

Staged Communication. During the import and export,
staged communication124,131 is used. This reduces the number
of messages from 26 (number of neighbors for a home box) to
6, that is, one in each cardinal direction (+x, −x, +y, −y, +z,
−z) in three stages.
3D FFT Parallelization. Then, the 3D FFT is performed on

the mesh. For parallelization of the 3D FFT used in PME, a 3D
mesh of size Nx*Ny*Ny (each of which is a power of 2) is
superimposed on the simulated system.18,127 The points on
this mesh are spread across px*py*pz boxes, and each of the
boxes has a mesh of size nx*ny*nz. 1D FFTs are calculated
successively in each of the three dimensions to evaluate the 3D

FFT. Nxnynz points occur in each column in the x-dimension
and require nynz 1D transformations, and the data for each
transformation are distributed across px processes. The 1D
FFT in the x-dimension is calculated in log2(Nx) stages by data
exchange between log2(px) processes. In each stage, the
communication only happens between a process and another
process. In DESMOND, the forward transforms are performed
by decimation in frequency. Three transforms are performed
for each of the three dimensions, and the transformed data
become bit-reversed in order. Then, multiplication by the
optimal influence function is done.

An inverse transformation brings back the initial spatial
distribution using decimation in time. Based on this FFT
parallelization, when FFT is performed using 512 processes (8
× 8 × 8), the FFT calculation requires nine messages to be
sent by each process (three in each of the three directions).
The number of messages and their latency is the primary
determinant of the FFT latency in the case of small meshes.
However, for large meshes, the message bandwidth also
requires significant consideration. For intranode parallelization,
pthreads are used, which divide the work assigned to the
process to be shared by multiple threads and processors.
Normalized representations are used for atom position
coordinates.101

SIMD Programming Interface. The SIMD programming
interface was developed to use short vector SIMD instructions
without hand-coding these instructions, and this simplified the
work of the coder along with accelerating the computations.18

These SIMD extensions simultaneously perform four 32-bit
single-precision floating-point operations with 16-byte aligned
memory accesses. Single precision in computation has the
advantage of reduced memory and communication bandwidth.
Bitwise Time Reversibility. An ideal MD simulation should

be reversible in time. However, the round-off errors and lack of
associativity in floating-point arithmetic lead to the inability to
reverse a simulation. DESMOND can achieve accurate bitwise
time reversibility for simulations that do not use constraints.18

It uses fixed-point arithmetic for updating particle position that
overcomes the round-off error. The nonassociativity of
floating-point arithmetic is dealt with by maintaining an
ordering of computation and particles. This DESMOND
feature helps to achieve an energy drift of less than 1 K per
microsecond with single-precision calculations.

The position coordinates are normalized to the respective
box, which helps achieve extra precision. The storage of
different data structures using the optimum memory hierarchy
plays a significant role. The position, force, and energy
information are stored in shared memory. The force tables,
which store the intrinsic properties of force fields, are stored in
constant memory as they are constant values. The controlling
conditions are modified to avoid or reduce thread divergence,
and branch predictions are made. In addition to these
optimizations, streaming SIMD extension (SSE) instruc-
tions132 help to further speed up the computations up to 3×.
3.8. Comparison of Electrostatic Algorithms and Its

Implementation in MD Packages Based on Its Advan-
tages and Disadvantages. In MD simulation, the main
criteria to be kept in mind are ensuring that the simulation’s
accuracy meets the accuracy threshold set by the user and the
computation cost involved in achieving that accuracy like the
simulation time, efficient utilization of resources, etc. The
hyperparameters of the algorithm are set based on these
criteria. The Ewald-based methods such as PME and P3 M are

Figure 12. In the midpoint method, if the distance between two
particles is less than or equal to the cutoff distance, then the midpoint
of the line joining the two particles is calculated, and the computation
of the interaction for the particles involved is done in the box in which
the midpoint falls. In the above figure, for the particles b and c, the
midpoint falls in box 1, and hence the computation for this interaction
is done in box 1.18 Reprinted in part with permission from ref 18.
Copyright 2013 IEEE.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32888

https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?fig=fig12&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

based on fast Fourier transforms (FFTs). The use of FFTs
helped to reduce the quadratic computation complexity of
electrostatic algorithms to N N(log) with comparable
experimental accuracy for force calculations. The inherently
periodic systems, such as crystals, are particularly suited for
FFT-based methods. The use of FFTs is made possible in PME
and P3 M by applying periodic boundary conditions. The
periodic boundary conditions consider the dynamics that occur
at the boundary of the simulated system, but the applicability
of periodicity to inherently nonperiodic systems such as
solutions is questionable. It has been seen that introduction of
artificial periodicity for solvated biomolecules results in
perturbation of conformational equilibrium. It, in turn, causes
minor fluctuations and an artificial stabilization of the most
compact state.133 The effect is more pronounced when the
solvent has low dielectric permittivity, the solute has an overall
charge, etc.134

The Ewald summation method requires that the system’s
simulation box is neutral. The simulation of non-neutral
systems is facilitated by introducing a uniform background
charge distribution that neutralizes the simulation box135 or by
adding explicit counterions. The use of background charges
may result in the rise of artifacts, as the spatial distribution of
counterions in real systems is different, particularly in systems
with an inhomogeneous dielectric constant. The uniform
background charge distribution in inhomogeneous systems
artificially changes the potential of mean force. This artifact can
be overcome by the use of explicit ions to neutralize the
simulation box. The effect on the energy and pressure
introduced by the background charge in homogeneous systems
can be corrected on the fly or a posteriori.136

The required global transpose of data in FFTs becomes a
great challenge while computing the three-dimensional FFTs
when PME or P3 M algorithms are implemented on large
clusters of CPUs or GPUs. It has been found that the
scalability of the FFT is p where p is the number of
processes. The cost of communication between the processes
scales as log(p)137 when compared with hierarchical clustering
methods, such as the FMM. This reduced communication cost
is achieved by the memory access pattern in the FMM, which
is more localized due to the use of approximations based on
spatial scale separation. The need for an efficient and scalable
algorithm to run on the future exascale computer has brought
the FMM into the research forefront. The memory becomes a
constraint in the simulation box size scalability in the case of
PME, whereas in the FMM, only the number of particles is the
limit. The performance of the FMM becomes very high when
there is sufficient parallelism to exploit. The FMM achieves the
same accuracy as PME when a multipole order of 7 is used
with a depth 3. On the other hand, the standard parameters
(cutoff radius −1.0 nm, grid spacing of 0.12 nm, and a B-spline
interpolation order of 4) are used for PME. The energy drift
occurs in the FMM due to the octree discretization. This
discretization also results in small force discontinuities over
time. This can be compensated in the FMM by increasing the
multipole order to more than 8 or regularization for lower
orders. In GROMACS, energy drift is significantly reduced for
both PME and FMM implementation using a large Verlet
buffer and double precision calculation. Further, it is found
that in the case of a biomolecular system with 50 000 atoms
the performance of the FMM is only about one-third as
compared to PME in GROMACS. Thus, it is recommended to

use the FMM for systems with large dimensions and
nonuniform particle distribution, such as aerosol or multi-
droplets within 10 000 atoms. In these situations, the large
memory requirement of the FFT grid makes PME unsuitable
for use.82

MSM provides better scalability compared to PME when the
number of processors is large. This is because FFTs in MSMs
which require global communications are avoided in the lower
levels by approximating the long-range part on a hierarchy of
grids and using it only at the coarsest (highest) level, and it is
also not iterative. It uses near-neighbor point-to-point
communication. The computational time taken by MSM can
be reduced further by choice of optimum grid spacing h (see
Section 2.2). The optimum grid spacing can be obtained using
an equation given by Moore and Crozier138 in Section 4B as
the starting point to decide the levels and, in turn, the number
of grid points. Fine-grained control of accuracy in MSM is not
possible because the grid spacing in MSM can only be changed
in each direction by factors of two or eight when changed in
three dimensions simultaneously. For example, a system
ApoA1 (92K atoms) was simulated on Cray XE6 nodes (32
cores per node) by varying the number of nodes in which PME
showed higher performance when the number of cores was less
than 256. The performance crossover between MSM and PME
occurs between 256 and 512 cores.

The performance of PME reaches a plateau at 1024 cores,
while MSM continues to scale for up to 1536 and achieves a
performance of 20 ns per day. MSM produced comparable
accuracy with PME in the calculation of water properties such
as density, diffusion constant, dielectric constant, etc. Still, the
numerical accuracy of PME is much more than MSM. The
optimum choice of parameters such as grid size, ratio of the
cutoff to grid size, and interpolation order is important to
achieve low root-mean-square error, which evaluates the
accuracy. The MSM method greatly benefits molecular
simulations involving nonperiodic and semiperiodic boundary
conditions. The property of MSM to simulate in semiperiodic
boundary conditions can be applied in the simulations of the
cell membranes. It can also be used to simulate nanopores used
as sensors and situated in a graphene sheet, which acts like a
cell membrane. MSM is implemented in the molecular
dynamics package NAMD as explained in Section 3.3.53

MSM was also found to be faster than FMM for a given
accuracy requirement. This is because, in MSM, forces are
smooth as compared to in FMM.34,141 MSM was found to be
slower than SPME in NAMD for a water system simulated on
a single processor,63 but MSM running on GPU has significant
speedup due to its highly scalable nature.142

For DESMOND,143 the simulations run with the u-series
algorithm produced a performance of 1100.7 ns/day on one
V100 with a 2.5 fs time step, whereas Amber18144 achieved a
performance of 779.46 ns/day and 411.90 ns/day with 4 and 2
fs time steps, respectively, for the DHFR system with 23 000
atoms. ACEMD provides 937.5 ns/day on single V100 GPU
for DHFR (23K atoms). ACEMD145 produced 28 ns/day, and
DESMOND provided a performance of 34.1 ns/day on a
single V100 for STMV (Satellite tobacco mosaic virus) with
1 067 095 atoms. GROMACS 2020146 provides 43.1 ns/day
on four V100 GPUs. GROMACS 2020 achieves 147 ns/day
performance on four V100 SXM GPUs on the Cellulose
system with 408 609 atoms, and Amber18 provides a
performance of 53.39 ns/day for one V100 system. In all the
MD packages except DESMOND, the PME algorithm is used.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32889

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The main advantages and disadvantages of electrostatic
algorithms implemented in MD packages are summarized in
Table 2.
3.9. Acceleration of Electrostatic Potential Algo-

rithms Not Part of an MD Package. 3.9.1. DCS
Acceleration. The direct Coulomb summation (DCS)
algorithm for direct Coulomb potential calculation (Section
2.1) on the lattice is an ideal algorithm for acceleration using
GPUs. This is due to the high degree of data parallelism,
intensive arithmetic operations, and simple data structures in
DCS, which are highly suitable for the GPU architecture.33

The GPU implementation of DCS on NVIDIA GeForce 8800
GTX can achieve a performance of more than 16× as
compared to the optimized CPU version on an Intel Core 2
quad-core 2.66 GHz processor. This performance of the GPU
can be further enhanced to 40× using different algorithmic and
architectural improvements.47

Techniques for Acceleration. Grid Partitioning. The
potential map grid of the simulated system is divided into
planes, and each of the planes is mapped to the grid on a GPU.
Different planes are distributed among multiple GPUs for
parallel computation. Each of the 2D planes is further divided
and assigned to a thread block on the GPU. The number of
threads in a block is dependent on the shared memory, the
registers, and resources that each thread consumes.33

Overlapping Arithmetic Operations and Memory Ac-
cesses. For distance calculation, some of the coordinate
components are constant for atoms in individual planes.
Hence, they can be reused to find the potential contribution to
different points on a plane. When the potential contribution of
atoms in the x-direction is to be computed, the sum of y,z
components of distance calculation is calculated once for an
atom and reused for the rest of the atoms. Thus, the increased
arithmetic operations can mask the delay in the memory
reference. With the increase in the number of lattice points to
which an atom’s contribution is calculated, the load on
constant memory reduces, increasing the number of registers
used to store partial results. So the number of registers used
per thread limits the number of points to which an atom’s
contribution can be calculated at the same time.

This bottleneck is mitigated by using shared memory, and
the registers are used to store the partial results. The use of
shared memory and registers helps increase the number of
lattice points to which an atom’s contribution is found but
increases the computational tile size and, in turn, the size of the
thread block. Performance degrades when the potential map of
the simulated system is not divisible by the tile size and results
in the addition of padding. This additional padding results in
unwanted arithmetic operations and a degradation in perform-
ance for smaller potential maps.33,47

Concurrent Memory Subsystem Usage. To provide data to
the vast number of arithmetic units available in the GPU,
simultaneous independent access of constant, shared, and
global memory was done.33

3.9.2. FMM Acceleration on GPU. The fast multipole
method (FMM) is a very suitable algorithm (Section 2.5) for
highly parallel exascale systems available today due to its linear
complexity and high arithmetic intensity.147 It is scalable to
thousands of GPUs, making petascale-computing possible. In
this algorithm, the system simulated is divided into
subdomains that map to the branches of a tree. The FMM
algorithm consists of six main kernels, and each of the kernels
is evaluated on the GPU. T
ab
le
2.
C
om
pa
ri
so
n
of
A
dv
an
ta
ge
s
of
El
ec
tr
os
ta
tic
A
lg
or
ith
m
s
Im
pl
em
en
te
d
in
M
D
Pa
ck
ag
es

EF
C

al
go

rit
hm

ad
va

nt
ag

es
di

sa
dv

an
ta

ge
s

PM
E

1.
T

he
pe

rfo
rm

an
ce

in
G

RO
M

AC
S

re
ac

he
s

(1
00

0)
st

ep
s

pe
r

se
co

nd
.

1.
M

em
or

y
be

co
m

es
a

co
ns

tr
ai

nt
w

he
n

la
rg

e
sim

ul
at

io
n

bo
xe

s
ar

e
us

ed
du

e
th

e
to

m
em

or
y

ac
ce

ss
na

tu
re

of
FF

T
.

2.
Ra

pi
d

co
nv

er
ge

nc
e

of
en

er
gy

w
ith

hi
gh

ac
cu

ra
cy

us
in

g
m

ix
ed

pr
ec

isi
on

an
d

hi
gh

ly
op

tim
iz

ed
G

PU
im

pl
em

en
ta

tio
n

in
G

RO
M

AC
S

us
in

g
op

tim
iz

at
io

n
st

ra
te

gi
es

(r
ef

er
to

Se
ct

io
n

3.
4)

.
2.

FF
T

re
qu

ire
sa

ll-
to

-a
ll

co
m

m
un

ic
at

io
n

an
d

he
nc

e
be

co
m

es
a

bo
ttl

en
ec

k
fo

rs
ca

la
bi

lit
y.

PM
E

sc
al

in
g

re
ac

he
sa

fla
t

le
ve

la
t

10
24

pr
oc

es
se

s.13
9,

14
0

M
SM

1.
Ba

se
d

on
sp

at
ia

ls
ca

le
s,

it
pr

ov
id

es
th

e
m

os
t

su
ita

bl
e

m
em

or
y

ac
ce

ss
pa

tte
rn

s.
1.

In
sin

gl
e

C
PU

im
pl

em
en

ta
tio

n,
M

SM
ac

hi
ev

es
a

pe
rfo

rm
an

ce
of

41
%

an
d

47
%

fo
r

or
de

rs
4

an
d

6,
re

sp
ec

tiv
el

y,
co

m
pa

re
d

to
PM

E.
In

cr
ea

sin
g

th
e

nu
m

be
r

of
le

ve
ls

in
M

SM
re

su
lts

in
a

m
od

er
at

e
pe

na
lty

as
co

m
pa

re
d

to
th

e
effi

ci
en

cy
of

FF
T

W
18

.
2.

H
ig

hl
y

sc
al

ab
le

an
d

he
nc

e
m

os
t

su
ita

bl
e

fo
r

la
rg

e-
sc

al
e

sim
ul

at
io

ns
ru

nn
in

g
on

G
PU

s
an

d/
or

cl
us

te
rs

.
3.

3D
co

nv
ol

ut
io

ns
pe

rfo
rm

ed
in

M
SM

ar
e

re
ad

ily
ve

ct
or

iz
ed

,w
hi

le
FF

T
s

ar
e

no
t.

T
hi

s
is

ad
va

nt
ag

eo
us

fo
r

G
PU

im
pl

em
en

ta
tio

ns
of

M
SM

an
d

in
C

PU
us

in
g

te
ch

no
lo

gy
su

ch
as

AV
X2

(I
nt

el
ad

va
nc

ed
ve

ct
or

ex
te

ns
io

ns
).

2.
W

he
n

a
dy

na
m

ic
al

ly
va

ry
in

g
sim

ul
at

io
n

bo
x

is
us

ed
,t

he
effi

ci
en

cy
of

th
e

re
al

sp
ac

e
gr

id
ca

lc
ul

at
io

n
be

co
m

es
an

iss
ue

as
it

de
pe

nd
s

on
th

e
sp

at
ia

le
xt

en
t

of
th

e
co

nv
ol

ut
io

n
ke

rn
el

st
en

ci
l.

4.
Re

ad
ily

ap
pl

ic
ab

le
fo

r
pe

rio
di

c,
no

np
er

io
di

c,
an

d
se

m
ip

er
io

di
c

sy
st

em
.

FM
M

1.
FM

M
pe

rfo
rm

s
w

el
lw

he
n

us
ed

fo
r

sim
ul

at
io

n
of

a
la

rg
e

nu
m

be
r

of
pa

rt
ic

le
s,

la
rg

e
sim

ul
at

io
n

bo
xe

s,
in

ho
m

og
en

eo
us

ch
ar

ge
di

st
rib

ut
io

ns
,a

nd
hi

gh
pa

ra
lle

liz
at

io
n.

11
6,

13
9

1.
T

ru
nc

at
io

n
of

th
e

m
ul

tip
ol

e
ex

pa
ns

io
n

at
fin

ite
or

de
rp

(s
m

al
lv

al
ue

s)
w

ill
re

su
lt

in
th

e
de

vi
at

io
n

of
fo

rc
es

an
d

en
er

gi
es

co
m

pu
te

d.
A

m
ul

tip
ol

e
or

de
r

of
p

⩾
12

ac
hi

ev
es

th
e

hi
gh

es
tn

um
er

ic
al

ac
cu

ra
cy

in
sin

gl
e

pr
ec

isi
on

co
m

pu
ta

tio
n

fo
r

FM
M

.82

2.
FM

M
sc

al
es

lin
ea

rly
up

to
≈

27
0

00
0

00
0

an
d

≈
16

0
00

0
00

0
pa

rt
ic

le
s

in
sin

gl
e

an
d

do
ub

le
pr

ec
isi

on
.

2.
FM

M
ac

hi
ev

es
on

ly
on

e-
th

ird
pe

rfo
rm

an
ce

of
PM

E
on

a
sin

gl
e

G
PU

fo
r

a
pe

rio
di

c
sa

lt
w

at
er

so
lu

tio
n.

3.
FM

M
is

no
t

lim
ite

d
by

sim
ul

at
io

n
bo

x
siz

e
on

ly
by

nu
m

be
r

of
pa

rt
ic

le
s

as
m

em
or

y
co

ns
tr

ai
nt

do
es

ap
pl

y
to

FM
M

al
go

rit
hm

ic
im

pl
em

en
ta

tio
n.

3.
T

he
ap

pl
ic

at
io

n
of

FM
M

to
no

nc
ub

ic
sim

ul
at

io
n

bo
xe

s
in

cr
ea

se
s

th
e

co
m

pl
ex

ity
of

th
e

al
go

rit
hm

.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32890

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Techniques of Acceleration. Orthogonal Recursive Multi-
section. Workload balancing is one of the most important
requirements to achieve maximum performance on a highly
parallel platform like the GPU. The decomposition of the
simulated molecule is achieved by the orthogonal recursive
multisection, which is a variant of the orthogonal recursive
bisection method.148 It forms a binary tree-like structure with
an equal number of particles in each bisection. This formation
of the binary tree-like structure is done by finding the nth

element in a group of N particles. The nth element algorithm is
used to divide the domain into several subdomains that are not
a power of 2.149 Rectangular-shaped subdomains called cells
are formed by this method.
Dual-Tree Traversal. The cell−cell interactions are obtained

by the dual-tree traversal method, which allows the use of
rectangular-shaped subdomains.150 All the particles in a
subdomain or cell are assigned to a process. The information
on the assigned particles is stored in the memory of that
process to reduce the memory requirement. Only the particle
data and multipole moments of particles near each subdomain
border are to be communicated to the neighboring processes.
This tree traversal thus reduces the amount of communication
involved.
Local Essential Tree. The particle decomposition forms an

oct-tree structure called the global tree. Portions of the global
tree, that is, the subdomain, are assigned to each process.
However, it requires information from the borders of the other
subdomains. These data are communicated between the
processes. Each process constructs a local essential tree, a
subset of the global tree using the information from the other
subdomains. The multipole acceptance criterion (MAC)81

determines which particle data are to be transferred from the
target cell. Based on MAC, a radius R between the center of
mass of the source cell and the border of the target cell running
on a remote process is determined.
Batch Evaluation. Of the most compute-intensive is particle

to particle and multipole to local kernels.81 Batch evaluation of
the two kernels is performed to accelerate the computations, as
there is no dependency between these kernels. The source cell
is loaded to the shared memory, and the target cell is assigned
to a thread block. A thread in the thread block computes each
coefficient of the multipole-to-local expansion.

The different acceleration techniques used for electrostatic
force calculations on GPUs are summarized in Table 3.

4. DISCUSSION
This paper compares the accuracy, complexity, and scalability
of the electrostatic force calculation algorithms (Section 2)
along with the software and hardware techniques used for the
algorithms’ acceleration on high-performance platforms such as
GPUs in the above sections. Accuracy and scalability are the
two factors that decide the choice of an electrostatic force
calculation algorithm in an MD package. The use of double-
precision floating points for arithmetic operations provides
very high accuracy but degrades the performance. While the
individual discussions of methods and parallelization techni-
ques seek to provide succinct introductions, they should suffice
so readers can contrast using the different comparison features
provided to make the right choice for their application or area
of study.

The performance of specialized supercomputers, such as
Anton 2, is based on customized algorithmic implementations
and specialized hardware. They provide bleeding-edge

performances but remain out of reach for the bulk of
researchers. For example, Anton 2 contains 33 792 processor
cores and achieve a performance of 85 μs per day for
dihydrofolate reductase (DHFR).151 However, specialized
computers are not within the reach of a typical researcher.
The acceptable option is to optimize the electrostatic
algorithms further to maximize the utilization of high-
performance computing platforms.

To our knowledge, the particle mesh Ewald (PME 8)
algorithm is the most popular algorithm that is used in the
molecular dynamics biomolecular simulations (see ref 152 for
benchmarks). The PME implementation on GPU used in
GROMACS is one of the fastest. This is due to the efficient
utilization of parallelization features available in the GPU and
the algorithmic optimizations. Nevertheless, when more than
one GPU is to be used in a cluster, the all-to-all
communication required in PME becomes a bottleneck. This
is because the number of messages exchanged in this
communication step scales quadratically with the number of
nodes in the cluster.82 The hybrid PME offload option is also
considered in which the 3D FFT which is communication
intensive is back-offloaded to the CPU. This will become a
viable choice in the next-generation computer which will have
high-bandwidth CPU−GPU interconnection, thus allowing the
grid transfer overlap.153 Due to the emergence of the exascale
supercomputer, it is vital to consider the algorithm’s scalability
to achieve extreme acceleration. These exascale super-
computers have led to further research on highly scalable
algorithms such as the FMM.

The FMM implementation on GPU can achieve the
accuracy of PME with high multipole order. However, it has
been found experimentally that the performance of the FMM
on GPU for protein systems is only one-third of the

Table 3. Different Methods of Electrostatic Force
Calculation (EFC) Acceleration Used by Different MD
Packages and Solo Algorithm Implementation (DCS and
FMM) on GPU for Improved Performance

MD package
EFC

algorithm methods of acceleration

AMBER23 PME 1. Mixed precision arithmetic is used
(SPFP).

2. Neighbor-list creation.
3. GPU-cluster acceleration.

NAMD24,98 S-PME 1. 3D-FFT parallel implementation.
2. Charm++ programming model.

NAMD53,108 MSM 1. Small-bin based geometric hashing.
2. Sliding window approach.

GROMACS25,110 PME 1. Eighth-shell domain decomposition.
2. Dedicated nodes.
3. Offload model.

LAMMPS26 P3 M 1. Charge assignment acceleration.
2. 3D FFT acceleration.

ACEMD27 PME 1. Cell-list construction.
2. Optimized memory access.

DESMOND18 PME 1. Midpoint Mmthod.
2. Task decomposition.
3. 3D FFT parallelization.

33,47 DCS 1. Grid partitioning.
2. Overlapping arithmetic and memory

operations.
147 FMM 1. Orthogonal recursive multisection.

2. Dual-tree traversal.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32891

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

performance of PME on GPU. For large sparse systems, the
FMM outperforms PME, and it can also handle open
boundaries.82 FMM and MSM are highly scalable but have
not been adopted by the popular MD packages due to the
increased implementation complexity. If these parameters can
be improved, these algorithms can be widely used. Hence, it is
an exciting and open area of exploration and opportunity.

5. CONCLUSION
This paper surveys the different methods of electrostatic force
calculation and their advantages and disadvantages. Different
algorithms are weighted based on the ease of programming,
computational complexity, accuracy, and simulation stability.
The electrostatic force, which is due to nonbonded interaction,
is one of the major performance bottlenecks in MD that is used
for simulating the dynamics of biological systems such as
proteins, DNAs, and membranes in explicit solvents.

It has been found that efficiency in terms of time and
memory can only be achieved by the interplay of software and
hardware optimizations. The electrostatic force calculation is
now moving toward a hybrid GPU environment, as discussed
in the research papers reviewed here. The difference in
acceleration occurs due to the different data management
strategies used in the algorithm and the hardware features of
the platform in which it is implemented.

The paper reviews how the electrostatic force calculation is
accelerated by the use of high-performance platforms such as
GPUs to achieve long time-scale simulations. The Ewald-based
methods such as PME, P3 M, and MSM are implemented in
the most widely used MD packages and special-purpose
supercomputers for MD. These platforms can harness the
inherent intensive parallelism available in the algorithm due to
the fine-grained parallelism available in hardware implementa-
tions of GPUs. The ability to overlap computation with
communication has been achieved due to customized designs.
The review shows that the future of efficient acceleration of
MD algorithms depends on the development or adaptability of
scientific algorithms that can harness the modern high-
performance computing platforms.

■ AUTHOR INFORMATION
Corresponding Author

Anu George − Department of Computer Science and
Engineering, Amrita School of Engineering, Bengaluru
560035 Amrita Vishwa Vidyapeetham, India;
Email: g_anu@blr.amrita.edu

Authors
Sandip Mondal − CubeBio AI, Bengaluru 560100, India
Madhura Purnaprajna − Department of Computer Science
and Engineering, PES University, Bengaluru 560085, India

Prashanth Athri − Department of Computer Science and
Engineering, Amrita School of Engineering, Bengaluru
560035 Amrita Vishwa Vidyapeetham, India; orcid.org/
0000-0002-5731-0291

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c03189

Funding
This work was supported by the Department of Science and
Technology (DST), Government of India, National Super-
computing Mission (NSM), Reference Number: DST/NSM/
R&D HPC Applications/2021/03.41.

Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Alder, B. J.; Wainwright, T. E. Studies in molecular dynamics. I.

General method. J. Chem. Phys. 1959, 31, 459−466.
(2) Adcock, S. A.; McCammon, J. A. Molecular dynamics: survey of

methods for simulating the activity of proteins. Chem. Rev. 2006, 106,
1589−1615.

(3) Patel, C. N.; Goswami, D.; Jaiswal, D. G.; Parmar, R. M.; Solanki,
H. A.; Pandya, H. A. Pinpointing the potential hits for hindering
interaction of SARS-CoV-2 S-protein with ACE2 from the pool of
antiviral phytochemicals utilizing molecular docking and molecular
dynamics (MD) simulations. J. Mol. Graphics Modell. 2021, 105,
107874.

(4) Padhi, A. K.; Rath, S. L.; Tripathi, T. Accelerating COVID-19
research using molecular dynamics simulation. J. Phys. Chem. B 2021,
125, 9078−9091.

(5) Pushkaran, A. C.; NatheN, P.; Melge, A. R.; Puthiyedath, R.;
Mohan, C. G. A phytochemical-based medication search for the
SARS-CoV-2 infection by molecular docking models towards spike
glycoproteins and main proteases. RSC Adv. 2021, 11, 12003−12014.

(6) Rahman, M. M.; Saha, T.; Islam, K. J.; Suman, R. H.; Biswas, S.;
Rahat, E. U.; Hossen, M. R.; Islam, R.; Hossain, M. N.; Mamun, A. A.;
et al. Virtual screening, molecular dynamics and structure-activity
relationship studies to identify potent approved drugs for Covid-19
treatment. J. Biomol. Struct. Dyn. 2021, 39, 6231−6241.

(7) Aouidate, A.; Ghaleb, A.; Chtita, S.; Aarjane, M.; Ousaa, A.;
Maghat, H.; Sbai, A.; Choukrad, M.; Bouachrine, M.; Lakhlifi, T.
Identification of a novel dual-target scaf- fold for 3CLpro and RdRp
proteins of SARS-CoV-2 using 3D-similarity search, molecular
docking, molecular dynamics and ADMET evaluation. J. Biomol.
Struct. Dyn. 2021, 39, 4522−4535.

(8) Alazmi, M.; Motwalli, O. In silico virtual screening, character-
ization, docking and molecular dynamics studies of crucial SARS-
CoV-2 proteins. J. Biomol. Struct. Dyn. 2021, 39, 6761−6771.

(9) Selvaraj, J.; Sundar P, S.; Rajan, L.; Selvaraj, D.; Palanisamy, D.;
Namboori, K.; Mohankumar, S. K. Identification of (2 R, 3 R)-2-(3, 4-
dihydroxyphenyl) chroman-3-yl-3,4, 5-trihydroxy benzoate as multiple
inhibitors of SARS-CoV-2 targets; a systematic molecular modelling
approach. RSC Adv. 2021, 11, 13051−13060.

(10) Cruz, F. J.; de Pablo, J. J.; Mota, J. P. Endohedral confinement
of a DNA dodecamer onto pristine carbon nanotubes and the stability
of the canonical B form. J. Chem. Phys. 2014, 140, 225103.

(11) Cruz, F. J.; Mota, J. P. Conformational Thermodynamics of
DNA Strands in Hy- drophilic Nanopores. J. Phys. Chem. C 2016, 120,
20357−20367.

(12) Duran, T.; Minatovicz, B.; Bai, J.; Shin, D.; Mohammadiarani,
H.; Chaudhuri, B. Molecular dynamics simulation to uncover the
mechanisms of protein instability during freezing. J. Pharm. Sci. 2021,
110, 2457−2471.

(13) George, A.; Purnaprajna, M.; Athri, P. Laplacian score and
genetic algorithm based automatic feature selection for Markov State
Models in adaptive sampling based molecular dynamics. PeerJ. Phys.
Chem. 2020, 2, No. e9.

(14) Tao, P.; Xiao, Y. Role of cotranslational folding for β-sheet-
enriched proteins: A perspective from molecular dynamics simu-
lations. Phys. Rev. E 2022, 105, 024402.

(15) Zheng, H.; Wang, S.; Zhang, Y. Increasing the time step with
mass scaling in Born- Oppenheimer ab initio QM/MM molecular
dynamics simulations. J. Comput. Chem. 2009, 30, 2706−2711.

(16) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. Numerical
integration of the cartesian equations of motion of a system with
constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977,
23, 327−341.

(17) Stocker, U.; Juchli, D.; van Gunsteren, W. F. Increasing the
time step and efficiency of molecular dynamics simulations: Optimal
solutions for equilibrium simulations or structure refinement of large
biomolecules. Mol. Simul. 2003, 29, 123−138.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32892

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anu+George"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:g_anu@blr.amrita.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sandip+Mondal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Madhura+Purnaprajna"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Prashanth+Athri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5731-0291
https://orcid.org/0000-0002-5731-0291
https://pubs.acs.org/doi/10.1021/acsomega.2c03189?ref=pdf
https://doi.org/10.1063/1.1730376
https://doi.org/10.1063/1.1730376
https://doi.org/10.1021/cr040426m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040426m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jmgm.2021.107874
https://doi.org/10.1016/j.jmgm.2021.107874
https://doi.org/10.1016/j.jmgm.2021.107874
https://doi.org/10.1016/j.jmgm.2021.107874
https://doi.org/10.1021/acs.jpcb.1c04556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.1c04556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0RA10458B
https://doi.org/10.1039/D0RA10458B
https://doi.org/10.1039/D0RA10458B
https://doi.org/10.1080/07391102.2020.1794974
https://doi.org/10.1080/07391102.2020.1794974
https://doi.org/10.1080/07391102.2020.1794974
https://doi.org/10.1080/07391102.2020.1779130
https://doi.org/10.1080/07391102.2020.1779130
https://doi.org/10.1080/07391102.2020.1779130
https://doi.org/10.1080/07391102.2020.1803965
https://doi.org/10.1080/07391102.2020.1803965
https://doi.org/10.1080/07391102.2020.1803965
https://doi.org/10.1039/D1RA01603B
https://doi.org/10.1039/D1RA01603B
https://doi.org/10.1039/D1RA01603B
https://doi.org/10.1039/D1RA01603B
https://doi.org/10.1063/1.4881422
https://doi.org/10.1063/1.4881422
https://doi.org/10.1063/1.4881422
https://doi.org/10.1021/acs.jpcc.6b06234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.6b06234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.xphs.2021.01.002
https://doi.org/10.1016/j.xphs.2021.01.002
https://doi.org/10.7717/peerj-pchem.9
https://doi.org/10.7717/peerj-pchem.9
https://doi.org/10.7717/peerj-pchem.9
https://doi.org/10.1103/PhysRevE.105.024402
https://doi.org/10.1103/PhysRevE.105.024402
https://doi.org/10.1103/PhysRevE.105.024402
https://doi.org/10.1002/jcc.21296
https://doi.org/10.1002/jcc.21296
https://doi.org/10.1002/jcc.21296
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1080/0892702031000065791
https://doi.org/10.1080/0892702031000065791
https://doi.org/10.1080/0892702031000065791
https://doi.org/10.1080/0892702031000065791
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(18) Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.;
Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.;
Sacerdoti, F. D. et al. Scalable algorithms for molecular dynamics
simulations on commodity clusters. Proceedings of the 2006 ACM/
IEEE conference on Supercomputing; 2006; p 84.

(19) Toyoda, S.; Miyagawa, H.; Kitamura, K.; Amisaki, T.;
Hashimoto, E.; Ikeda, H.; Kusumi, A.; Miyakawa, N. Development
of MD engine: High-speed accelerator with parallel processor design
for molecular dynamics simulations. J. Comput. Chem. 1999, 20, 185−
199.

(20) Rapaport, D. C.; Rapaport, D. C. R. The art of molecular
dynamics simulation; Cambridge university press, 2004.

(21) Piana, S.; Lindorff-Larsen, K.; Dirks, R. M.; Salmon, J. K.; Dror,
R. O.; Shaw, D. E. Evaluating the effects of cutoffs and treatment of
long-range electrostatics in protein folding simulations. PLoS One
2012, 7, No. e39918.

(22) Deng, H.; Li, X.; Liu, X.; Wang, G. Accelerating the near non-
bonded force computation in desmond with graphic processing units.
Parallel Processing Workshops (ICPPW), 2011 40th International
Conference; 2011; pp 191−198.

(23) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.;
Cheatham, T. E., III; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P.
AMBER. a package of computer programs for applying molecular
mechanics, normal mode analysis, molecular dynamics and free
energy calculations to simulate the structural and energetic properties
of molecules. Comput. Phys. Commun. 1995, 91, 1−41.

(24) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable
molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781−
1802.

(25) Pronk, S.; Ṕall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.;
Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der
Spoel, D.; et al. GROMACS 4.5: a high- throughput and highly
parallel open source molecular simulation toolkit. Bioinformatics 2013,
29, 845−854.

(26) Plimpton, S.; Crozier, P.; Thompson, A. LAMMPS-large-scale
atomic/molecular massively parallel simulator. Sandia Natl. Lab.
2007, 18, 43−43.

(27) Harvey, M. J.; Giupponi, G.; Fabritiis, G. D. ACEMD:
accelerating biomolecular dynamics in the microsecond time scale. J.
Chem. Theory Comput. 2009, 5, 1632−1639.

(28) Frenkel, D.; Smit, B. Understanding molecular simulation: from
algorithms to applications; Elsevier, 2001; Vol. 1.

(29) Allen, M. P.; Tildesley, D. J. Computer simulation of liquids;
Oxford university press, 2017.

(30) Fukuda, I.; Nakamura, H. Non-Ewald methods: theory and
applications to molecular systems. Biophys. Rev. 2012, 4, 161−170.

(31) Ewald, P. Evaluation of optical and electrostatic lattice
potentials. Ann. Phys. 1921, 369, 253−287.

(32) Deserno, M.; Holm, C. How to mesh up Ewald sums. I. A
theoretical and numerical comparison of various particle mesh
routines. J. Chem. Phys. 1998, 109, 7678−7693.

(33) Stone, J. E.; Phillips, J. C.; Freddolino, P. L.; Hardy, D. J.;
Trabuco, L. G.; Schulten, K. Accelerating molecular modeling
applications with graphics processors. J. Comput. Chem. 2007, 28,
2618−2640.

(34) Skeel, R. D.; Tezcan, I.; Hardy, D. J. Multiple grid methods for
classical molecular dynamics. J. Comput. Chem. 2002, 23, 673−684.

(35) Greengard, L.; Rokhlin, V. A fast algorithm for particle
simulations. J. Comput. Phys. 1987, 73, 325−348.

(36) Dongarra, J.; Sullivan, F. Guest editors’ introduction: The top
10 algorithms. Comput. Sci. Eng. 2000, 2, 22−23.

(37) Černy,̀ J.; Hobza, P. Non-covalent interactions in biomacro-
molecules. Phys. Chem. Chem. Phys. 2007, 9, 5291−5303.

(38) Hünenberger, P. H.; B̈orjesson, U.; Lins, R. D. Electrostatic
interactions in biomolecular systems. CHIMIA International Journal
for Chemistry 2001, 55, 861−866.

(39) Reif, M. M.; Krautler, V.; Kastenholz, M. A.; Daura, X.;
Hunenberger, P. H. Molecular dynamics simulations of a reversibly

folding β-heptapeptide in methanol: influence of the treatment of
long-range electrostatic interactions. J. Phys. Chem. B 2009, 113,
3112−3128.

(40) Sagui, C.; Darden, T. A. Molecular dynamics simulations of
biomolecules: long-range electrostatic effects. Annu. Rev. Biophys.
Biomol. Struct. 1999, 28, 155−179.

(41) de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Simulation of
electrostatic systems in periodic boundary conditions. I. Lattice sums
and dielectric constants. Proceedings of the Royal Society of London
A: Mathematical. Physical and Engineering Sciences. 1980, 27−56.

(42) Hünenberger, P.; Reif, M. Single-ion solvation: experimental and
theoretical approaches to elusive thermodynamic quantities; Royal
Society of Chemistry, 2011; Vol. 3.

(43) Hünenberger, P. In Simulation and Theory of Electrostatic
Interactions in Solution: Computational Chemistry. Biophysics, and
Aqueous Solution 1999, 17.

(44) Patra, M.; Karttunen, M.; Hyvvonen, M. T.; Falck, E.;
Lindqvist, P.; Vattulainen, I. Molecular dynamics simulations of lipid
bilayers: major artifacts due to truncating electrostatic interactions.
Biophys. J. 2003, 84, 3636−3645.

(45) Zhou, R.; Harder, E.; Xu, H.; Berne, B. Efficient multiple time
step method for use with Ewald and particle mesh Ewald for large
biomolecular systems. J. Chem. Phys. 2001, 115, 2348−2358.

(46) Mackerell, A. D. Empirical force fields for biological
macromolecules: overview and issues. J. Comput. Chem. 2004, 25,
1584−1604.

(47) Owens, J. D.; Houston, M.; Luebke, D.; Green, S.; Stone, J. E.;
Phillips, J. C. GPU computing. Proc. IEEE 2008, 96, 879−899.

(48) Hardy, D. J.; Stone, J. E.; Vandivort, K. L.; Gohara, D.;
Rodrigues, C.; Schulten, K. GPU Computing Gems Emerald; Elsevier,
2011; pp 43−58.

(49) Hardy, D. J. Multilevel summation for the fast evaluation of forces
for the simulation of biomolecules; University of Illinois at Urbana-
Champaign, 2006.

(50) Hardy, D. J.; Wolff, M. A.; Xia, J.; Schulten, K.; Skeel, R. D.
Multilevel summation with B-spline interpolation for pairwise
interactions in molecular dynamics simulations. J. Chem. Phys. 2016,
144, 114112.

(51) Novalbos, M.; Gonźalez, J.; Otaduy, M. A.; Martinez-Benito,
R.; Sanchez, A. Scalable On-Board Multi-GPU Simulation of Long-
Range Molecular Dynamics. Euro-Par. 2014, 752−763.

(52) Tameling, D.; Springer, P.; Bientinesi, P.; Ismail, A. E.
Multilevel summation for dispersion: A linear-time algorithm for r- 6
potentials. J. Chem. Phys. 2014, 140, 024105.

(53) Hardy, D. J.; Wu, Z.; Phillips, J. C.; Stone, J. E.; Skeel, R. D.;
Schulten, K. Multilevel summation method for electrostatic force
evaluation. J. Chem. Theory Comput. 2015, 11, 766−779.

(54) Kaufmann, T.; Fumeaux, C.; Vahldieck, R. The meshless radial
point interpolation method for time-domain electromagnetics.
Microwave Symposium Digest. 2008 IEEE MTT-S International.
2008, 61−64.

(55) Problem I. Multidomain Pattern II. Driving Forces III. Solution
1. Multiple Domain.

(56) Patra, M.; Hyvvonen, M. T.; Falck, E.; Sabouri-Ghomi, M.;
Vattulainen, I.; Karttunen, M. Long-range interactions and parallel
scalability in molecular simulations. Comput. Phys. Commun. 2007,
176, 14−22.

(57) Toukmaji, A. Y.; Board, J. A. Ewald summation techniques in
perspective: a survey. Comput. Phys. Commun. 1996, 95, 73−92.

(58) Essmann, U. U.; Essmann, L.; Perera, M. L.; Berkowitz, T.;
Darden, H.; Lee, L. G.; Pedersen, J. A smooth particle mesh Ewald
method. J. Chem. Phys. 1995, 103, 8577.

(59) Crowley, M.; Darden, T.; Cheatham, T.; Deerfield, D.
Adventures in improving the scaling and accuracy of a parallel
molecular dynamics program. J. Supercomput. 1997, 11, 255−278.

(60) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N
log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993,
98, 10089−10092.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32893

https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<185::AID-JCC1>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<185::AID-JCC1>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<185::AID-JCC1>3.0.CO;2-L
https://doi.org/10.1371/journal.pone.0039918
https://doi.org/10.1371/journal.pone.0039918
https://doi.org/10.1016/0010-4655(95)00041-D
https://doi.org/10.1016/0010-4655(95)00041-D
https://doi.org/10.1016/0010-4655(95)00041-D
https://doi.org/10.1016/0010-4655(95)00041-D
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1021/ct9000685?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct9000685?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s12551-012-0089-4
https://doi.org/10.1007/s12551-012-0089-4
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1063/1.477414
https://doi.org/10.1063/1.477414
https://doi.org/10.1063/1.477414
https://doi.org/10.1002/jcc.20829
https://doi.org/10.1002/jcc.20829
https://doi.org/10.1002/jcc.10072
https://doi.org/10.1002/jcc.10072
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1039/b704781a
https://doi.org/10.1039/b704781a
https://doi.org/10.2533/chimia.2001.861
https://doi.org/10.2533/chimia.2001.861
https://doi.org/10.1021/jp807421a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp807421a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp807421a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev.biophys.28.1.155
https://doi.org/10.1146/annurev.biophys.28.1.155
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1016/S0006-3495(03)75094-2
https://doi.org/10.1016/S0006-3495(03)75094-2
https://doi.org/10.1063/1.1385159
https://doi.org/10.1063/1.1385159
https://doi.org/10.1063/1.1385159
https://doi.org/10.1002/jcc.20082
https://doi.org/10.1002/jcc.20082
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1063/1.4943868
https://doi.org/10.1063/1.4943868
https://doi.org/10.1063/1.4857735
https://doi.org/10.1063/1.4857735
https://doi.org/10.1021/ct5009075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5009075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cpc.2006.07.017
https://doi.org/10.1016/j.cpc.2006.07.017
https://doi.org/10.1016/0010-4655(96)00016-1
https://doi.org/10.1016/0010-4655(96)00016-1
https://doi.org/10.1063/1.470117
https://doi.org/10.1063/1.470117
https://doi.org/10.1023/A:1007907925007
https://doi.org/10.1023/A:1007907925007
https://doi.org/10.1063/1.464397
https://doi.org/10.1063/1.464397
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(61) Petersen, H. G. Accuracy and efficiency of the particle mesh
Ewald method. J. Chem. Phys. 1995, 103, 3668−3679.

(62) Plimpton, S.; Pollock, R.; Stevens, M. Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations. PPSC 1997.

(63) Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.;
Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K.
NAMD2: greater scalability for parallel molecular dynamics. J.
Comput. Phys. 1999, 151, 283−312.

(64) Luty, B. A.; Davis, M. E.; Tironi, I. G.; Van Gunsteren, W. F. A
comparison of particle-particle, particle-mesh and Ewald methods for
calculating electrostatic interactions in periodic molecular systems.
Mol. Simul. 1994, 14, 11−20.

(65) Hockney, R. W.; Eastwood, J. W. Computer simulation using
particles; CRC Press, 1988.

(66) Ferrell, R.; Bertschinger, E. Particle-mesh methods on the
Connection Machine. Int. J. Mod. Phys. C 1994, 5, 933−956.

(67) Arnold, A.; Fahrenberger, F.; Holm, C.; Lenz, O.; Bolten, M.;
Dachsel, H.; Halver, R.; Kabadshow, I.; G̈ahler, F.; Heber, F.; et al.
Comparison of scalable fast methods for long-range interactions. Phys.
Rev. E 2013, 88, 063308.

(68) Neelov, A.; Holm, C. Interlaced P3M algorithm with analytical
and ik-differentiation. J. Chem. Phys. 2010, 132, 234103.

(69) Brown, W. M.; Kohlmeyer, A.; Plimpton, S. J.; Tharrington, A.
N. Implementing molecular dynamics on hybrid high performance
computers-Particle-particle particlemesh. Comput. Phys. Commun.
2012, 183, 449−459.

(70) Shirokov, A.; Bertschinger, E. GRACOS: Scalable and Load
Balanced P3M Cosmological N-body Code. Astrophysics Source Code
Library 2010, ascl-1010.

(71) Lacava, F. Classical Electrodynamics; Springer, 2016; pp 17−31.
(72) Dzwinel, W.; Boryczko, K.; Yuen, D. A. Modeling mesoscopic

fluids with discrete-particles-methods, algorithms, and results.
Surfactant sci. ser. 2006, 130, 715.

(73) Jackson, J. D. Classical Electrodynamics; John Wiley & Sons,
2012.

(74) Schmidt, K. E.; Lee, M. A. Implementing the fast multipole
method in three dimensions. J. Stat. Phys. 1991, 63, 1223−1235.

(75) Ying, L.; Biros, G.; Zorin, D. A kernel-independent adaptive fast
multipole algorithm in two and three dimensions. J. Comput. Phys.
2004, 196, 591−626.

(76) Field, M. J. Technical advances in molecular simulation since
the 1980s. Arch. Biochem. Biophys. 2015, 582, 3−9.

(77) White, C. A.; Head-Gordon, M. Derivation and efficient
implementation of the fast multipole method. J. Chem. Phys. 1994,
101, 6593−6605.

(78) Darve, E. The fast multipole method: numerical implementa-
tion. J. Comput. Phys. 2000, 160, 195−240.

(79) Darve, E. The fast multipole method I: error analysis and
asymptotic complexity. SIAM J. Numer. Anal. 2000, 38, 98−128.

(80) Andoh, Y.; Yoshii, N.; Fujimoto, K.; Mizutani, K.; Kojima, H.;
Yamada, A.; Okazaki, S.; Kawaguchi, K.; Nagao, H.; Iwahashi, K.;
et al. MODYLAS: A highly parallelized general-purpose molecular
dynamics simulation program for large-scale systems with long-range
forces calculated by fast multipole method (FMM) and highly scalable
fine-grained new parallel processing algorithms. J. Chem. Theory
Comput. 2013, 9, 3201−3209.

(81) Yokota, R.; Barba, L. A.; Narumi, T.; Yasuoka, K. Petascale
turbulence simulation using a highly parallel fast multipole method on
GPUs. Comput. Phys. Commun. 2013, 184, 445−455.

(82) Kohnke, B.; Kutzner, C.; Grubmuller, H. A GPU-accelerated
fast multipole method for GROMACS: Performance and accuracy. J.
Chem. Theory Comput. 2020, 16, 6938−6949.

(83) Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.; Krüger,
J.; Lefohn, A. E.; Purcell, T. J. A survey of general-purpose
computation on graphics hardware. Computer graphics forum. 2007,
26, 80−113.

(84) Garland, M.; Le Grand, S.; Nickolls, J.; Anderson, J.; Hardwick,
J.; Morton, S.; Phillips, E.; Zhang, Y.; Volkov, V. Parallel Comput.
experiences with CUDA. IEEE Micro 2008, 28, 13.

(85) Weiner, P. K.; Kollman, P. A. AMBER: Assisted model building
with energy refinement. A general program for modeling molecules
and their interactions. J. Comput. Chem. 1981, 2, 287−303.

(86) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and testing of a general amber force field. J. Comput.
Chem. 2004, 25, 1157−1174.

(87) Kini, R. M.; Evans, H. J. Molecular modeling of proteins: a
strategy for energy minimization by molecular mechanics in the
AMBER force field. J. Biomol. Struct. Dyn. 1991, 9, 475−488.

(88) Makov, G.; Payne, M. Periodic boundary conditions in ab initio
calculations. Phys. Rev. B 1995, 51, 4014.

(89) Haile, J.; Johnston, I.; Mallinckrodt, A. J.; McKay, S. Molecular
dynamics simulation: elementary methods. Comput. Phys. 1993, 7,
625−625.

(90) Nvidia, C. CUFFT Library; 2010. https://developer.nvidia.
com/cufft Accessed: 2021-05-05.

(91) Le Grand, S.; Gotz, A. W.; Walker, R. C. SPFP: Speed without
compromise�A mixed precision model for GPU accelerated
molecular dynamics simulations. Comput. Phys. Commun. 2013, 184,
374−380.

(92) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An overview of
the Amber biomolecular simulation package. Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 2013, 3, 198−210.

(93) Salomon-Ferrer, R.; Gotz, A. W.; Poole, D.; Le Grand, S.;
Walker, R. C. Routine microsecond molecular dynamics simulations
with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J.
Chem. Theory Comput. 2013, 9, 3878−3888.

(94) Moore, G. H. Hilbert on the infinite: The role of set theory in
the evolution of Hilbert’s thought. Hist. Math. 2002, 29, 40−64.

(95) Mertz, J. E.; Tobias, D. J.; Brooks, C. L.; Singh, U. Vector and
parallel algorithms for the molecular dynamics simulation of
macromolecules on shared-memory computers. J. Comput. Chem.
1991, 12, 1270−1277.

(96) Furlinger, K.; Wright, N. J.; Skinner, D. Comprehensive
performance monitoring for gpu cluster systems. 2011 IEEE
International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW) 2011, 1377−1386.

(97) Lee, T.-S.; Cerutti, D. S.; Mermelstein, D.; Lin, C.; LeGrand, S.;
Giese, T. J.; Roitberg, A.; Case, D. A.; Walker, R. C.; York, D. M.
GPU-accelerated molecular dynamics and free energy methods in
Amber18: performance enhancements and new features. J. Chem. Inf.
Model. 2018, 58, 2043−2050.

(98) Nelson, M. T.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kalé, L.
V.; Skeel, R. D.; Schulten, K. NAMD: a parallel, object-oriented
molecular dynamics program. Int. J. Supercomput. Appl. High Perform.
Comput. 1996, 10, 251−268.

(99) Lee, E. T. A simplified B-spline computation routine.
Computing 1982, 29, 365−371.

(100) Reumann, M.; Fitch, B. G.; Rayshubskiy, A.; Pitman, M. C.;
Rice, J. J. Orthogonal recursive bisection as data decomposition
strategy for massively parallel cardiac simulations. Biomed. Technol.
2011, 56, 129−145.

(101) Harvey, M.; De Fabritiis, G. An implementation of the smooth
particle mesh Ewald method on GPU hardware. J. Chem. Theory
Comput. 2009, 5, 2371−2377.

(102) Phillips, J. C.; Zheng, G.; Kumar, S.; Kalé, L. V. NAMD:
Biomolecular simulation on thousands of processors. Supercomputing,
ACM/IEEE 2002 Conference. 2002; pp 36−36.

(103) Ibeid, H.; Olson, L.; Gropp, W. FFT, FMM, and multigrid on
the road to exascale: Performance challenges and opportunities. J.
Parallel Distrib Comput. 2020, 136, 63−74.

(104) Gotz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand,
S.; Walker, R. C. Routine microsecond molecular dynamics
simulations with AMBER on GPUs. 1. Generalized born. J. Chem.
Theory Comput. 2012, 8, 1542−1555.

(105) Stone, J. E.; Hynninen, A.-P.; Phillips, J. C.; Schulten, K. Early
experiences porting the NAMD and VMD molecular simulation and
analysis software to GPU-accelerated OpenPOWER platforms.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32894

https://doi.org/10.1063/1.470043
https://doi.org/10.1063/1.470043
https://doi.org/10.1006/jcph.1999.6201
https://doi.org/10.1080/08927029408022004
https://doi.org/10.1080/08927029408022004
https://doi.org/10.1080/08927029408022004
https://doi.org/10.1142/S0129183194001069
https://doi.org/10.1142/S0129183194001069
https://doi.org/10.1103/PhysRevE.88.063308
https://doi.org/10.1063/1.3430521
https://doi.org/10.1063/1.3430521
https://doi.org/10.1016/j.cpc.2011.10.012
https://doi.org/10.1016/j.cpc.2011.10.012
https://doi.org/10.1201/9781420027662-47
https://doi.org/10.1201/9781420027662-47
https://doi.org/10.1007/BF01030008
https://doi.org/10.1007/BF01030008
https://doi.org/10.1016/j.jcp.2003.11.021
https://doi.org/10.1016/j.jcp.2003.11.021
https://doi.org/10.1016/j.abb.2015.03.005
https://doi.org/10.1016/j.abb.2015.03.005
https://doi.org/10.1063/1.468354
https://doi.org/10.1063/1.468354
https://doi.org/10.1006/jcph.2000.6451
https://doi.org/10.1006/jcph.2000.6451
https://doi.org/10.1137/S0036142999330379
https://doi.org/10.1137/S0036142999330379
https://doi.org/10.1021/ct400203a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400203a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400203a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400203a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cpc.2012.09.011
https://doi.org/10.1016/j.cpc.2012.09.011
https://doi.org/10.1016/j.cpc.2012.09.011
https://doi.org/10.1021/acs.jctc.0c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1080/07391102.1991.10507930
https://doi.org/10.1080/07391102.1991.10507930
https://doi.org/10.1080/07391102.1991.10507930
https://doi.org/10.1103/PhysRevB.51.4014
https://doi.org/10.1103/PhysRevB.51.4014
https://doi.org/10.1063/1.4823234
https://doi.org/10.1063/1.4823234
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://doi.org/10.1016/j.cpc.2012.09.022
https://doi.org/10.1016/j.cpc.2012.09.022
https://doi.org/10.1016/j.cpc.2012.09.022
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1021/ct400314y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400314y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1006/hmat.2001.2332
https://doi.org/10.1006/hmat.2001.2332
https://doi.org/10.1002/jcc.540121016
https://doi.org/10.1002/jcc.540121016
https://doi.org/10.1002/jcc.540121016
https://doi.org/10.1109/IPDPS.2011.289
https://doi.org/10.1109/IPDPS.2011.289
https://doi.org/10.1021/acs.jcim.8b00462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1177/109434209601000401
https://doi.org/10.1177/109434209601000401
https://doi.org/10.1007/BF02246763
https://doi.org/10.1515/bmt.2011.100
https://doi.org/10.1515/bmt.2011.100
https://doi.org/10.1021/ct900275y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900275y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jpdc.2019.09.014
https://doi.org/10.1016/j.jpdc.2019.09.014
https://doi.org/10.1021/ct200909j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200909j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-319-46079-6_14
https://doi.org/10.1007/978-3-319-46079-6_14
https://doi.org/10.1007/978-3-319-46079-6_14
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

International conference on high performance computing. 2016, 9945,
188−206.

(106) Kalé, L. V.; Bhandarkar, M.; Brunner, R.; Krawetz, N.; Phillips,
J.; Shinozaki, A. NAMD: A case study in multilingual parallel
programming. International Workshop on Languages and Compilers for
Parallel Comput. 1997, 367−381.

(107) Phillips, J. C.; Stone, J. E.; Schulten, K. Adapting a message-
driven parallel application to GPU-accelerated clusters. Proceedings of
the 2008 ACM/IEEE conference on Supercomputing; 2008; p 8.

(108) Hardy, D. J. NAMD-lite; 2009. https://www.ks.uiuc.edu/
Development/MDTools/namdlite/.

(109) Barash, D.; Yang, L.; Qian, X.; Schlick, T. Inherent speedup
limitations in multiple time step/particle mesh Ewald algorithms. J.
Comput. Chem. 2003, 24, 77−88.

(110) Berendsen, H. J.; van der Spoel, D.; van Drunen, R.
GROMACS: a message-passing parallel molecular dynamics imple-
mentation. Comput. Phys. Commun. 1995, 91, 43−56.

(111) Abraham, M. J.; Murtola, T.; Schulz, R.; Ṕall, S.; Smith, J. C.;
Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1, 19−25.

(112) Bowers, K. J.; Dror, R. O.; Shaw, D. E. Overview of neutral
territory methods for the parallel evaluation of pairwise particle
interactions. Journal of Physics: Conference Series; 2005; p 300.

(113) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E.
GROMACS 4: algorithms for highly efficient, load-balanced, and
scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435−
447.

(114) Alexei, I. D. Master’s Thesis, Implementation of the Particle
Mesh Ewald method on a GPU. Royal Institute of Technology SCI
School of Engineering Sciences, Stockholm, Sweden, 2016.

(115) Gruber, C. C.; Pleiss, J. Systematic benchmarking of large
molecular dynamics simulations employing GROMACS on massive
multiprocessing facilities. J. Comput. Chem. 2011, 32, 600−606.

(116) Pall, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E.
Tackling exascale software challenges in molecular dynamics
simulations with GROMACS. International Conference on Exascale
Applications and Software; 2014; pp 3−27.

(117) Board, J. A.; Humphres, C. W.; Lambert, C. G.; Rankin, W.
T.; Toukmaji, A. Y. Computational Molecular Dynamics: Challenges,
Methods, Ideas; Springer, 1999; pp 459−471.

(118) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D.
S.; Brown, W. M.; Crozier, P. S.; in’t Veld, P. J.; Kohlmeyer, A.;
Moore, S. G.; Nguyen, T. D.; et al. LAMMPS-a flexible simulation
tool for particle-based materials modeling at the atomic, meso, and
continuum scales. Comput. Phys. Commun. 2022, 271, 108171.

(119) Fabregat-Traver, D.; Ismail, A. E.; Bientinesi, P. Accelerating
molecular dynamics codes by performance and accuracy modeling. J.
Comput. Science 2018, 27, 77−90.

(120) Brown, D.; Minoux, H.; Maigret, B. A domain decomposition
parallel processing algorithm for molecular dynamics simulations of
systems of arbitrary connectivity. Comput. Phys. Commun. 1997, 103,
170−186.

(121) Stone, J. E.; Hardy, D. J.; Ufimtsev, I. S.; Schulten, K. GPU-
accelerated molecular modeling coming of age. J. Mol. Graph. Model.
2010, 29, 116−125.

(122) Van Meel, J. A.; Arnold, A.; Frenkel, D.; Portegies Zwart, S.;
Belleman, R. G. Harvesting graphics power for MD simulations. Mol.
Simul. 2008, 34, 259−266.

(123) Trott, C. R.; Winterfeld, L.; Crozier, P. S. General-purpose
molecular dynamics simulations on GPU-based clusters. arXiv preprint
2010, DOI: 10.48550/arXiv.1009.4330.

(124) Plimpton, S. Fast parallel algorithms for short-range molecular
dynamics. J. Comput. Phys. 1995, 117, 1−19.

(125) Bowers, K. J.; Dror, R. O.; Shaw, D. E. Zonal methods for the
parallel execution of range-limited N-body simulations. J. Comput.
Phys. 2007, 221, 303−329.

(126) Bowers, K. J.; Dror, R. O.; Shaw, D. E. The midpoint method
for parallelization of particle simulations. J. Chem. Phys. 2006, 124,
184109.

(127) Shaw, D. E. A fast, scalable method for the parallel evaluation
of distance-limited pairwise particle interactions. J. Comput. Chem.
2005, 26, 1318−1328.

(128) Snir, M. A note on n-body computations with cutoffs. Theory
Comput. Syst. 2004, 37, 295−318.

(129) Aktulga, H. M.; Fogarty, J. C.; Pandit, S. A.; Grama, A. Y.
Parallel reactive molecular dynamics: Numerical methods and
algorithmic techniques. Parallel Comput. 2012, 38, 245−259.

(130) Shan, Y.; Klepeis, J. L.; Eastwood, M. P.; Dror, R. O.; Shaw, D.
E. Gaussian split Ewald: A fast Ewald mesh method for molecular
simulation. J. Chem. Phys. 2005, 122, 054101.

(131) Dror, R.; Grossman, J.; Mackenzie, K.; Towles, B.; Chow, E.;
Salmon, J.; Young, C.; Bank, J.; Batson, B.; Shaw, D.; et al.
Overcoming communication latency barriers in massively parallel
scientific computation. IEEE Micro 2011, 31, 8−19.

(132) Murray, L. GPU acceleration of Runge-Kutta integrators.
IEEE Trans. Parallel Distrib. Syst. 2012, 23, 94−101.

(133) Hünenberger, P. H.; McCammon, J. A. Effect of artificial
periodicity in simulations of biomolecules under Ewald boundary
conditions: a continuum electrostatics study. Biophys. Chem. 1999, 78,
69−88.

(134) Hünenberger, P. H.; McCammon, J. A. Ewald artifacts in
computer simulations of ionic solvation and ion-ion interaction: a
continuum electrostatics study. J. Chem. Phys. 1999, 110, 1856−1872.

(135) Hub, J. S.; de Groot, B. L.; Grubmuller, H.; Groenhof, G.
Quantifying artifacts in Ewald simulations of inhomogeneous systems
with a net charge. J. Chem. Theory Comput. 2014, 10, 381−390.

(136) Bogusz, S.; Cheatham, T. E., III; Brooks, B. R. Removal of
pressure and free energy artifacts in charged periodic systems via net
charge corrections to the Ewald potential. J. Chem. Phys. 1998, 108,
7070−7084.

(137) Ohno, Y.; Yokota, R.; Koyama, H.; Morimoto, G.; Hasegawa,
A.; Masumoto, G.; Okimoto, N.; Hirano, Y.; Ibeid, H.; Narumi, T.;
et al. Petascale molecular dynamics simulation using the fast multipole
method on K computer. Comput. Phys. Commun. 2014, 185, 2575−
2585.

(138) Moore, S. G.; Crozier, P. S. Extension and evaluation of the
multilevel summation method for fast long-range electrostatics
calculations. J. Chem. Phys. 2014, 140, 234112.

(139) Kutzner, C.; Van Der Spoel, D.; Fechner, M.; Lindahl, E.;
Schmitt, U. W.; De Groot, B. L.; Grubmüller, H. Speeding up parallel
GROMACS on high-latency networks. J. Comput. Chem. 2007, 28,
2075−2084.

(140) Kutzner, C.; Apostolov, R.; Hess, B.; Grubmüller, H. Parallel
Comput.: Accelerating computational science and engineering (CSE); IOS
Press, 2014; pp 722−727.

(141) Izaguirre, J. A.; Hampton, S. S.; Matthey, T. Parallel multigrid
summation for the N-body problem. J. Parallel Distrib. Comput. 2005,
65, 949−962.

(142) Hardy, D. J.; Stone, J. E.; Schulten, K. Multilevel summation
of electrostatic potentials using graphics processing units. Parallel
Comput. 2009, 35, 164−177.

(143) Bergdorf, M.; Robinson-Mosher, A.; Guo, X.; Law, K.-H.;
Shaw, D. E. Desmond/GPU performance as of April 2021. DE Shaw
Research, Technol. Rep. DESRES/TR-2021−01 2021.

(144) AMBER. GPU Benchmarks. http://ambermd.org/gpus16/
benchmarks.htm Accessed: 2022-07-22.

(145) Acemd v3 benchmarks. https://hpc.nih.gov/apps/acemd/
benchmarks.html Accessed: 2022-07-23.

(146) Creating Faster Molecular Dynamics Simulations with
GROMACS 2020 � NVIDIA Technical Blog Accessed: 2022-07-23.

(147) Yokota, R.; Barba, L. A. Hierarchical n-body simulations with
autotuning for heterogeneous systems. Comput. Sci. Eng. 2012, 14,
30−39.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32895

https://doi.org/10.1007/BFb0032705
https://doi.org/10.1007/BFb0032705
https://www.ks.uiuc.edu/Development/MDTools/namdlite/
https://www.ks.uiuc.edu/Development/MDTools/namdlite/
https://doi.org/10.1002/jcc.10196
https://doi.org/10.1002/jcc.10196
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1021/ct700301q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700301q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.21645
https://doi.org/10.1002/jcc.21645
https://doi.org/10.1002/jcc.21645
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.jocs.2018.05.004
https://doi.org/10.1016/j.jocs.2018.05.004
https://doi.org/10.1016/S0010-4655(97)00040-4
https://doi.org/10.1016/S0010-4655(97)00040-4
https://doi.org/10.1016/S0010-4655(97)00040-4
https://doi.org/10.1016/j.jmgm.2010.06.010
https://doi.org/10.1016/j.jmgm.2010.06.010
https://doi.org/10.1080/08927020701744295
https://doi.org/10.48550/arXiv.1009.4330
https://doi.org/10.48550/arXiv.1009.4330
https://doi.org/10.48550/arXiv.1009.4330?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.jcp.2006.06.014
https://doi.org/10.1016/j.jcp.2006.06.014
https://doi.org/10.1063/1.2191489
https://doi.org/10.1063/1.2191489
https://doi.org/10.1002/jcc.20267
https://doi.org/10.1002/jcc.20267
https://doi.org/10.1007/s00224-003-1071-0
https://doi.org/10.1016/j.parco.2011.08.005
https://doi.org/10.1016/j.parco.2011.08.005
https://doi.org/10.1063/1.1839571
https://doi.org/10.1063/1.1839571
https://doi.org/10.1109/MM.2011.38
https://doi.org/10.1109/MM.2011.38
https://doi.org/10.1109/TPDS.2011.61
https://doi.org/10.1016/S0301-4622(99)00007-1
https://doi.org/10.1016/S0301-4622(99)00007-1
https://doi.org/10.1016/S0301-4622(99)00007-1
https://doi.org/10.1063/1.477873
https://doi.org/10.1063/1.477873
https://doi.org/10.1063/1.477873
https://doi.org/10.1021/ct400626b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400626b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.476320
https://doi.org/10.1063/1.476320
https://doi.org/10.1063/1.476320
https://doi.org/10.1016/j.cpc.2014.06.004
https://doi.org/10.1016/j.cpc.2014.06.004
https://doi.org/10.1063/1.4883695
https://doi.org/10.1063/1.4883695
https://doi.org/10.1063/1.4883695
https://doi.org/10.1002/jcc.20703
https://doi.org/10.1002/jcc.20703
https://doi.org/10.1016/j.jpdc.2005.03.006
https://doi.org/10.1016/j.jpdc.2005.03.006
https://doi.org/10.1016/j.parco.2008.12.005
https://doi.org/10.1016/j.parco.2008.12.005
http://ambermd.org/gpus16/benchmarks.htm
http://ambermd.org/gpus16/benchmarks.htm
https://hpc.nih.gov/apps/acemd/benchmarks.html
https://hpc.nih.gov/apps/acemd/benchmarks.html
https://doi.org/10.1109/MCSE.2012.1
https://doi.org/10.1109/MCSE.2012.1
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(148) Warren, M. S.; Salmon, J. K. Astrophysical N-body simulations
using hierarchical tree data structures. Proceedings of the 1992 ACM/
IEEE Conference on Supercomputing; 1992; pp 570−576.

(149) Urbanek, F. J. An O (log n) algorithm for computing the nth
element of the solution of a difference equation. Inf. Process. Lett.
1980, 11, 66−67.

(150) Dehnen, W. A hierarchical O (N) force calculation algorithm.
J. Comput. Phys. 2002, 179, 27−42.

(151) Shaw, D. E.; Grossman, J.; Bank, J. A.; Batson, B.; Butts, J. A.;
Chao, J. C.; Deneroff, M. M.; Dror, R. O.; Even, A.; Fenton, C. H.
et al. Anton 2: raising the bar for performance and programmability in
a special-purpose molecular dynamics supercomputer. Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis; 2014; pp 41−53.

(152) Xinhuai, Z. How Fast Can Amber and Gromacs Job Run with
P100 Gpu Accelerator. https://nusit.nus.edu.sg/technus/hpc/
benchmark-p100-gpu-accelerator-molecular-simulation-application-
amber-gromacs/ Accessed: 2021-10-29.

(153) Ṕall, S.; Zhmurov, A.; Bauer, P.; Abraham, M.; Lundborg, M.;
Gray, A.; Hess, B.; Lindahl, E. Heterogeneous parallelization and
acceleration of molecular dynamics simulations in GROMACS. J.
Chem. Phys. 2020, 153, 134110.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c03189
ACS Omega 2022, 7, 32877−32896

32896

https://doi.org/10.1016/0020-0190(80)90002-2
https://doi.org/10.1016/0020-0190(80)90002-2
https://doi.org/10.1006/jcph.2002.7026
https://nusit.nus.edu.sg/technus/hpc/benchmark-p100-gpu-accelerator-molecular-simulation-application-amber-gromacs/
https://nusit.nus.edu.sg/technus/hpc/benchmark-p100-gpu-accelerator-molecular-simulation-application-amber-gromacs/
https://nusit.nus.edu.sg/technus/hpc/benchmark-p100-gpu-accelerator-molecular-simulation-application-amber-gromacs/
https://doi.org/10.1063/5.0018516
https://doi.org/10.1063/5.0018516
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

